Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105 (1987)

Heft: 36

Artikel: Rauchgasanalysen bei 10 Heizkesseln

Autor: Meier, Peter

DOI: https://doi.org/10.5169/seals-76697

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Rauchgasanalysen bei 10 Heizkesseln

Der folgende Beitrag befasst sich mit den Messresultaten der Rauchgasanalysen bei 10 Heizkesseln. Es werden Ergebnisse diskutiert, Erfahrungen und Beobachtungen bekanntgegeben und Tendenzen aufgezeigt.

Jeder Verbrennungsvorgang prodziert Gase, welche ohne andere Wahl von der Atmosphäre aufzunehmen sind. Einerseits entstehen schädliche und natürliche Gase aus der Reaktion eines Brennstoffes mit der Luft und dabei verbinden sich anderseits Luftbestandteile fatalerweise zu gefährlichen Gasen. Die Schadstoffproduktion von Otto- und Dieselmotoren kann heute mittels technischer Einrichtungen auf ein vorläufig akzeptables Mass verringert werden.

Bei den Feuerungen beherrscht man wohl die Technik einer vollständigen und wirkungsvollen Verbrennung, aber das Übel der Reaktion der Luftbestandteile Stickstoff und Sauerstoff wird dabei noch wenig beachtet. Der maximale Schwefelgehalt im Brennstoff wird durch immer strengere Vorschriften begrenzt. Für die bei einem Verbrennungsprozess parallel einhergehende Stickoxidproduktion sind Limiten lediglich für die Industrie und für Grossanlagen ab 1 MW gesetzt. Die Anstrengungen hinsichtlich Verminderung der Stockoxide werden zukünftig zwangsläufig auch auf die Hausfeuerungen ausgedehnt werden müssen, will man die Umweltschädigung in den Griff bekommen.

Die Auswahl der Objekte für die Rauchgasanalysen führte zu einer grossen Streuung hinsichtlich Leistung und Alter der Anlagen. Alle diese Heizkessel werden einwandfrei gewartet und betrieben, und die feuerungstechnischen Wirkungsgrade von teils sanierten Altanlagen sind ebenfalls wettbewerbsfähig.

Spezifikationen und Grundlagen

Als Brennstoff dient bei allen gemessenen Heizkesseln Heizöl EL (extra leicht). Hervorzuheben ist die Beigabe von Magnesium (ILV-Mg 50) in die Tanks der Anlagen 2, 8, 9, 10 (Tabelle 1) im Mischungsverhältnis 1/1000, und als speziell zu bezeichnen ist des weiteren die Anreicherung der Verbrennungsluft bei Anlage 4 mit einem Oxydationskatalysator. Dieser Bericht setzt sich besonders auch mit den diesbezüglichen Erfahrungen und Auswirkungen auseinander.

Die Schadstoffe CO, NO, und SO2 und die übrigen Daten (auf Tabelle 1) wurden mit dem Gasanalyse-Computer MSI 2000 P gemessen. Computer und Bedienung stellte die Lieferfirma mietweise zur Verfügung. Der Computer drückt obige Schadstoffe in ppm (parts per million) also als Anteilsverhältnis aus, z. B. cm3 CO pro m3 Abgas. Die Quantifizierung in Milligramm Schadstoff pro Kilogramm verbranntes Heizöl und Milligramm pro Kubikmeter Abgas (letzteres normalisiert auf 3% Sauerstoffgehalt im Abgas) geschieht mittels folgender Umrechnungsgrundlagen [1]:

Luftbedarf zur Verbrennung von 1 kg Heizöl EL

$$V_{Lmin.} = 2.2 + \frac{0.2 \cdot H_u}{1000} = \text{m}^3/\text{kg}$$

= $2.2 + \frac{0.2 \cdot 42700}{1000} = 10.74 \text{ m}^3/\text{kg}$

Abgasmenge bei Verbrennung von 1 kg

$$V_{Rmin.} = \frac{0.27 \cdot H_u}{1000} = \text{m}^3/\text{kg}$$

= $\frac{0.27 \cdot 42700}{1000} = 11.53 \text{ m}^3/\text{kg}$

 $(H_u = unterer Heizwert in kJ)$

Abgasvolumen von 1 kg Heizöl EL unter Berücksichtigung des Luftüberschusses (λ) $V_{RL} = V_{Rmin.} + (\lambda - 1) \cdot V_{Lmin.}$

Das Abgasvolumen bezieht sich dabei auf die Normtemperatur von 0 °C.

