Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105 (1987)

Heft: 23

Artikel: Millionen Tonnen Stahl zerfallen täglich zu Staub: der Beitrag der ETH

Lausanne zum Kampf gegen die Korrosion

Autor: Magnin, P.A. / Schaerlig, E.

DOI: https://doi.org/10.5169/seals-76628

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Millionen Tonnen Stahl zerfallen täglich zu Staub

Der Beitrag der ETH Lausanne zum Kampf gegen die Korrosion

Während jeder Sekunde «frisst» die Korrosion weltweit fünf Tonnen Stahl. Schon rein mengenmässig rechtfertigt sich also eine ernsthafte Suche nach den Ursachen dieser Art von Vernichtung wertvoller Metalle und nach Möglichkeiten, sie zu schützen. Genau das tut ein Forscherteam an der Eidgenössischen Technischen Hochschule in Lausanne.

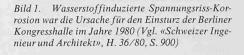
In der Natur sind Metalle in reinem Zustand kaum zu finden - im allgemeinen kommen sie in Verbindungen mit anderen chemischen Elementen vor, z. B. mit Sauerstoff (Oxide), Schwefel (Sulfate, Sulfide) oder Kohlenstoff (Carbonate). Diese natürlichen Verbindungen sind beständig, und so ist es verständlich, dass die aus ihnen gewonnenen «industriellen» Metalle dazu tendieren, wieder in diesen Naturzustand zurückzukehren, und zwar je nach Umfeld langsamer oder schneller.

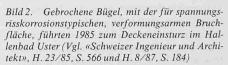
Dieser «Drang zurück zum Ursprung», nüchtern Korrosion oder Rost genannt, kann sich manchmal auf ganz unerwartete Weise zeigen. So berichtet Dr. Michel Colin, Korrosionsspezialist an der ETH Lausanne: «Kürzlich erreichte uns der Alarmruf einer Bank in Genf, die ihre Büros neu eingerichtet hatte. Alle metallischen Stützen und Füsse der Möbel waren «rostig» - dabei stand das Gebäude weder unter Wasser noch hatte es hereingeregnet. Nach einem Augenschein und einigen Analysen fanden wir die Ursache: Der Spannteppich war, um ihn schwer brennbar zu machen, mit einer Bromverbindung behandelt worden, und weil Brom ein sehr reaktionsfreudiges Element ist, hatte es die Metallbestandteile der Möbel angegrif-

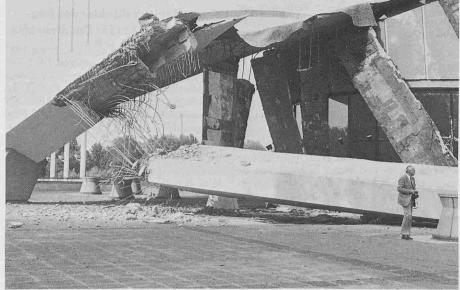
Auch Lebewesen können Korrosionserscheinungen verursachen. So nisten sich z. B. gewisse Bakterien in Rohrleitungen ein, wenn darin Wasser fliesst, welches Schwefelverbindungen (die ihnen als Nahrung dienen) enthält und ca. 30 °C warm ist. Dann vermehren sich die Bakterien rasch und erzeugen dabei als Stoffwechselprodukte verschiedene Salze und Säuren, welche ihre metallische Umgebung zersetzen.

Milliardenschäden in der Schweiz

Korrosion kann Metalle auf sehr verschiedene Weise zerfressen, wobei mitunter recht erstaunliche Umstände mitspielen, z. B. die gleichzeitige Beanspruchung eines Metallteils durch mechanische Belastung und elektrochemische Vorgänge. Korrosionserscheinungen dieser Art haben das Einknicken von Baukränen, den Einsturz der Berliner Kongresshalle im Jahr 1980 (Bild 1) und auch das Drama im Hallenbad von Uster 1985 (Bild 2) verursacht. Zusätzlich zu solch erschreckenden Geschehnissen hat die Metallkorrosion noch zahlreiche andere Schäden zur Folge, die zwar weniger spektakulär sind, aber zusammen allein in der Schweiz jährlich Kosten von über 5 Mia. Fr. verursa-


Um die ganze Tragweite dieses Problems zu erkennen genügt es, sich die vielen Gegenstände aus Metall vorzustellen, die uns umgeben. Sie alle sind auf die eine oder andere Art der Korrosion ausgesetzt; unzählige Rohre und Kabel in Gebäuden und im Boden, Dachrinnen, Dach- und Fassadenverkleidungen, Fahrzeuge und Transportmittel aller Art, Motoren, Maschinen, Haushaltgeräte, elektrische Leitungen und Apparate aber auch metallische Zahnfüllungen sowie der ganze neue Bereich der Informatik samt Magnetbändern und Disketten.


