Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 105 (1987)

Heft: 10

Artikel: Wirtschaftlichkeitsvergleiche bei Flachdach-Systemen: praktische

Anwendung am Beispiel von Verbunddach-Konstruktionen

Autor: Bangerter, Heinz

DOI: https://doi.org/10.5169/seals-76525

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wirtschaftlichkeitsvergleiche bei Flachdach-Systemen

Praktische Anwendung am Beispiel von Verbunddach-Konstruktionen

Von Heinz Bangerter, Zürich

Bei der Optimierung von Flachdach-Dämmungen gilt es zunächst, sich über den Begriff «Optimum» zu verständigen. Dabei ist zu beachten, dass es eine einheitliche, für alle Flachdach-Systeme gleichermassen optimale Dämmdicke grundsätzlich nicht geben kann. Am Beispiel von Verbunddach- und Duo-Verbunddach-Systemen mit variablen k-Werten und/oder ungleichzeitigem «Endausbau» werden die relativen Gesamtkosten je nach Kalkulationsdaten diskutiert.

Grundsätzliches

Ein Flachdach kann nach verschiedenen Gesichtspunkten optimiert werden; dabei ist zunächst einmal zwischen wärmetechnischen Renovationen und Neuanlagen zu unterscheiden.

Bei wärmetechnischen Sanierungen bestehender Dächer kann unter «Optimierung» folgendes verstanden werden:

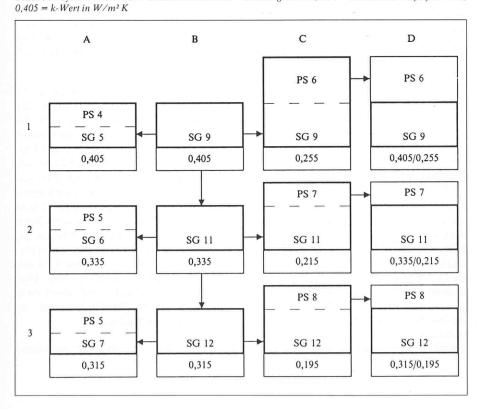
- a) Nachdämmung des Daches mit minimalem Investitionsaufwand so, dass dieser gerade mit dem Barwert der eingesparten Heizenergie abgedeckt wird.
- b) Maximale Nachdämmung des Daches derart, dass bei grösstmöglicher

Energieeinsparung gerade noch kein Kapitaldienst-Überschuss der Investition entsteht.

- c) Wahl der zusätzlichen Dämmstärke derart, dass die Gesamtkosten aus dem hierfür notwendigen Investitionsaufwand und dem neuen jährlichen Heizkostenaufwand über eine Zeitspanne von n = Jahren summiert minimal werden.
- d) Wahl der zusätzlichen Dämmstärke so, dass sich das günstigste Verhältnis zwischen spezifischem Investitionsaufwand und daraus resultierender Heizkosteneinsparung ergibt.
- e) Unter Einbezug einer geschätzten oder festgelegten Restgebrauchsdauer des Daches kann schliesslich auch der

relativ günstigste, d. h. freiwillig vorgezogene Ersatz- oder Sanierungszeitpunkt, sowie dessen optimaler Umfang ermittelt werden.

Bei der Erstellung von Neuanlagen ist bis heute die Optimierung nach c) gebräuchlich: Ausgehend von einem maximal zulässigen k-Wert wird nach derjenigen zusätzlichen Dämmstärke gefragt, bei welcher die Relativkostensumme aus «Kosten für Zusatzdämmung plus Barwert der nunmehr reduzierten Energiekosten» minimal wird.


Diese Betrachtungsweise geht also von einem vorbezeichneten Dachsystem mit produktemässig bestimmten Materialien aus, und sucht danach die hier für einen bestimmten Zeitraum gesamtkosten-günstigste Dämmstoffdicke.

Eine andere Betrachtungsweise kann darin bestehen, dass man von einem vorgeschriebenen k-Wert ausgeht, und auf diese Weise die Energiepreisentwicklung ausklammert.

Es ist alsdann die Frage zu beantworten, welches Flachdachsystem bei einem vorgeschriebenen k-Wert das relativ (bau-) kostengünstigste ist.