Umrechnungsfaktoren von ppm auf mg/m³ Abgas

 $1 \text{ ppm CO} = 1,25 \text{ mg CO/m}^3$ $1 \text{ ppm NO} = 2,05 \text{ mg NO}_2/\text{m}^3$ $(1 \text{ ppm NO} = 1,338 \text{ mg NO/m}^3)$ 1 ppm $SO_2 = 2,93 \text{ mg } SO_2/m^3$

Unter Stickoxiden NOx wird das Gemisch aus Stickstoffmonoxid NO und Stickstoffdioxid NO2 verstanden. Gemäss Luftreinhalteverodnung ist die NO_x-Konzentration (ppm) in mg NO₂/m³ umzurechnen.

Die Aufoxidation von NO zu NO2 geschieht bei Temperaturen <600 °C, und sie findet statt auf dem Abgasweg und zur Hauptsache in der Atmosphäre.

Gemäss Luftreinhalteverordnung ist

des weiteren verlangt, die NO2-Konzentration pro m3 Abgas auf 3% O2-Überschuss umzurechnen bzw. zur normie-

Diese Korrektur (f) rechnet sich mit folgender Formel:

$$f = \frac{21 - X}{21 - 0_{2 \text{ gemessen}}} = \frac{21 - 3}{21 - 0_{2 \text{ gemessen}}}$$

 $(X = \text{Bezugs-}0_2\text{-Wert in Volumenpro-}$ zenten)

Der Quotient dieses Bruches zeigt auf, dass bei kleiner werdendem Luftüberschuss die NO_x-Anteile im Rauchgas anwachsen (Bild 1).

Zwecks besserer Veranschaulichung der Produktionsmengen wurden die effektiven Schadstoffausstosse CO, NO2 und SO2 zu mg/kg Heizöl berechnet. Beim NO2 ist zusätzlich die normierte Angabe zu finden, nämlich mg/m³ bei 3% O2 im Abgas, desgleichen zum Teil beim CO (Tabelle 1).

Diskussion der Messwerte und Anlagen

Aus der Abgastemperatur und dem Kohlendioxidgehalt lässt sich anhand der bekannten Siegert'schen Formel der feuerungstechnische Wirkungsgrad (η) ableiten. Der Sauerstoffgehalt (O₂) im Abgas steht in direktem Zusammenhang mit dem CO2-Gehalt des Abgases und der Luftüberschuss (λ) ist mit dem Quotienten aus dem Verhältnis von CO_{2 max.} zu CO_{2 gemessen} definiert.

 $(CO_{2 \text{max.}} \text{ bei Heizöl EL} = 15,4\%)$ Bemerkenswert ist die Tatsache, dass die feuerungstechnischen Wirkungsgrade der teils sanierten Altanlagen (Beispiele 1, 2, 10) denjenigen von Neuanlagen durchaus ebenbürtig sind.

Oft lässt sich bei einer Altanlage durch Verbesserung der Kesselisolation und Optimierung der Jahresbetriebsstundenzahl auch der Jahreswirkungsgrad beachtlich steigern.

Übrigens läuft die Anlage 4 seit Januar 1984 mit tiefen Abgastemperaturen. Der gemauerte und durch leichtes Öffnen der Explosionsklappe dauernd belüftete Kamin erlitt dadurch bis heute keinen Schaden. Die Leistung wurde damals wegen Überdimensionierung drastisch zurückgenommen.

