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Table 1. Computed Suspended-Load Concentrations Cs, and Measured Total-Load

Concentrations, C, for Experiments of Vanoni and Brooks [6]

Run d U S Z>50
yb

Û50
A A n z_ Cs C

a) b) c) d)

No. (comp'd) (meas'd)
cm cm/s mm g/1 g/1 g/1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 8.7 37.5 0.0025 0.091 6.31 6.97 1.07 3.28 0.76 1.13 3.64
3 7.4 61.6 0.0020 0.091 4.92 48.2 0.77 5.31 1.33 1.93 4.60
5 7.4 68.9 0.0021 0.091 5.38 72.4 0.66 5.06 1.53 2.40 6.92
7 7.7 69.5 0.0026 0.148 4.89 107.2 0.80 5.35 2.14 2.51 3.61

a) Computed from 17)

b) Computed from (11)
c) Computed from (10), using K${iom col. 8

d) Computed from (9) usirtg Ks from col 8, n from col. 9, and P.-1

Summary
The algebraic simplicity of the power-
law velocity profile, and the accuracy
with which it predicts velocity and
concentration distributions [5] and
suspended-sediment discharge would
appear to make it an attractive alternative
to the river-flow formulations based on
the logarithmic velocity distribution.

Author's address: John F. Kennedy, Hunter
Rouse Professor and Director, Iowa Institute
of Hydraulic Research, The University of
Iowa, Iowa City, Iowa 52242, USA.

Sicherheit gegen Schadstoff-
einleitungen in Flüsse

Einleitung

Eine moderne Industriegesellschaft muss Industriebetriebe
zulassen, in denen gefährliche Stoffe gelagert und verarbeitet
werden. Auch wenn die Handhabung solcher Stoffe mit gröss-

VON ERICH J. PLATE,
KARLSRUHE

ter Sorgfalt geschieht, lässt sich ein Unfall, durch den solche

gefährliche Stoffe in die Vorfluter gelangen können, nicht
mit absoluter Sicherheit vermeiden.

Eine verantwortliche Firmenleitung wird daher mit den
Aufsichtsbehörden zusammenarbeiten und gemeinsam Vorkehrungen

treffen, um gegebenenfalls auftretende Schäden zu
begrenzen. Hierfür müssen Szenarien erstellt werden, in
denen der Unfall als eingetroffen angenommen wird. Aus der

Analyse der Folgen eines solchen gedachten Unfalls können
dann Bereiche identifiziert werden, in denen die Konsequenzen

eines Schadens besonders hoch sind, und für solche

Punkte können dann Vorsorgemassnahmen gegen einen
allfälligen Unfall getroffen werden.

Es erscheint aber wenig sinnvoll, bei Vorsorgemassnahmen
von einer gedachten allerungünstigsten Schadenssituation
auszugehen, insbesondere wenn eine solche Betrachtung zu
sehr hohen Investitionen führen würde. Statt dessen sollte
die Wahrscheinlichkeit für das Auftreten möglicher Kausalketten

bei der Betrachtung der Konsequenzen berücksichtigt
werden. Dadurch können solche Situationen, deren (bedingte)

Auftretenswahrscheinlichkeit bei gegebenem Unfall sehr

klein ist, ausgeschlossen werden. Eine solche Betrachtung
erfordert eine gemischt deterministisch-statistische Analyse
der Kausalkette der Unfallfolgen. Eine solche Analyse soll an
einem Beispiel durchgeführt werden.

Ausgangspunkt ist die Lage eines Betriebes an einem Punkt
A eines Flusses, analog zu der in Bild 1 gezeigten Lage. In
diesem Betrieb werden bis zu 500 kg eines toxischen Stoffes in
wässriger Lösung gelagert und für einen wichtigen Herstel-

lungsprozess des Betriebes derart verwendet, dass immer,
wenn der Stoff aufgebraucht ist, eine neue Menge von 500 kg
hergestellt und langsam abgearbeitet wird. Ein Unfall könnte
also mit gleicher Wahrscheinlichkeit bei irgendeinem der
Füllungszustände zwischen M 0 und Mmax 500 kg auftreten,

d. h. die Wahrscheinlichkeitsdichte für das Vorhandensein

des Stoffes ist:

