Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105 (1987)

Heft: 10

Artikel: Wie hoch ist die Luftschalldämmung im Wohnungsbau anzusetzen?

Autor: Kühn, Beat / Blickle, Rudolf

DOI: https://doi.org/10.5169/seals-76527

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wie hoch ist die Luftschalldämmung im Wohnungsbau anzusetzen?

Von Beat Kühn und Rudolf Blickle, Unterägeri

Immer wieder hört man Klagen von Bewohnern über einen schlechten Luftschallschutz ihrer neuerstellten Eigentumswohnungen, Reiheneinfamilienhäuser oder Mietwohnungen, obwohl die vorgeschriebenen Anforderungen gemäss der Norm SIA 181 gut erfüllt sind. Normalerweise sollte man glauben, dass durch die Erfüllung eines erhöhten Schallschutzes ein akustisch ungestörtes Wohnen garantiert ist. Die Enttäuschung ist dann jeweils sehr gross, wenn das Klavier oder die Stereoanlage des Nachbarn so stark durchgehört wird, dass die erwiinschte Ruhe zur Illusion wird.

Die folgende Abhandlung geht ein wenig in die Problematik der erforderlichen Luftschalldämmung in Wohnungsbau ein. Es soll gezeigt werden, was mit einer bestimmten Luftschalldämmung zwischen zwei Wohnungen, Häusern usw. bewirkt wird. Weiter wird erläutert, von was die erforderliche Luftschalldämmung abhängt und wie hoch sie letztlich auszusetzen ist.

Luftschalldämmung oder Luftschallpegeldifferenz

Rein physikalisch ist die Luftschalldämmung definiert als der zehnfache Logarithmus der Schalleistung P, die auf ein Bauteil fällt, zur Schalleistung P,, die von ihm von der Rückseite abgestrahlt wird: $R = 10 \log (P/P)$. Dieses logarithmische Verhältnis wird in Dezibel ausgedrückt. Die Luftschalldämmung eines Bauteils ist eine Eigenschaft desselben, so wie seine Masse oder sein elektrischer Widerstand. Sie lässt sich im Labor als auch im Bau mit relativ grossem apparativem Aufwand bestimmen.

Setzt man nun eine Trennwand mit einer bestimmten Luftschalldämmung zwischen zwei Räume, so stellt sich zwischen diesen beiden eine bestimmte Schallpegeldifferenz ein. Diese Differenz, die für unser Empfinden der Schalldämmung ausschlaggebend ist, hängt aber nicht nur von der objektiven Schalldämmung der Trennwand ab. Ebenfalls von grossem Einfluss auf die Luftschallpegeldifferenz - man kann auch sagen subjektive Luftschalldämmung - sind die raumakustischen Eigenschaften des Sende- und des Empfangsraums. Es spielt dabei eine grosse Rolle, ob die beiden Räume hallig oder trocken bzw. stark möbliert sind. Betrachtet man zum Beispiel eine Trennwand zwischen zwei Badezimmern, so ergibt sich eine Luftschallpegeldifferenz, die bis zu 10 dB (A) kleiner sein kann als beim Errichten derselben Wand zwischen zwei möblierten Wohnzimmern. Der Grund dafür ist die Raumabsorption, die ja in einem Badezimmer bzw. leicht möblierten Raum kleiner ist als in einem stark möblierten Wohnzimmer

Dieser Problematik ist bei der Festlegung des erforderlichen Luftschallschutzes noch kaum Beachtung geschenkt worden. Man spricht dort nur immer von der Luftschalldämmung, die ein bestimmtes Bauteil aufweisen muss, ohne Rücksichtnahme auf die raumakustischen Eigenschaften der Räume. Dazu ein Beispiel: Die Norm SIA 181 fordert für die gemeinsame Trennwand zwischen zwei aneinandergrenzenden Wohnzimmern ein Luftschallisolations-Index von 55 dB (erhöhter Luftschallschutz). Nehmen wir nun an, dass die beiden Räume stark möbliert sind, so stellt sich die vom Menschen als Dämmung empfundene Luftschallpegeldifferenz zu D = 58 dB(A) ein. Setzt man nun die genau gleiche Trennwand zwischen zwei ruhebedürftige Schlafzimmer (sie sind normalerweise weniger möbliert und vom Volumen her kleiner), so ergibt sich die Schallpegeldifferenz zu nunmehr D = 51 dB (A). Der Unterschied beträgt ganze 7 dB (A)! Das bedeutet in unserem Beispiel, dass alle ins Schlafzimmer übertragenen Geräusche 7 dB (A) lauter sind. Eine Luftschallpegelzunahme von dieser Grössenordnung ist sehr deutlich hörbar. Zum Vergleich sei angebracht, dass eine Pegelzunahme von 10 dB (A) eine Verdoppelung der empfundenen Lautstärke bewirkt; vorausgesetzt ist dabei, dass die spektrale Verteilung des Geräusches unverändert bleibt.