CO-Produktion

Unter den Schadstoffen CO, NOx und SO2 nimmt sich der Anteil Kohlenmonoxid bescheiden aus. Dies deutet auf vollkommene Verbrennung hin, welche einer diesbezüglich ausgereiften Brennertechnik zuzuschreiben ist. Bei

den grösseren CO-Produzenten unter den gemessenen Anlagen sind die CO-Werte auch normiert, d. h. in mg/m3 bei 3% O₂ angegeben. Der CO-Ausstoss der Anlage 9 beträgt dabei weniger als ein Viertel, des gemäss Luftreinhalteverordnung tolerierten Maximalausstosses von Grossanlagen über 1-MW-Leistung und ist daher unkritisch.

Ein möglichst tiefer Co-Wert ist selbstverständlich anzustreben, weil mit Kohlenmonoxid gebundene Wärme fortgeführt wird.

NO_x-Bildung

Die Stickoxide sind die bislang am wenigsten beherrschten schädlichen Nebenprodukte der Feuerungen. Die Grössenordnung, innerhalb welcher sie entstehen, streut noch sehr.

Zahlreiche Einflüsse bestimmen die mehr oder mindere Bildung von NOx. Massgebend sind besonders die Brennerkonstruktion, die Brennerein-

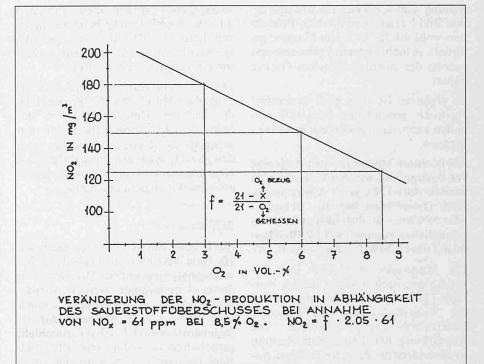


Bild 1. Nomogramm

Tabelle 1. Rauchgasanalysen bei 10 Heizkesseln

Heizöl: EL

Anlagedaten	T Luft	T Gas	T Heizk.	CO ₂	O ₂	CO PPM	CO mg/kg	NO _x PPM	MO ₂ mg/kg mg/m ³ bei 3% O ₂	PPM	SO ₂ mg/kg	η WirkG.	λ Luft-Ü.	Bemerkungen
1 Strebel S 3F-9 PW 152 KW Düsenleistung: 15 L/h	20°	186°	74°- 81°	9,8%	7,6%	12	265	67	2423 184	67	3376	90,1%	1.57	Schamotteauskl.
2 Ideal Standard Düsenleistung: 9.84 L/h	17°	150°	66°- 76,5°	9,8%	7,6%	8	176	96	3473 264	64	3225	92,1%	1.57	Heizölzusatz: Mg saniert, heisse Brennkammer «Atecal:
3 Hoval Unolyt 73 KW Düsenleistung: 8.3 L/h	21°	199°	66°- 68°	12,9%	3,5%	18	308 23 mg/m³ bei 3% O ₂	94	2635 198	89	3476	92%	1.2	Heisse Brennkammer
4 Hoval ST 270 314 KW Düsenleistung: 14 L/h	16°	134°	60°- 72°	13,3%	2,9%	23	380 28 mg/m³ bei 3% O ₂	80	2172 163	129	4879	94,9%	1.16	Katalysator «Katasol»
Ygnis NAN-1250 1453 KW Düsenleistungen: 72/120 L/h	20° 20°	146° 203°	~ 65° ~ 65°	11,5% 12,5%	5,3% 4,0%	11 8	207 140	104 154	244 3214 4420 334	111 127	4777 5076	93,6% 91,5%	1.33 1.23	1. Stufe 2. Stufe
6 Strebel Ca 7-7 157 KW Düsenleistung: 16 L/h	20°	253°		13,5%	2,7%	0	0	91	2431 183	111	4130	89,9%	1.14	property with
Viessmann Vitola-Biferral-e 29-36 KW Düsenleistung: 2.98 L/h	17°	207°	35°- 55°	11,3%	5,6%	5	96	84	2650 201	79	3473	90,1%	1.36	Heisse Brennkammer
8 Ygnis EM 72 80 KW Düsenleistungen: 5.2/7.9 L/h	25° 24°	172° 191°	66°- 75°	9,0% 11,7%	8,7% 5,1%	4 4	96 75	60 91	180 2356 2791 211	75 98	4102 4188	90,5% 91,7%		Heizölzusatz: Mg zuerst grosse Stufe in Betrieb
9 Hoval Duolyt 22 24–29,5 KW Düsenleistung: 2.4 L/h	18°	103°	30°- 70°	7,3%	11,1%	18	532 41 mg/m³ bei 3% O ₂	50	2425 186	64	4324	93,1%	2.13	Heizölzusatz: Mg Doppelbrandkessel, im Feuerr. CO ₂ = 13,8% gem.
10 Strebel S 3F-10 PW 157 KW Düsenleistung: 13.4 L/h	15°	157°	60°- 70°	10,1%	7,2%	6	128	85	2981 227	78	3811	91,8%	1.52	Heizölzusatz: Mg heisse Brennkammer «Atecal»
Messgerät: MSI 2000 P Gasanalyse-Computer			M	esstag: 1	0.4.86.	Mittle	tierten am I re Aussente Monate nac	mpera	tur: 3,5 °	C				e Se l'Ett juri piet. Le College de la Colle