(1) MM) M„. o_;m_:m„

Bei einem Betriebsunfall muss damit gerechnet werden, dass
ein Teil oder die ganze gelagerte Menge in den Vorfluter
gelangt. Dadurch können Anrainer geschädigt werden, solange
die Konzentration des Stoffes eine vorgegebene Toxidizitäts-
grenze von c,ul 0,1 g/m3 überschreitet. Entlang der gefährdeten

Strecke des Flusses sollen vorsorgliche Massnahmen
getroffen werden, um die Anrainer vor den Unfallfolgen zu
schützen. Im Sinne der in der Einleitung formulierten
Sicherheitsbetrachtung soll festgestellt werden, wie gross die
bedingte Wahrscheinlichkeit für das Auftreten einer über der
Toxidizitätsgrenze liegenden Konzentration ist.

Der Vorfluter sei ein Fluss mit Rechteckquerschnitt und kon-

Bild 1. Lageskizze und Definitionen
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stanter Breite b= 150 m und mit einer Wasserführung Q,
deren Auftretenswahrscheinlichkeit durch eine Weibullvertei-
lung, d. h. durch eine Funktion:

(2) F(Q)=\-e"Qs
beschrieben werden kann. Diese Funktion ist vollständig
festgelegt durch Mittelwert Q 540 m3/s und Varianz a2q

(300)2m6/s2, mit deren Hilfe die Parameter r und 5 sich nach
bekannten Methoden zu 7,53.10"6 und 1,839 berechnen
lassen. Zur Vereinfachung der Aufgabe nehmen wir an, dass die
Wasserführung nach dem Unfall für die ganze Dauer der
Auswirkung über die Zeit und im Raum konstant bleibt, dass
der hydraulische Radius gleich der Wassertiefe h ist und dass
ferner ksl konstant und gleich 25 ist.

Im Fluss wird M mit Q vermischt zur Konzentration c(x,t).
Diese wird durch die Transportgeschwindigkeit r, (die ungefähr

gleich der mittleren Geschwindigkeit u ist) flussabwärts
geführt, und durch die Längsdiffusivität über eine immer
zunehmende Strecke des Flusses verteilt. Gesucht ist zunächst
im deterministischen Teil der Fragestellung der Punkt x, bei
dem die maximale Konzentration gerade bis auf einen Wert
qul abgesunken ist, und im stochastischen Teil die dazugehörige

Wahrscheinlichkeit P„ ç,ul

Das physikalische Modell

Die Ausbreitung von Schadstoffen in einem Vorfluter infolge
einer als momentan zu denkenden Einleitungsmenge M
erfolgt als Prozess einer Kombination aus Diffusion und
Dispersion nach verschiedenen Gesetzmässigkeiten in drei
verschiedenen Zonen. Als erste Zone ist der Bereich in der Nähe
der Einleitungsstelle zu sehen, in welchem die Geometrie
und Strömungsmechanik der Einleitung das Ausbreitungsverhalten

massgebend bestimmt [6]. Die Länge X\ dieser
Anfangsstrecke musste genaugenommen als Zufallsvariable
betrachtet werden, wird hier aber als eine Konstante mit Wert 0

behandelt.

Die zweite und dritte Zone haben beide die Eigenschaft, dass
die Konzentration praktisch konstant über den Querschnitt
ist, so dass nur noch eine Längsdiffusion von Bedeutung ist.
Theoretische Modelle für die Längsdiffusivität [4] können
jedoch nur in grober Annäherung die wirklichen Verhältnisse
wiedergeben. Feldmessungen (z. B. [5]) ergaben Diffusivitä-
ten, die bis zu Faktoren von 1000 von theoretisch vorhergesagten

abwichen. Daher muss die Längsdiffusion auf
halbempirischer Basis ermittelt werden. Die bisher ausführlichste