Zusammenfassend kann festgestellt werden, dass eine befriedigende Lösung des Problems nur erreicht wird, wenn die Schallschutz-Anforderungen an die empfundene Luftschallpegeldifferenz und nicht an die objektive Luftschalldämmung gestellt wird.

Zulässige Störgeräusche in Wohnräumen

Bei der Bemessung von Bauteilen, insbesondere von Fassaden, stellt sich die Frage, wie hoch der in einem Wohnraum übertragene Luftschallpegel bzw. wie gross das Störgeräusch sein darf, damit sich die Bewohner nicht belästigt fühlen. Die Frage kann nicht generell beantwortet werden, da der in einem Wohnraum zulässige Luftschallpegel in erster Linie von der Tätigkeit des Menschen in diesem Raum und vom allgemeinen Umgebungsgeräusch (Geräusche, die ständig vorhanden sind, zum Beispiel Strassenverkehrslärm, Rauschen eines Bachs, Ticken einer Uhr usw.) abhängt. Um in unseren Ausführungen weiterzukommen, schliessen wir im folgenden lautstarke Tätigkeiten aus und beschränken uns auf eher lautlose Tätigkeiten. In solchen Fällen bleibt als einziger Parameter noch das allgemeine Umgebungsgeräusch, welches stark vom jeweiligen Wohnort abhängt.

Aus der psychologischen Lärmwirkungsforschung ist bekannt, dass das zulässige Störgeräusch in einem Wohnraum sehr stark vom allgemeinen Umgebungsgeräusch bzw. Grundgeräusch in demselben abhängt. Bei der Aufstellung von Anforderungen an das zulässige Störgeräusch muss zudem grundsätzlich zwischen zwei verschiedenen Fällen unterschieden werden:

- Fall A: Das in den zu schützenden Wohnraum übertragene Geräusch darf nicht mehr hörbar sein. Es muss sozusagen im allgemeinen Umgebungsgeräusch untergehen.

Fall B: Das in den zu schützenden Wohnraum übertragene Geräusch darf nicht stören, jedoch noch akustisch wahrnehmbar sein.

Die Erfüllung dieser beiden Fälle ist mit folgenden Bedingungen an das Störgeräusch und das allgemeine Umgebungsgeräusch verbunden:

Fall A übertragenes Störgeräusch unhörbar:

 $L_{1\%} \leq L_{95\%} - 10 \, \mathrm{dB} \, (\mathrm{A}).$

Fall B übertragenes Störgeräusch nicht störend, jedoch noch wahrnehmbar: $L_{1\%} \leq L_{95\%} \, \mathrm{dB}(A)$.

Dabei bedeuten:

 $L_{1\%}$: Häufige Pegelspitzen des Störgeräusches; das ist derjenige Luftschallpegel, der während 1% der Messzeit erreicht oder überschritten wird; die Messung des Störgeräusches erfolgt in dB

L_{95%}: Grundgeräuschpegel im Wohnraum; das ist derjenige Luftschallpegel, der während 95% der Messzeit erreicht oder überschritten wird; die Messung des Grundgeräusches erfolgt in dB (A)

Die mathematischen Bedingungen zur Erfüllung der beiden Fälle wurden aus hörpsychologischen umfangreichen Versuchen abgeleitet.

Wie weiter oben schon gesagt wurde, hängt der in einem Wohnraum anzutreffende Grundgeräuschpegel in erster Linie von der Nutzungszone ab, in der das Wohnhaus steht. Jedem von uns ist ja bekannt, dass der Grundgeräuschpegel ländlicher Gebiete wesentlich unter dem Grundgeräuschpegel städtischer Gebiete liegt. Dies hat zur Folge, dass wir auf dem Lande Geräusche wahrnehmen können, die in der Stadt völlig im allgemeinen Umgebungsgeräusch untergehen. Aus zahlreichen Untersuchungen ergeben sich die Grundgeräuschpegel $L_{95\%}$ im Gebäudeinnern eines aus schalltechnischer Sicht durchschnittlich gebauten Wohnhauses je nach Zone wie in Tabelle 1 dargestellt.

Mittels dieser Zahlenwerte des Grundgeräuschpegels bzw. des allgemeinen Umgebungsgeräusches und der obigen beiden Bedingungen lässt sich jetzt angeben, wie hoch das in einem Wohnraum eindringende Störgeräusch im Maximun sein darf, damit es a) unhörbar, b) nicht störend und c) gerade noch zumutbar ist (Tabelle 2).

Wie hoch ist nun die Luftschalldämmung anzusetzen?