stellung und die Feuerraumbelastung. Wie Bild 1 zeigt, wird die NOx-Produktion wohl infolge heisserer Flamme gefördert, je mehr sich ein Verbrennungsprozess der stöchiometrischen Grenze nähert.

Zu ergänzen ist, dass auch Brennstoff chemisch gebundenen Stickstoff enthalten kann, dann aber meist in kleinen Mengen.

Als höchster Messwert sticht derjenige von Anlage 5 hervor. Bei Vollastbetrieb werden dort 334 mg/m3 Abgas produziert. Dieser Wert liegt um 84 mg/m³ oder 34% über der Limite gemäss Luftreinhalteverordnung, welche Heizkessel mit über 1-MW-Leistung erfasst.

Die Messungen bestätigen jene Erkenntnisse, nach welchen infolge heisseren Flammen mehr NO_x entsteht und die Stickoxidbildung mit kleinerer Feuerraumbelastung abnimmt. Die Auswirkung der Feuerraumbelastung ist besonders bei den zweistufigen Anlagen 5 und 9 deutlich erkennbar (kleinere Stufe kleinere spezifische NO_x-Produktion). Die Heizkessel mit standardmässig oder nachträglich ausgerüsteten heissen Brennkammern, Anlagen 2, 3, 7, 10, weisen als Folge der zusammengehaltenen, heisseren Flammen durchschnittlich höhere NO_x-Entwicklungen auf. Die Verbrennung des Heizöls geschieht z. B. bei den Anlagen 2 und 10 bei rot glühenden Brennkammern nahe am stöchiometrischen Punkt. Die Kohlendioxidwerte bleiben jedoch infolge Undichtigkeiten bei Russtüren und Rauchrohranschluss dieser alten Gusskessel bei 10%.

Die Einflüsse der rot glühenden Brennkammern (ATECAL) auf die Stickoxidbildung sind offensichtlich. Die heissen Brennkammern der Anlagen 3 und 7 werden weniger hoch beansprucht.

Bei der Anlage 4, welche einen hohen CO₂-Wert, den höchsten feuerungstechnischen Wirkungsgrad (94,9%) aber eher eine mässige Feuerraumbelastung aufweist, ist der kleinste Stickoxidwert festzustellen. Er liegt bei 49% des Spitzenwertes. Offenbar leistet zu diesem Tiefstwert auch der zwecks Erprobung installierte Oxidationskatalysator (Katasol) einen beachtenswerten Beitrag. Vorausgegangene Vergleichsmessungen bestätigen diese These.

