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Etudes de la stabilité de la
régulation de débit dans les
canaux d'irrigation
Introduction

Le problème de la régulation des débits dans les réseaux
d'irrigation a fait l'objet, ces dernières années, de nombreuses
études. La particularité de l'évolution des intumescences dans

PAR ALEXANDRE PREISSMANN ET
JEAN A. CUNGE
38130 ECHIROLLES, FRANCE

les canaux, c'est qu'elle est régie par des équations aux dérivées

partielles, alors que la plupart des études sur la stabilité
s'appliquaient à des équations différentielles ordinaires. Dans
ce dernier cas, l'étude de la stabilité conduit à examiner les
racines d'un polynôme. Si ces racines (en général complexes)
ont toutes leur partie réelle négative, la régulation est stable.
Le fait que l'on ait à faire à des équations différentielles aux
dérivées partielles peut conduire à considérer également les
racines (zéros) d'une fonction qui n'est pas un polynôme,
mais une fonction transcendante possédant une infinité de
zéros. En fait, les études effectuées se rapportent essentiellement

à la stabilité de la régulation, lorsque la situation d'équilibre

est caractérisée par le fait que l'écoulement dans tous les
biefs est uniforme [2]. Dans ce cas, la recherche des racines de
la fonction transcendante est assez simple. Mais le problème
se complique beaucoup lorsque la situation d'équilibre
correspondant à l'écoulement dans les biefs est stationnaire, mais
non uniforme.

On a recommandé dans ce cas de construire des modèles
mathématiques d'écoulement, pour lesquels les équations
différentielles sont remplacées par des équations aux différences.
Or, ces modèles, s'ils sont capables de reproduire correctement

l'évolution d'ensemble, peuvent ne pas être adaptés aux
études de stabilité; en effet, pour éviter l'instabilité du calcul,
on introduit explicitement ou implicitement une diffusion
numérique que pourrait masquer une instabilité du système.
En outre, l'étude de stabilité effectuée sur le système aux
différences aboutit à la recherche des racines d'un polynôme qui
sont en nombre fini. Par ailleurs, la simulation sur le modèle
mathématique peut conduire à des temps de calcul sur ordi¬

nateur assez longs. Mais, évidemment, l'utilisation de
modèles mathématiques présente l'avantage de donner les variations

des niveaux et des débits consécutifs à une variation des
demandes d'irrigation [1,2]; la stabilité n'est pas le seul critère
pour juger un système de régulation!

Pour essayer d'éclairer la différence entre le traitement des

équations différentielles aux dérivées partielles et le traitement

des équations aux différences correspondantes, nous
avons choisi d'introduire une discrétisation, uniquement sur
l'espace. On est alors conduit à un calcul rapide qui permet
une première comparaison entre le calcul exact et le calcul
approché.

Cas particulier de l'écoulement stationnaire
uniforme

Nous nous limitons au cas d'un canal rectangulaire avec une
perte de charge à la Darcy (coefficient K).

L'écoulement dans le canal est régi par les équations de
Saint-Venant:

(D du du
dt dx

u2dzir + K idx h

_____

dt + U
dh

dx
+ h

dU
dx

0

avec: U= vitesse d'écoulement; z niveau; h profondeur
Nous écrivons: U= U0+ U' ; z % + z' ; h hg + h'
où U0, Za, h0 sont les valeurs relatives à l'écoulement stationnaire

uniforme, U0, h0 étant constantes.

Pour les petites perturbations, nous linéarisons les équations:

(2)
dt

' Uu
dx

dz'
+ g dx

dz'
dt

dz'
d.X

_. 1 dl]'+ h dx

+ 2K U0U'

"o

Tableau 1. Parties réelles des cinq racines rangées en ordre croissant des valeurs absolues des parties imaginaires

Régime uniforme Régime non-uniforme

q- 1.60 mVs q 0,60 m2/s </ 0.10mVs

Racine n°
0 0,5 0,75 0,90 0 0,5 0,75 0.90 0 0.5 0.75 0.90

1 -0,0004 + 0,0005 + 0,00138 -0,00759 -0,00058 -0,00048 + 0,00070 + 0.00151 -0.00009 -0,00015 + 0,0013 + 0,0022

2 -0,0025 -0,0009 -0,00006 + 0,00229 -0,00061 -0.00178 -0,00396 + 0.00053 -0,00010 -0,00027 -0,0020 -0.0032
3 -0,0019 -0,0040 -0,00313 + 0,00087 -0,00091 -0,00075 -0,00015 -0,00167 -0,00015 -0.00003 + 0,0012 + 0.0021

4 -0,0027 -0,0065 -0,00876 -0,00220 -0,00135 -0,00312 -0,00230 -0,00631 -0,00022 -0,00068 -0,0023 -0.0036
5 -0,0041 -0,0109 -0,01481 -0,00884 -0,00193 -0,00251 -0,00693 -0,00669 -0.00031 -0,00032 + 0,0010 + 0.0018
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Les coefficients de ces équations sont des constantes. On
cherche alors les solutions du type:

(3) z' A eateV* W B ea'A

a et ß, A et B étant des constantes en général complexes.

En introduisant les valeurs (3) dans les équations (2), on constate

que les quantités A et B satisfont à deux équations
linéaires homogènes (avec des coefficients dépendant de a et
P).

Pour que A et B ne soient pas tous les deux nuls, il faut qu'un
déterminant soit nul. Cette condition donne une relation
entre a et ß (ß /(a)), à chaque valeur de a correspondant
aux valeurs de ß, ßi et ß2.