Bild 2. Beziehungen zwischen und ut/u für natürliche Flüsse
nach [2]. Die Namen bezeichnen die Quellen der von Beltaos
verwendeten Daten
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Analyse von Diffusionsdaten für natürliche Flüsse wurde
von Beltaos [2] durchgeführt, und an seinen Ergebnissen
orientiert sich die vorliegende Untersuchung.
Nach Beltaos unterscheiden sich Zone 2 und 3 durch die
funktionale Form der Längsdiffusivität, die etwa denen der
Diffusionstheorie für homogene Turbulenz nach Taylor [7]
entsprechen. Zone 3 gilt für sehr lange Zeiten und hat eine
Diffusivität proportional zur Wurzel aus t und führt nach der
klassischen Fickschen Theorie zu einem durch die Gausssche
Glockenkurve beschriebenen Konzentrationsprofil. Dieser
Bereich beginnt aber erst in einem sehr grossen Abstand von
der Quelle, der für die vorgegebene Aufgabenstellung ohne
Bedeutung ist.

Massgeblich ist vielmehr der 2. (lineare) Bereich. Für diesen
erhält Beltaos für die Konzentrationsverteilung in Längsrichtung

folgende Formel für c(x,t):

(3) c(x,t)
M

A-x ¦ [ì^^/2n

ut
"exp - 1- ut

\/\Y

mit Maximalkonzentration c^,ax, für die man aus Gl. (3)
erhält:

(4) cmax(x)
M

A • x • ß • V27t

Bezeichnen wir mit x* die kritische Entfernung für das
Auftreten der Bedingung c^ax q.ub so ist für x < x* der Wert c,U|

überschritten. Für die kritische Entfernung gilt :

(5)
M

A ¦ ß • y27t Qui

Der Koeffizient ß enthält alle Variabilität der Messungen in
natürlichen Flüssen, nach Bild 2 ist er dargestellt als Funktion

von u*/u. (Hier wurde ß als Wurzel des von Beltaos
verwendeten Faktors definiert, wodurch sich Vereinfachungen
in der Handhabung dieses Parameters ergaben). Die von
Beltaos durch die Daten gelegte Kurve kann durch folgende
analytische Form angenähert werden :

(6) ß 0,33 —+0,03

wobei u= Q/b -h die querschnittsgemittelte Geschwindigkeit
im Fluss, w. ^g-h-I die Schubspannungsgeschwindigkeit,
/. Wassertiefe und /. Gefälle ist. Wird dieser Ausdruck
über die Manning-Strickler-Gleichung Q k^- /is/3- lul in O
umgewandelt, so erhält man nach einiger Umformung für
die Grenzbedingung:

(7)
M ^ 2,59 bl

klnJu
Q

0,075 b2

/cA/3/l
Ö

als Ergebnis des deterministischen Modells.

Setzen wir die linke Seite dieser Gleichung gleich Qund die
rechte Seite gleich Q so lautet diese Gleichung mit den
numerischen Werten des Beispiels:

(8) CL
M

Czul•X
CR= 1,427 Q1 2 + 0,643 ß3

Die rechte Seite kann aus später erkennbaren Gründen noch
umgewandelt werden durch Abtragen von CR gegen Q auf
doppelt logarithmischem Papier, und man erhält empirisch
für das Beispiel die Beziehung:

(9) Q 0,286 ClR'm
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Bild 3. Darstellung des Berechnungsganges für die
Wahrscheinlichkeit Pu (czui)
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Bild 4. Verlauf der Unterschreitungswahrscheinlichkeit Pu (czui)

für das Berechnungsbeispiel

Das stochastische Modell

Der stochastische Teil unseres Problems besteht darin, die
nach Eintreten des Schadensfalles 5 bedingte Wahrscheinlichkeit

Pu (c_ul) P(^axxqul S) zu ermitteln, die durch die
Variabilität der in Gl. (7) auftretenden Parameter bestimmt
ist. Wir wollen hier nun berücksichtigen, dass die Grössen Q
und Mdurch die Wahrscheinlichkeitsdichten Gl. (1) und Gl.
(2) beschrieben sind, wodurch bei jedem x eine Wahrscheinlichkeit

P„(c,ui) für das Unterschreiten der zulässigen
Konzentration entsteht.