Zwecks Vergleich dürfte auch der NO2-Anstoss bei Personenwagen interessieren. Nach Berechnungen des Bundesamtes für Umweltschutz [2] emittierten die PWs im Jahre 1984 durchschnittlich 2,5 g NO2 pro km. (Fahrgeschwindigkeit 70 km/h.) Bei einem Treibstoffverbrauch von 101/100 km ergibt die Umrechnung etwa 17 g NO2 pro kg Treibstoff. Die US-Grenzwerte 83 (ab 1987

massgebend) werden diese Emission auf etwa 4 g NO₂ pro kg Benzin reduzieren. Leider werden die Lastwagen dieses Resultat noch auf unabsehbare Zeit um ein Vielfaches übertreffen.

Die zehn untersuchten Heizkessel erzeugen im Mittel 2,8 g NO2 pro kg Heizöl. Da der Heizölkonsum in der Schweiz den Treibstoffkonsum um mehr als das doppelte übersteigt, werden die Ölheizungen hinsichtlich des Gesamtausstosses an NO_x bald einmal grössere Wichtigkeit erlangen.

SO₂-Ausstoss

Auch beim Schwefeldioxid zeigen die 10 Rauchgasanalysen (Tabelle 1) beträchtliche Streuungen. Die Ursachen dieser Unterschiede werden vorwiegend bei dem infolge Lagerbeständen noch schwankenden Brennstoff-Schwefelgehalt aber auch bei den Flammeneigenschaften zu suchen sein. Zum Beispiel lieferten die zweistufigen Anlagen 5 und 8 bei gleicher Ölqualität je nach Betriebstufe ungleiche Mengen SO₂ (mg/kg). Es kann deshalb angenommen werden, dass in den Heizkesseln wegen mehrerer Abhängigkeiten unterschiedlich viel Schwefel ausgeflockt wird.

Nicht messbar (mit dem zur Verfügung stehenden Messcomputer), aber beim Einatmen der Abgase leicht feststellbar, war die Wirkung des Magnesium-Heizöladditivs, welches die Abgase so zu neutralisieren vermag, dass sie die Schleimhäute unserer Atemwege nicht mehr angreifen oder reizen.

Neutralisiert wird dabei das im Abgas ebenfalls vorhandene Schwefeltrioxid. Chemisch formuliert: Das SO₃ reagiert mit Magnesiumoxid zu harmlosem Magnesiumsulfat (Bittersalz).

 $MgO + SO_3 \rightarrow MgSO_4$

Ohne Magnesium reagiert SO3 mit Wasser augenblicklich zu Schwfelsäure, z.B. bei Taupunktunterschreitung bereits im Heizkessel oder im Kamin jedoch spätestens in der Nähe der Kaminmündung.

 $SO_3 + H_2O \rightarrow H_2SO_4$

Das Schwefeldioxid (SO₂) oxidiert in der Atmosphäre nach einer längeren Verfrachtung [3] ebenfalls zu Schwefeltrioxid (SO₃) auf und beeinflusst dann den pH-Wert der Niederschläge.Mengenmässig bindet das Magnesium relativ wenig Schwefel, hingegen reduziert es wirkungsvoll das SO3 und senkt dabei den Säuretaupunkt.

Diese Effekte dienen der Korrosionsund Schadenverhinderung bei Heizkessel, Kamin und unmittelbarer Umgebung der Kaminmündung.

Weitere Erfahrungen und Beobachtungen

Die mit einem Katalysator (Katasol) ausgerüstete Anlage 4 mit dem höchsten Wirkungsgrad wies auch nach einer viermonatigen Betriebsdauer (Januar bis Mai) noch weitgehend rückstandfreie Heizflächen auf. Die Abgastemperatur varierte während einer Reinigungsperiode innerhalb etwa 123°-134 °C. Es waren keine Korrosionen festzustellen.