Bei allen Optimierungsaufgaben ist aber stets folgendes zu beachten: Es gibt grundsätzlich keine einheitliche, für alle Flachdachsysteme gleichermassen gültige, optimale Dämmstärke. Unter Verwendung eines relativ kostengünstigen Dämmstoffs mit ausgesprochen tiefer Leitfähigkeit liegt die rechnerisch optimale Stärke deutlich höher als bei einem relativ teuren Dämmstoff mit verhältnismässig hoher Wärmeleitfähigkeit. Die Konsequenzen aus dieser Tatsache sind im folgenden erläutert und berücksichtigt.

Tabelle 1. System-Matrix von Verbunddächern SG 5 = Schaumglas 5 cm; PS 4 = extrudierter Polystyrol 4 cm;

Flachdachsysteme mit Schaumglas-Dämmstoffplatten

Verbunddächer und Verbunddachsysteme haben die Eigenschaft, dass deren Abdichtung im Gegensatz zu konventionellen Warmdachkonstruktionen nicht lose und damit wasserunterläufig, sondern in vollflächiger Verklebung mit dem Dämmstoff eingebaut werden. Eine weitere besondere Charakteristik besteht darin, dass die Schaumglasplatten im Gegensatz zu anderen Wärmedämmstoffen praktisch stauchungsfrei und geschlossenporig sind. Sie eignen sich damit unter anderem auch speziell als befahrbare Unterlage; ebenso tragen sie auf Profilblechdächern zu einer deutlichen Versteifung dieses Leichtdachsystems bei.

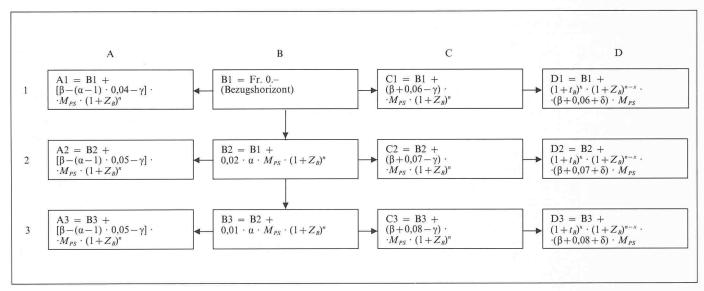


Tabelle 2. Matrix der relativen Baukostensummen

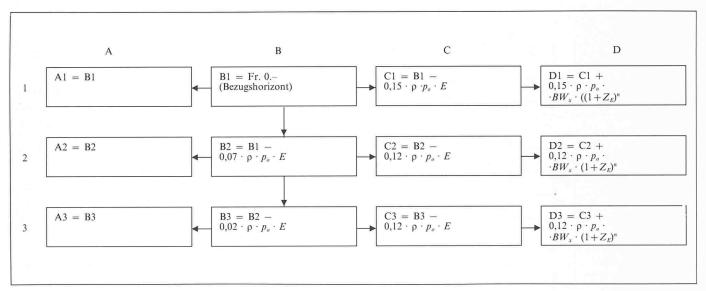
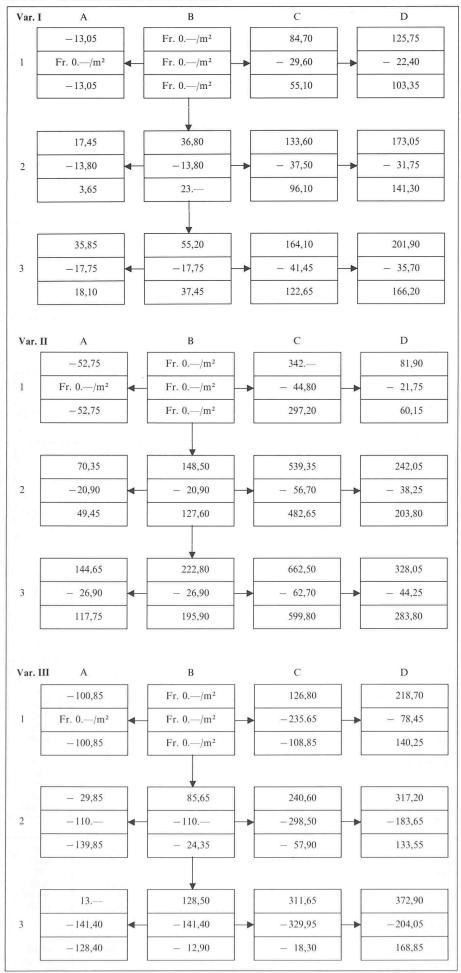