Im Moment, da wir die unerwünschten Folgen der Korrosion mit blossem Auge feststellen, lässt sich der Schaden oft nicht mehr beheben. Um ihn zu verhindern, müssen wir den Ursachen der Metallkorrosion im Bereich der Moleküle und Atome auf die Spur kommen. Solcher Detektivarbeit widmen sich im Laboratorium für Metallchemie der Eidgenössischen Technischen Hochschule Lausanne ein Dutzend Forscher unter der Leitung von Prof. Dr. Dieter Landolt. Sie studieren die Kräfte und Vorgänge, die der Korrosion zugrundeliegen, und sie klären ab, wie die Oberfläche von Metallen behandelt werden muss, um sie möglichst korrosionsfest zu machen.


Dass solche Untersuchungen notwendig sind, leuchtet ein, wenn man weiss, dass die Oberfläche eines Metalls, die ja mit der Umgebung in Wechselwirkung steht, im allgemeinen eine andere chemische Zusammensetzung hat als das geschützte «Innere». Die molekulare Struktur der dünnen «Haut» ist deshalb von grosser Bedeutung für ihre Widerstandsfähigkeit gegen Korrosion.

Ein millionstel Millimeter entscheidet

Der Kampf gegen die Korrosion spielt sich also im unvorstellbar winzigen Bereich der obersten Atomschichten eines Metalls ab. Masseinheit ist hier das Nanometer, der milliardste Teil eines Meters (also ein Millionstel eines Millimeters). Zur Untersuchung extrem dünner Schichten benützen die Lausanner Forscher höchst raffinierte Analysegeräte, in denen die Proben im Ultrahochvakum einem lonenbeschuss ausgesetzt werden. Bei einer solchen Tiefenprofilanalyse wird die Oberfläche des Metalls schichtweise abgetragen, so dass darin ein kleiner Krater entsteht. Dabei gibt die spektroskopische Analyse der nacheinander freigelegten Schichten Aufschluss über die Änderung ihrer molekularen Zusammensetzung mit zunehmender Tiefe. Damit vertiefen sich auch

die Erkenntnisse der Wissenschafter über die Ausbreitung der Korrosion; sie gewinnen Grundlagen für den Qualitätsvergleich verschiedener Legierungen und der Schutzwirkung unterschiedlicher elektrochemischer Methoden zur Oberflächenbehandlung, die sie mit beharrlicher Tüftelei entwickeln.

Diese Arbeiten, die der Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt, schaffen Voraussetzungen dafür, die Metalle im Dienste

des Menschen möglichst lange und umweltfreundlich zu nutzen, bevor die Korrosion sie auf verschlungenen Wegen wieder in den Schoss der Natur zurückführt.

> P. A. Magnin, E. Schaerlig CEDOS/EPFL

Wettbewerbe

Erweiterung Kantonsschule Trogen, Appenzell A.Rh.

Der Kanton Appenzell A.Rh. veranstaltet einen öffentlichen Projektwettbewerb für die bauliche Erweiterung der Kantonsschule Trogen. Teilnahmeberechtigt sind Architekten, die seit mindestens dem 1. Januar 1986 ihren Wohn- oder Geschäftssitz im Kanton Appenzell A.Rh. haben. Ferner werden die folgenden Architekten zur Teilnahme eingeladen: Danzeisen+Voser+Forrer, St. Gallen, Von Euw, Hauser, Peter+Prim, St. Gallen, J. Benz+M. Engeler, St. Gallen, P.+J. Quarella, St. Gallen. Betreffend Arbeitsge-

meinschaften und Architekturfirmen wird ausdrücklich auf die Bestimmungen der Art. 27 und 28 der Ordnung für Architekturwettbewerb SIA 152 sowie auf den Kommentar zu Art. 27 hingewiesen. Fachpreisrichter sind: Otto Hugentobler, Vorsteher des Kant. Hochbauamtes, Herisau, Bruno Bossart St. Gallen, Markus Bollhadler, St. Gallen, Thomas Eigenmann, St. Gallen/Herisau, Ersatz. Für die Prämierung von vier bis sechs Entwürfen und für allfällige Ankäufe steht dem Preisgericht 55 000 Fr. zur Verfügung.

Die Wettbewerbsunterlagen können nach Einzahlung von 300 Fr. auf PC-Konto Nr. 2010.005 der Landesbuchhaltung Appenzell A.Rh., Vermerk: WW Kanti Trogen, bis zum 12. Juni 1987 beim HBA, Bahnhofstr. 13, 9100 Herisau, gegen Quittungsvorweis bezogen werden. Dieser Betrag wird für jedes rechtzeitig und vollständig eingereichte Projekt nach Abschluss des Wettbewerbes zurückerstattet. Ein Wettbewerbsprogramm kann zur Orientierung unentgeltlich bezogen werden. Die Besichtigung des Areals findet am 17. Juni 1987 statt. Besammlung 14 Uhr, Parkplatz der Kantonsschule. Modelle können ab 17. Juni 1987 bei der Kantonsschule in Trogen bezogen werden. Termine: Fragestellung bis 26. Juni, Ablieferung der Entwürfe bis 30. Oktober, der Modelle bis 20. November 1987.