Die Anwendung des Magnesiumadditivs (Dosierung 1/1000) bei den Anlagen 2, 8, 9, 10 geschah versuchsweise. Folgende Auswirkungen wurden festgestellt:

- beispielhafter Ausbrand auch während der Startphasen
- Ablösung alter Krusten bei den schlecht zu reinigenden betagten Gusskesseln (2, 10).
- Heizflächen wurden weiss
- gedämpftes korrosives Verhalten der Anlagen
- bei der Neuanlage 8 mit grosser Heizflächenbelastung wuchs der weisse und leicht entfernbare Belag zu stark an (evtl. Dosierungsfrage)
- gemässigtes Anwachsen der Abgastemperatur innerhalb einer Reinigungsperiode.

Die Neuanlage 8 weist speziell bei Betriebstufe 1 einen den Anforderungen der Typenprüfung nicht gerechten CO2-Wert auf (9% Vol.). Vor der Anwendung von Magnesium wuchs der Heizkessel in den mit Turbulatoren ausgestatteten Rauchkanälen mehrmals zu und verrusste in der Folge. Der Grund wurde auf eine inzwischen korrigierte, ein wenig zu tiefe Rücklauftemperatur zurückgeführt.

Bei der Anlage 9 (Doppelbrandkessel) konnte der ebenfalls schlechte Kohlendioxidwert weitgehend durch Leistungsreduktion resp. durch tiefe Abgastemperatur kompensiert werden. (Der Co₂-Wert wurde im Feuerraum allerdings mit 13,2% gemessen!)

Die Brennerserviceleute sollten nicht mehr auf moderne Gerätschaften verzichten müssen. Können doch die Resultate von Regelungen am Brenner bei Anwendung eines Gasanalyse-Computers kontinuierlich verfolgt werden. Der Brennermonteur wird dabei befähigt, mit weniger Aufwand bedeutend genauere Arbeit zu leisten.

Zusammenfassung

Die schädlichen Abgase bei Ölfeuerungen varieren relativ stark von Anlage zu Anlage. Zwar hat die Feuerungstechnik heute einen Stand erreicht, welcher vor allem eine perfekte Verbrennung des Heizöls erlaubt. Dies lässt sich aus gemessenen tiefen Kohlenmonoxidwerten ableiten. Bei der Stickoxidbildung - sie erfolgt eher nach empirischen Gesetzen - besteht noch eine grössere Variationsbreite. Auch werden diese Werte bei den Ölfeuerungen noch kaum erfasst.

In der Luftreinhalteverordnung findet man eine Begrenzung erst für Heizkessel über 1-MW-Leistung. Eine vermehrte Sorgfalt gegenüber unserer Luft dürfte aber ebenfalls von Seiten der kleineren Anlagen gefordert werden. Ihr gesamthafter Leistungsanteil ist ebenso bedeutungsvoll.

Wenn einmal der NO_x-Ausstoss beim Verkehr auf das Machbare reduziert ist, erhält die Feuerung hinsichtlich dieser Schadstoffbelastung ein mindestens ebenbürtiges Gewicht. Bei der Feue-

rung liegt aber noch ein beträchtliches Potential zu Schadstoffverminderung

Die Schwefeloxide im Abgas stehen weniger zu Diskussion, weil sie vom begrenzten Heizöl-Schwefelgehalt abhängig sind. Interessanterweise wird aber das SO2 trotz gleicher Heizölqualität je nach Verbrennungseigenschaften in unterschiedlichen Mengen produziert.

Durch die Anwendung eines Oxidationskatalysators erreichte eine Anlage die kleinste Stickoxidbildung, bestimmt ein erfreulicher Ansatz in dieser Rich-

Positive Ergebnisse in anderer Hinsicht lieferte zudem ein Magnesium-Heizöladditiv.