Die Wahrscheinlichkeit P„(q_i) wird durch Integration über
die zweidimensionale Wahrscheinlichkeitsdichte f(M,Q)
unterhalb der Grenzbedingung q^x c,u, nach folgender Formel
ermittelt:

(10) P„(c_ui
cmu< <zul

f{M).f(Q)dMdQ

Wegen der statistischen Unabhängigkeit von Q und M wurde
f(M,Q)in Gl. (10) durchMM)-fQ(Q)ersetzt.
Der Integrationsbereich für Gl. (10) ist in Bild 3a schraffiert
dargestellt. Die Integration bietet insofern Schwierigkeiten,
als die Grenzbedingung Gl. (5): cmax c_u! in Bild 3a als Kurve

erscheint. Deshalb ist es besser, durch eine weitere
Transformation zur Vereinfachung der Lösung dafür zu sorgen,
dass die Grenzbedingung Gl. (5) in der Wahrscheinlichkeitsebene

in eine Gerade umgewandelt wird. Dies gelingt, indem
wir nicht Mund Q, sondern Qund CR als Zufallsvariablen
verwenden. In der Ebene dieser Zufallsvariablen ist Gl. (5)
eine Gerade. Damit erhalten wir als Ausgangsgleichung für
die Wahrscheinlichkeitsanalyse den Ausdruck :

C»

(11) PU(Czul): l* (CR)-fL(CL)dCL d(A

jf,.(CL) FR(C0dQ.

wobei wieder die statistische Unabhängigkeit berücksichtigt
wurde. Dabei ist fL die Wahrscheinlichkeitsdichte für das

Auftreten von CL, fR{.) diejenige für das Auftreten des
Ausdruckes CR> und Fr (C;J ist die zugehörige, bei Cr C,
ausgewertete Verteilungsfunktion. Dies ist das Freudenthalsche
I ntegral, das in der Theorie der Zuverlässigkeit eine wichtige
Rolle spielt (siehe hierzu z. B. [3]).

Setzen wir in Gl. (11) die Ausdrücke Gl. (1), Gl. (2) und Gl.
(8) ein, so erhalten wir die einfache Lösung:

(12) P„(c/Ui)=l- C/ul

M„ f (l-e-7-»-10-7cP')dC_.

Da die Variable CL von x abhängig ist, muss die Integration
nach Gl. (12) für jedes x wiederholt werden, wodurch sich die

gesuchte Funktion Pu (ç,ul) ergibt. Die Lösung erfolgt numerisch

und ist an Bild 4 gezeigt. Zum Abschluss muss noch
eine Entscheidung getroffen werden (nach Kriterien, die

durch das zu erwartende Risiko bestimmt sind), wie gross der

zulässige Wert von P(ç,uL) sein darf. Für das Beispiel wählen
wir P„(ç,ul) 0,80. Damit erhalten wir aus Bild 4: x* 54 km
als Lösung der gestellten Aufgabe.

Eine Untersuchung der Unsicherheit dieser Aussage kann
nach bekannten Verfahren [3], [1] durchgeführt werden.
Hierüber wird an anderer Stelle berichtet.

Schlusswort

In den letzten Jahrzehnten haben sich Hydraulik und Hydrologie

in immer stärkerem Masse auseinanderentwickelt. Die

Hydraulik entwickelt sich in die Richtung immer verfeinerter

Methoden zur Erfassung der strömungsmechanischen
Gesetzmässigkeiten, und die Hydrologie führt zu immer
detaillierteren Abflussmodellen. Es wird Zeit, dass diese

Entwicklungen wieder zusammengeführt werden. Wie das

geschehen kann, wurde in der vorliegenden Arbeit an Hand
eines einfachen Beispiels gezeigt. Dabei ging es weniger um
die Lösung des angesprochenen Problems als um das Aufzeigen

eines Weges, der für viele Fragestellungen des Wasserbaus

beschritten werden kann. Es ist mir eine Ehre, diesen

Beitrag meinem Kollegen Dracos zu widmen, der noch zu
denjenigen gehört, die gleichermassen mit der Hydraulik wie
mit der Hydrologie vertraut sind.

Adresse des Verfassers: Prof. Erich J. Plate, Institut für Hydrologie
und Wasserwirtschaft. Universität Karlsruhe (TH). Karlsruhe.
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