A chaque valeur de a, on aura donc des solutions :

(4)

avec:

z' (Ai ePi-x + A2 epA eal

U' =(_?, eP'x+ B2e^x)ea<

B, - ct + ßil/o
Bi q+ß2t-/o

ßirlO ß2Ao

(relations déduites de la deuxième équation (2))

En introduisant des conditions aux limites, on peut déterminer

les valeurs de a. Ici, à titre d'exemple, nous supposerons
que le débit est constant à l'aval du bief et que la régulation
amont est une régulation BIVAL [1], caractérisée par le fait
que la moyenne pondérée du niveau amont (x 0) et du
niveau aval (x L) est constante. Les coefficients de pondération

aval/amont sont respectivement K{ ; K2.

(5) U' (L)-h0 + z' (L) I/o 0; débit constant aval

K\ z' (L) + K2 z' (0) 0, pondération aval/amont,
K2=\- Ki

En introduisant les valeurs (4) dans les conditions aux limites
(5), on obtient deux équations linéaires homogènes, pour les

coefficients __, et A2. Pour que ces coefficients ne soient pas
nuls tous les deux, il faut que le déterminant soit nul. Ce
déterminant est une fonction transcendante de a. Pour que la
régulation soit stable, il est nécessaire que toutes les racines
de cette équation aient une partie réelle négative.

Cas général de l'écoulement stationnaire non
uniforme

Les écoulements sont régis par les équations (1), mais par le

fait que UQ et /% ne sont plus des constantes mais des fonctions
de x, l'équation des perturbations devient:

(2')

ni

dU
dt

- + U'
dUo
dx

Uo-
dV
dx

z' 0
dz'
dt -+ U'

dZQ

dx
+ [

dz'
dx

2KU0U'
h

'o^rr + z'—^— + «o-dx dx dx
0

Les coefficients ne sont pas constants, il n'est pas possible
d'appliquer la méthode du chapitre précédent. Nous
cherchons également des solutions de la forme:

z' f(x)eal U'=g(x)e't<
et nous remplaçons les dérivées en xpar des différences divisées,

le canal étant divisé en n tronçons de longueur Ax. La
discrétisation d'une quantité g (c'est-à-dire U', U0, z', hç) se

fait selon les formules:

(6) 6~o,5(e,+ e.+i);4^-~ Ql+,~Q>
OX X

où j, j+1 sont des points de calcul.

Les quantités U'p U']+,, zj, z'J+, sont donc reliées, à la suite de
la discrétisation par deux relations linéaires homogènes :

(7)
A] Uf + B, Uj7+1 G 2/ + Diz/+i 0AZj 1 Z/+ 1

A2 Uj + B2 U/+i + C2 zf + D2 z/+i 0

Les coefficients étant, soit des constantes, soit des formes
linéaires en a. Ils sont variables d'un intervalle Ax à l'autre, car
ils dépendent de UQ (x) et 1% (x).

A partir des équations (7) et par élimination, on trouve:

't I Mj I J+1 My. matrice de rang 2, variable avec j
En partant de l'aval (j + 1 n + 1), on trouve:

U',
Mi- M-, M„

U'n+]
Z'n+i

M
U,',+ i

z,',+ i

Les éléments de la matrice M sont des fonctions rationnelles
de a, rapport de deux polynômes de degré 2?!. Si l'on introduit
les deux conditions aux limites exprimées par l'équation (5),
on trouve que les valeurs de a possibles sont les racines d'un
polynôme de degré 2n. On obtient ainsi un nombre fini de
valeurs propres (au lieu de l'infinité des racines de la fonction
transcendante du traitement analytique dans le cas d'un
mouvement stationnaire uniforme). Les valeurs propres de faible
module sont très proches des valeurs obtenues par la méthode
analytique.

Exemple d'application
Des calculs ont été effectués pour le cas d'un canal rectangulaire

large, ayant les caractéristiques suivantes: longueur
3400 m, pente 0,0003, résistance K 0,004709. Le cas de
l'écoulement uniforme correspondant au débit unitaire, q
1,60 mVs, ho 1,60 m const., U0 1,0 m/s était traité
d'abord, en discrétisant le canal par 20 intervalles Ax
170 m. Des niveaux de consigne ont été choisis en faisant
varier le coefficient de pondération: Ki 0 (niveau amont x
0);_<_, 0,5 (niveau à x 1700 m); K, 75 (z(x 2558 m));
Ki 0,90 (z (x 3369 m)). Chaque niveau correspond à la
profondeur l\, 1,60 m (écoulement uniforme). Ensuite, on a
traité deux régimes stationnaires non-uniformes q 0,60
m2/s et q 0,10 m2/s. Le niveau aval de l'écoulement stationnaire

a été imposé chaque fois, de telle sorte que, pour K,
choisi, le niveau de la surface libre soit égal en point de
consigne à celui de l'écoulement uniforme. Les racines des

polynômes (correspondantes aux 5 parties imaginaire les plus
petites en absolu) sont regroupées pour tous les cas dans le
tableau 1. On constate bien que le déplacement de la pondération

Ki •— 1, K2 -* 0 (c'est-à-dire du niveau de la consigne vers
l'aval) correspond à l'apparition des parties réelles positives,
c'est-à-dire à l'instabilité. C'est un résultat expérimental bien
connu.
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