Bausteine zur weiteren Läuterung der Abgase bei Feuerungen sind vorhanden. Allein die grosse Streuung bei den gemessenen NO2-Werten weist auf Verbesserungsmöglichkeiten hin.

Die NO2-Grenzwerte der Luftreinhalteverordnung können bei Grossanlagen gemäss kürzlicher Veröffentlichungen der EMPA Dübendorf [4] massiv unterboten werden. Bestehen bei kleineren und mittleren Anlagen nicht gleiche Chancen?

Adresse des Verfassers: Peter Meier, Arch. HTL, c/o Kant. Hochbauamt Zug, Energiefachstelle.

Literaturverzeichnis:

- [1] Feuerungstechnik Handbuch BVOG 1986, Verlag Gustav Kopf GmbH, Stuttgart
- [2] Bundesamt für Umweltschutz. Geschwindigkeitsreduktion und Schadstoffausstoss, Schriftenreihe Umweltschutz, Nr. 22, 1984,
- [3] Alois von Wyl: «Luftschadstoffe verursachen Waldsterben»
- [4] Amt für Bundesbauten, Die Pilot-Heizungsanlage in der EMPA Dübendorf, erste Messergebnisse

Moderne Haustechnik-Lösungen unter veränderten **Energie- und Umweltbedingungen**

Unter diesem Motto lud die Firmal Hoval Herzog AG Ende Mai zu einer Ingenieur-Tagung nach Vaduz FL. Nebst Kurzreferaten und Demonstrationen in der Öl- und Gasfeuerungstechnik wurde vor allem die Thermokondensation bei Heizkesseln und die stickoxydarme Verbrennung hervorgehoben.

Die teilnehmenden Ingenieure und Spezialisten erlebten einen aufschlussreichen Tag, indem sie über den neuesten Stand der Haustechnik informiert wurden. Die Veranstalter versuchten in Diskussionen, aber auch persönlichen Gesprächen, sich mit den Problemen aus der «Praxis» möglichst eingehend auseinanderzusetzen.

Stickoxyde in den Heizkesselabgasen

Stickoxyde (Nox) sind chemische Verbindungen zwischen Stickstoff und Sauerstoff und entstehen bei jeder Verbrennung. Von den gesamten Stickoxydemissionen in der Schweiz stammen etwa 4 Prozent aus der Natur, 96 Prozent entstehen durch Verbrennungsprozesse in der Industrie, im Verkehr und in den Feuerungen der Heizungen. Der jährliche Gesamtausstoss wird in der Schweiz auf etwa 190 000 t geschätzt. Dabei gehen beinahe 80 Prozent oder 150 000 t zulasten des Verkehrs. Die Industrie ist mit 9 Prozent, neben den Heizungen (8 Prozent), am gesamten Stickoxyd-Ausstoss beteiligt (jährlich 15 000 t).

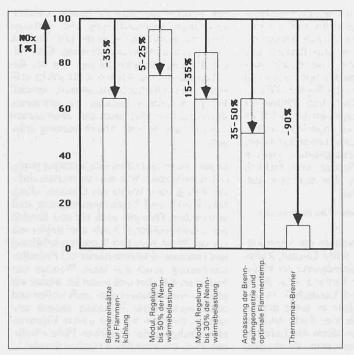
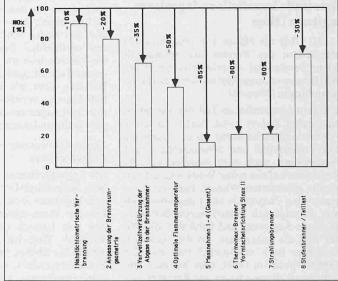



Bild 1. NOx-Reduktionspotential: Verschiedene Massnahmen bei atmosphärischen Gaskesseln

Bild 2. NOx-Reduktionspotential verschiedener Massnahmen bei Kesseln mit Gas-Gebläsebrennern