Tabelle 3. Matrix der relativen Energiekostensummen

Tabelle 4. Berechnungsblatt

Kalkulationswerte Baudaten		Var I	Var II	Var III
Materialpreis Schaumglas «M _{SG} »	[Fr/m³]	425	425	425
Materialpreis extrud. Polystyrol «M _{PS} »	[Fr/m ³]	280	280	280
$\alpha = M_{SG}/M_{PS}$	[-]	1,52	1,52	1,52
β = [Verlegen PS + Kosten Vlies]/ M_{PS}	$[m^{-2} \cdot m^3] = [m]$	0,01	0,01	0,01
$y = [allf. Einspar. 2. Lage Abdicht. b. Duo - D.]/M_{PS}$	$[m^{-2} \cdot m^3] = [m]$	-		0,025
, , , , , , , , , , , , , , , , , , , ,		(immer 2 Lagen)	(immer 1 Lage)	
δ = [späteres Umkiesen + event. Nachdichten]/ M_{PS} (heutige Preisbasis)	$[m^{-2} \cdot m^3] = [m]$	0,05	-	0,10
n = Planungshorizont	[a]	30	30	30
$x = \text{Zeitpt. für event. Nachrüstung } (1 \le x \le n)$	[a]	10	15	15
Z_R = Kapitalverzinsung Baukosten	[-]	0,05	0,10	0,08
$\pm t_B$ = nominale Bauteuerung	[-]	+ 0,035	± 0,0	+ 0,025
Kalkulationswerte Energiedaten				
ρ HGT · 24 · 10 ⁻³ / $η$ = Klimafaktor	[°K · h]	100	100	100
p _o = Energiepreis zum Zeitpunkt «Null» (= heute)	[Fr/kWh]	0,05	0,04	0,075
y = Zeitpt. für allf. Energiepreisknick $(1 \le x \le y \le n)$	[a]	10	15	20
$Z_E = \text{Kapitalverzinsung Energiekosten}(Z_E \leq Z_B)$	[-]	± 0,0	0,04	0,08
$\pm t_{El}$ = nominale Energieteuerung bis zum Zeitpt. y	[-]	-0.01	+0,01	+0.08
$\pm t_{E2}$ = nominale Energieteuerung ab dem Zeitpt. y	[-]	+0,05	+0,12	-0.01
$BW_{y} = f(Z_{E}, \pm t_{EI}, y)$ $BW_{n-y} = f(Z_{E}, t_{EI}, n, y)$ $BW_{x} = f(Z_{E}, \pm t_{EI}, x)$ $- \Rightarrow BW_{x} = \dots$ $1 - \left(\frac{I+t}{I+Z}\right)^{\alpha}$				
$BW_x = f(Z_E, \pm t_{EI}, x) \longrightarrow BW_x = \dots$	[-]	9,56	11,84	13,89
$E = [BW_{y} \cdot (1 + Z_{E})^{n} + (1 \pm t_{E})^{y} \cdot \hat{B}W_{n-y} \cdot (1 + Z_{E})^{n-y}]$	[-]	39,47	74,63	209,50

Tabelle 5. Berechnete relative Gesamtkostensummen

Es ist also davon auszugehen, dass die Produktewahl «Schaumglas» im Flachdachbau stets auch auf besondere abdichtungstechnische und baumechanische Erfordernisse zurückgeführt werden kann. Demnach ist es einleuchtend, dass ebenfalls in energetisch-betriebswirtschaftlicher Hinsicht, wenigstens in einer ersten Evaluation, nur Optimierungsvergleiche unter den Dachsyste-«Verbunddach» und Verbunddach» angestellt werden sollen. Vergleiche zu andersartigen Dachsystemen müssen selbstverständlich möglich sein - eine Wertung soll in solchen Fällen aber stets unter Einbezug der unterschiedlichen Nutz- und Beanspruchbarkeit der verschiedenen Dachsysteme erfolgen.

Die nachfolgenden Optimierungsbetrachtungen können auf vier «Grundvergleiche» zurückgeführt werden:

- 1. Vergleich von reinen Verbunddächern mit unterschiedlichem k-Wert und gleichem Erstellungszeitpunkt.
- Z. B. bei einem λ_r -Wert von 0,041 W/ mK für Foamglas T4 kann zwischen d = 9 cm für einen maximal zulässigen k-Wert $\simeq 0.4 \text{ W/m}^2\text{K}$, und d = 12 cmmit einem resultierenden k ~ 0,31 W/ m2K variiert werden.
- 2. Vergleich von reinen Verbunddächern und Duo-Verbunddächern mit gleichem k-Wert und gleichem Erstellungszeitpunkt.