Aufgrund der bis jetzt in den beiden vorigen Abschnitten dargelegten Ausführungen ist es kein allzu grosses Problem mehr, die erforderliche Luftschalldämmung zwischen einem Senderaum und einem Empfangsraum quantitativ zu bestimmen. Mathematisch lässt sich die zu erbringende Luftschalldämmung wie folgt ausdrücken:

 $R'_{w} \ge L_{51\%} + 10 \log(S/Ae) + 2 - L_{95\%} + K(dB)$

dabei bedeuten:

R'w erforderliches, bewertetes Luftschalldämm-Mass zwischen Sende- und Empfangsraum in dB

 $L_{s1\%}$ Häufige Luftschallpegelspitzen des abzudämmenden Geräusches im Senderaum; dafür können etwa folgende Richtwerte angenommen werden: normale Unterhaltungssprache $L_{s1\%} = 70-75 \text{ dB (A)}$ laute Unterhaltungssprache

 $L_{s1\%} = 75-80 \, \text{dB} \, (A)$

Klavier

 $L_{s1\%} = 90-95 \, \mathrm{dB} \, (A)$

laute, elektroakustisch verstärkte Musik

 $L_{s1\%} = 95-100 \, \mathrm{dB} \, (A)$

S Fläche des gemeinsamen Bauteils (Trennwand oder Geschossdecke) zwischen Sende- und Empfangsraum in m²

Ae äquivalente Schallabsorptionsfläche des Empfangsraums in m²

Zone	Grundgeräuschpegel während der Nacht im Gebäudeinnern bei geschlossenen Fenstern	
ländliche Wohngebiete, sehr ruhige städtische		
Zone	$L_{95\%} = 15-20 \mathrm{dB}(A)$	
Wohnzone in städtischen Gebieten	$L_{95\%} = 20-25 \mathrm{dB}(A)$	

Tabelle 1

Tabelle 2

	zulässiges Störgeräusch L _{1%} in Wohnräumen			
Zone	unhörbar	nicht störend, jedoch noch wahrnehmbar	gerade noch zumutbar	
ländliche Wohngebiete, sehr ruhige städtische Zone	10 dB (A)	20 dB (A)	30 dB (A)	
Wohnzone in städtischen Gebieten	15 dB (A)	25 dB (A)	35 dB (A)	

Tabelle 3

Senderaum/ Empfangsraum	Schallquelle	erforderliches, bewertetes Schalldämm Mass, damit Störgeräusch im Empfangsraum		
		unhörbar	nicht störend, jedoch noch wahrnehmbar	
Ländliche Wohngebiete				
Wohnraum/Wohnraum	normales Sprechen	64 dB	54 dB	
	Klavier	84 dB	74 dB	
Wohnraum/Schlafzimmer	normales Sprechen	69 dB	59 dB	
	Klavier	89 dB	79 dB	
Schlafzimmer/Schlafzimmer	normales Sprechen	69 dB	59 dB	
	lautes Sprechen	74 dB	64 dB	
Städtische Wohngebiete				
Wohnraum/Wohnraum	normales Sprechen	59 dB	49 dB	
	Klavier	79 dB	69 dB	
Wohnraum/Schlafzimmer	normales Sprechen	64 dB	54 dB	
	Klavier	84 dB	74 dB	
Schlafzimmer/Schlafzimmer	normales Sprechen	64 dB	54 dB	
	lautes Sprechen	69 dB	59 dB	

L_{95%} Grundgeräuschpegel in dB (A); siehe Abschnitt oben

K Korrektur zur Erfüllung der Bedingung:

a) übertragenes Geräusch unhörbar K = 10 dB(A)

b) übertragenes Geräusch nicht störend, jedoch noch wahrnehmbar K = 0 dB (A)

In der obigen Beziehung wird die für die Empfindung wichtige Luftschallpegeldifferenz zwischen Sende- und Empfangsraum mit dem Term 10 log(S/Ae) berücksichtigt (siehe dazu 2. Abschnitt).

In Tabelle 3 sind die Berechnungsergebnisse, die mit der obigen Beziehung ermittelt wurden, für einige typische Situationen zusammengestellt.

Es wurden dabei folgende Annahmen getroffen:

Fläche des gemeinsamen Bauteils zw. Sende- und Empfangsraum: $S = 12 \text{ m}^2$,

Nachhallzeit im Wohnzimmer: T60 = 0.50 s; Volumen: $V = 68 \text{ m}^3$, Nachhallzeit im Schlafzimmer: T60 = 0.80 s; Volumen: $V = 38 \text{ m}^3$.

Aus der obigen Tabelle ist zu entnehmen, dass die Luftschalldämmung in Wohnhäusern in ruhigen, ländlichen Gebieten grundsätzlich um etwa 5 dB höher anzusetzen ist als in Häusern in städtischen Gebieten.

Im allgemeinen reicht es aus, die Luftschalldämmung so festzulegen, dass die vom Sende- in den Empfangsraum übertragenen Geräusche keine akustischen Störungen und Belästigungen hervorrufen. Eine Bemessung, bei der die übertragenen Geräusche unhörbar sind, wird nur in ganz wenigen Ausnahmefällen erforderlich sein.

Adresse der Verfasser: *Kühn + Blickle*, Institut für Lärmschutz, 6314 Unterägeri.