Persönlich

Neuer Präsident der Deutschen Physikalischen Gesellschaft

(fwt) Der Vorstandsrat der Deutschen Physikalischen Gesellschaft (Bad Honnef) hat Prof. Otto Gert Folberth, Direktor und Leiter des Bereichs Wissenschaft der IBM Deutschland GmbH, zum Präsidenten gewählt. Wie die IBM Deutschland kürzlich mitteilte, wird Folberth seine zweijährige Amtszeit jedoch erst im April 1988 antreten.

O. G. Folberth (geb. 1924) begann 1946 sein Physikstudium an der TH Stuttgart mit dem Schwerpunkt Festkörperphysik. 1961 war er massgeblich am Aufbau der Halbleiter-Entwicklung im IBM-Laboratorium in Böblingen beteiligt. Seit 1983 ist er Leiter des Bereiches Wissenschaft der IBM Deutschland

Prof. Folberth hat einen Lehrauftrag an der Universität Stuttgart über die Technologie integrierter Halbleiterschaltungen und ist Autor zahlreicher Publikationen über Themen der Halbleiterphysik und Mikroelektronik. Er ist aktives Mitglied in mehreren nationalen und internationalen technischen und wissenschaftlichen Gesellschaften.

Neuer Geschäftsführer des Vororts

Die Schweizerische Handelskammer wählte mit Amtsantritt auf den 1. Oktober 1987 Dr. iur. Kurt Moser (von Rothenturm SZ, geb. 1936) zum neuen Direktor. Dr. Moser war nach seiner Gerichtstätigkeit fünf Jahre Sekretär der Schweizerischen Gesellschaft für chemische Industrie. 1970 trat er in die Ciba ein. Während Jahren führte er das Generalsekretariat von Ciba-Geigy AG und war zugleich Sekretär der Konzernleitung. Er war für die Firma in führender Position in Singapur tätig und leitet gegenwärtig als Direktor den Sitz Hongkong der Ciba-Geigy

Dr. Moser wird die Nachfolge Dr. rer. pol. Gerhard Winterberger antreten, der auf Ende September 87 von seinen operativen Funktionen als Geschäftsführendes Präsidialmitglied des Vororts des Schweizerischen Handels- und Industrie-Vereins zurücktreten wird. Dr. Winterberger wurde im Frühling 1987 65jährig. Er trat 1961 als Sekretär in den Vorort ein, wurde 1970 Direktor und damit Chef der Exekutive; 1976 wurde er zusätzlich in die Präsidialbehörde gewählt, welcher er bis zum Ende der Amtsdauer im Herbst 1988 weiterhin angehören wird. Der Vorort wird seine Verdienste um die schweizerische Wirtschaft zu gegebener Zeit würdigen. (Vorort)

Rücktritt des Generalsekretärs des STV

Vor beinahe 13 Jahren hat Heinz A. Hafner die Geschäfte des Schweizerischen Technischen Verbandes (STV) übernommen. Nach einer kurzen Anlaufsphase gelang es ihm, wesentliche Impulse zur Weiterentwicklung des Verbandes und seiner Institutionen zu geben und diese kreativ auszubauen. Dies ermöglichte ihm, zahlreiche Dienstleistungen neu zu schaffen, wie etwa: die schweizerische Stellenvermittlung für Ingenieure und Architekten SSI; die STV-Verlags AG der Ingenieure und Architekten; das Institut für Fortbildung der Ingenieure und Architekten IFIA; die Nachdiplomstudien Wirtschaftsingenieur STV und Betriebsingenieur STV und

STV-Fachgruppen für viele Bereiche der Technik. Die Verlagsobjekte des Verbandes, namentlich die Schweizerische Technische Zeitschrift STZ, passte er sukzessive den neuesten Anforderungen an.

Präsidentenwechsel bei der Wirtschaftsförderung

Die Delegiertenversammlung der Gesellschaft zur Förderung der schweizerischen Wirtschaft vom 28. April 87 hat Dr. Hans von Werra, dipl. Chem. ETH/SIA, Delegierter des Verwaltungsrates der Spre-cher + Schuh Holding AG, Aarau, zum neuen Präsidenten gewählt. Er löst E. Fritz Hoffman (Zürich) ab, der die Wirtschaftsförderung während 16 Jahren erfolgreich geführt hat.

Neuer Baukreisdirektor des Baukreises 2 beim Amt für Bundesbauten

Der Bundesrat hat auf den 1. Februar 1987 Rino Bezzola, Architekt, geboren 1932, von Comologno TI, in Breganzona TI, zum Baukreisdirektor des Baukreises 2 in Lugano, als Nachfolger des zum Direktor des Amtes für Bundesbauten in Bern ernannten Niki Piazzoli gewählt.

Rino Bezzola studierte am Technikum Biel, wo er im Jahre 1955 als Architekt HTL abschloss. Von 1960 bis 1965 erweiterte er seine beruflichen Kenntnisse als freierwerbender Architekt im Tessin und ist Mitglied verschiedener Berufsverbände. 1965 trat Herr Bezzola in den Dienst des Amtes für Bundesbauten ein, wo er zu Beginn bei der damaligen Bauinspektion VI, anschliessend bei der Abteilung Hochbau in Bern und zuletzt als stellvertretender Baukreisdirektor des Baukreises 2 in Lugano, tätig war.