Weil für den Duo-Dämmanteil mit $\lambda_r =$ $1.2 \times 0.034 = 0.041 \text{ W/mK} (20\% \text{ Zu-}$ schlag) gerechnet werden muss, kann ein Teil der Dämmstärke des reinen Verbunddaches direkt durch eine gleichdicke Duo-Dämmung substituiert

3. Vergleich von Duo-Verbunddächern mit unterschiedlichem k-Wert und gleichem Erstellungszeitpunkt.

Diese Vergleiche können aus 1. und 2. abgeleitet werden.

4. Vergleich von Duo-Verbunddächern mit gleichem k-Wert - entweder sogleich als Duo-Verbunddach erstellt oder als Verbunddach-Verstärkung zu einem späteren (variablen) Zeitpunkt ergänzt.

der Erstellung von Duo-Verbunddächern (mit allfälliger Einsparung einer Abdichtungslage) können also zunächst auch reine Verbunddächer mit höherem k-Wert gebaut, und diese zu gegebener Zeit mit relativ geringem Zusatzaufwand nachgerüstet werden.

System-Matrix von Verbunddächern

Die Konstruktionsvarianten in der System-Matrix (Tabelle 1) stellen eine Vorauswahl sinnvoller Kombinationen dar. Spalte A bis C sind «Sofortlösungen»; Spalte D ist als Nachrüstung eines reinen Verbunddachs in ein Duo-Verbunddach zum Zeitpunktk x (1 $\leq x$ $\leq n$) zu verstehen.

Die System-Matrix kann nun in eine Matrix der relativen Baukosten (Tabelle 2), und in eine Matrix der relativen Energiekosten (Tabelle 3) zerlegt werden. Die beiden Relativbeträge je Konstruktion werden dabei auf einen einheitlichen, aber frei wählbaren Planungshorizont entsprechend n Jahren Laufzeit aufsummiert. Die Verbunddachkonstruktion B1 nach System-Matrix - d. h. 9 cm Schaumglas mit k-Wert 0,405 W/m²K - wird als Basiskonstruktion mit aufgezinsten Relativkosten «Bau (-Investition)» von Fr. 0.-, und summierten Relativkosten «Energie (-Betrieb)» von Fr. 0.- definiert. Alle Kostenangaben der anderen Systeme verstehen sich also stets als ± Kostensumme zur Basis B1.

Die zur Berechnung der relativen Baukostensummen notwendigen Grössen und Operationen sind in der Matrix der relativen Baukosten (Tabelle 2) eingetragen. Die einzelnen Kenngrössen sind im Berechnungsblatt (Tabelle 4) definiert; sie können nach Belieben variiert werden

In analoger Weise wie die Matrix der relativen Baukosten gestaltet sich jene der relativen Energiekosten (Tabelle 3). Die benötigten Barwertfaktoren sind im Jahrbuch «CRB-Baukostendaten» publiziert. Allgemein gilt:

$$BW_{\alpha} = \frac{1}{Z - t} \cdot \left[1 - \left(\frac{1 + t}{1 + Z} \right)^{\alpha} \right]$$

$$t = z$$
, $BW_{\alpha} = \frac{\alpha}{1+Z}$

Die Formel für E (Tabelle 4) erlaubt es, nicht bloss eine prognostizierte Energiepreisteuerung ab dem Investitionszeitpunkt zu berücksichtigen, sondern sogar deren zwei. Z. B.: von Zeitpunkt «Null» bis Zeitpunkt y: $t_{EI} = -4\%$ pa.; von Zeitpunkt y bis Zeitpunkt n: $t_{E2} =$

Aus berechnungstechnischen Gründen muss hier die Bedingung $x \le y$ eingehalten sein. Der Zeitpunkt x einer allfälligen Nachrüstung des Verbunddaches zum Duo-Verbunddach muss also spätestens bis zum Zeitpunkt des allfälligen Energiepreisknicks erfolgen.

Die Formel zur Ermittlung der relativen Kosten sind für die vorgeschlagenen 12 Dachsysteme allgemein gültig. Die konkreten Ergebnisse werden nach erfolgter Festlegung aller massgebenden Berechnungsvariablen durch Superposition der jeweiligen Baukosten und Energiekosten ermittelt. Sie können in die abgebildete, leere Berechnungs-Matrix eingetragen werden. Falls nicht die Relativgrössen aller 12 Dachsysteme, sondern beispielsweise nur die Vergleiche zwischen A1, B2 und D3 interessieren, so wählt man den jeweils kürzesten Berechnungsweg gemäss den in der Matrix eingezeichneten Berechnungspfeilen.

Beispiele und Kommentar

Wie dehnbar der Begriff «betriebswirtschaftlich optimale Konstruktion» sein kann, lässt sich aus Tabelle 4 erahnen.

Allein zum Vergleich der 12 artverwandten, praktisch nutzungsgleichen Dachkonstruktionen müssen 15 Einflussfaktoren berücksichtigt werden. Von den 15 Einflussfaktoren weisen deren sechs (δ , $(x, \pm t_B) y, \pm t_{EI}, \pm t_{E2}$) ausgesprochenen Prognosecharakter auf; und falls die Variante «Nachrüstung» ausgeklammert wird, sind nur noch y, $\pm t_{EI}$, $\pm t_{E2}$ mit Unsicherheit behaftet. Die übrigen Einflussgrössen können verbindlich vereinbart werden.

Als Beispiele werden für die zwölf Dachkonstruktionen drei Varianten (Tabelle 5) mit teilweise veränderten Einflussgrössen durchgerechnet und kommentiert.

Mit den Daten zu Variante I (Tabelle 5) wird das vom Basis-System B1 abgeleitete Duo-Verbunddach A1 (≅ 0,4 W/ m2K) das gesamtkostengünstigste der untersuchten Systeme.

Bei Variante II (Tabelle 5) stellt das Duo-Verbunddach A1 wiederum die günstigste Lösung dar. Interessant ist bei den hier verwendeten Kalkulationswerten aber auch die Tatsache, dass eine «Nachrüstung» des reinen Verbunddaches zu einem Duo-Verbunddach d. h. die nachträgliche k-Wert-Verbesserung zum untersuchten Zeitpunkt x = 15 Jahre – wesentlich kostengünstiger wird als die entsprechende, anfänglich ausgeführte Duo-Verbunddach-Konstruktion.

Mit den gemäss Variante III (Tabelle 5) gewählten Daten wird das Duo-Verbunddach A2 mit k = 0.335 W/m²K das kostengünstigste. Den höheren Baukosten infolge höherer Investitionsverzinsung stehen wegen veränderter Energiepreisteuerung und -verzinsung überproportional höhere Energiekosten gegenüber, welche bei abnehmendem k-Wert eingespart werden.

Die Relativkostensummen von verschiedenen Varianten können nicht miteinander verglichen werden, d. h.: es lassen sich nur Ergebnisse miteinander vergleichen, welche auf den gleichen Berechnungsannahmen basieren.

Ein Vergleich zwischen den Dachkonstruktionen nach System-Matrix und einem völlig andersartigen Dachsystem mit anderem k-Wert ist zwar – bei gleichen Kalkulationsannahmen - möglich; ob der Vergleich aber – vor allem bei unterschiedlicher Dachnutzung auch sinnvoll ist, muss von Fall zu Fall entschieden werden.

Ein Gesamtkostenvergleich z. B. zwischen einem bituminösen Korkdach mit $k = 0.4 \text{ W/m}^2\text{K}$ und einem Duo-Verbunddach mit $k = 0.2 \text{ W/m}^2\text{K}$ gestaltet sich wie folgt:

Die Gesamtkosten des Korkdachs werden ermittelt. Ebenso werden die Gesamtkosten des Basisverbunddachs B1 bestimmt und mit den relativen Gesamtkosten des zu vergleichenden Duo-Verbunddaches superponiert. Damit lässt sich die Differenz der Gesamtkosten ermitteln, immer bezogen auf den Planungshorizont zum Zeitpunkt n.

Dabei ist zu beachten, das für die Energiekosten des Korkdachs und des Basisdachs je mit $k_{vorh} \cdot \rho \cdot p_o \cdot E$, und nicht, wie bei den relativen Gesamtkosten für das Duo-Verbunddach, mit $\Delta k \cdot \rho \cdot p_o \cdot E$ zu rechnen ist (vgl. Tabellen).

Adresse des Verfassers: H. Bangerter, Ing. SIA, Weder + Bangerter AG, Ingenieurbüro, Waffenplatzstrasse 63, 8002 Zürich.