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Numerische Simulation

Zukunftsorientierte Vorgehensweise zur Feuersicher-
heitsbeurteilung von Stahlbauten

Von Jean Baptiste Schleich, Luxemburg

Ein Feuer in einem Gebiude ruft schwere Personen- und Sachschiden hervor, wenn die tra-
gende Struktur des Gebiudes zusammenbricht. Eine gute Feuerbestindigkeit der belasteten
Tragelemente ist eine nicht ausreichende, aber notwendige Bedingung, um die Bausubstanz
eines Gebiudes zu erhalten, die Rettung der Bewohner zu ermoglichen und der Feuerwehr

wirksames Eingreifen zu erlauben.

Daher hat das Verlangen nach analytischen Methoden fiir das thermische und statische Ver-
halten stark zugenommen. Betriichtliche Fortschritte wurden bei der Entwicklung von einfa-
chen analytischen Methoden erzielt, insbesondere fiir Stahl- und Verbund-Bauteile, und in
verschiedenen Lindern kann die praktische Beurteilung der Feuerbestindigkeit nun mittels
dieser vereinfachten Berechnungsmodelle erfolgen [1 bis 5]. Diese Vorgehensweise ist jedoch
nicht auf jede praktische Situation anwendbar, im Gegenteil ist sie sogar stark beschrinkt,
wenn die tatsichlichen Grenzbedingungen zu beriicksichtigen sind.

Numerische Simulation

Kiirzlich wurden Forschungsarbeiten
iiber Stahl- und Verbundbauweisen
durchgeftihrt, an der Abteilung fiir
Briicken und Tragwerke der Universi-
tit Liittich (Belgien), unter der Fiih-
rung von Arbed-Luxemburg und mit
der finanziellen Unterstiitzung der
Europédischen Gemeinschaft fiir Kohle
und Stahl [6].

Das erste Ziel dieser Forschungsarbei-
ten war das Erstellen eines Computer-
programms zur Untersuchung von
Stahl- und Verbundtragwerken unter
Feuerbedingungen. Dieses numerische
Programm basiert auf der Methode der

Finiten Elemente, bei der Trigerele-
mente mit Unterteilung des Quer-
schnittes in ein rechteckiges Netz ver-
wendet werden. Die Struktur wird zu-
nehmenden Lasten oder Temperaturen
unterworfen und wird schrittweise ana-
lysiert. Das thermische Problem wird
durch eine Methode der Finiten Diffe-
renzen gelost, basierend auf dem Wir-
megleichgewicht zwischen benachbar-
ten Netzelementen des Querschnittes.

Dieses «Ceficoss»-Programm ( Compu-
ter Engineering of the Fire Restistance
for Composite and Steel Structures)
eignet sich auch fir Stahlbetonstruktu-
ren, wurde aber im wesentlichen fiir
Verbund- und Stahlbauweisen entwik-
kelt und bei diesen Strukturen ange-

wendet. In dieses Computerprogramm
sind denn auch die Materialgesetze in
temperaturabhdngiger Form einbezo-
gen.

Die Zusammenhinge fiir Stahl und Be-
ton, die spiter noch weiter verbessert
werden konnen, sind in den Bildern 1
bis 3 wiedergegeben: Aus dem Bild 1,
das den Zusammenhang zwischen
Spannung und Dehnung fiir Stahl zeigt,
ist ersichtlich, dass die Stahlverfesti-
gung durch ein leicht geneigtes Fliess-
plateau beriicksichtigt wurde. Gemaéss
den praktischen Feuertests beeinflusst
diese Stahlverfestigung in der Tat die
Gesamtverformungen bei hohen Tem-
peraturen merklich [7].

Im Bild 2 ist der Zusammenhang zwi-
schen Spannung und Dehnung fiir Be-
ton wiedergegeben, wobei die Span-
nung bei hohen Dehnungen abnimmt
[8,9].

Das Bild 3 zeigt parametrische Mate-
rialgesetze fiir die thermische Leitfdhig-
keit und die spezifische Wirme von
Stahl und Beton [2,10].

Das Prinzip des Programmablaufplans
ist im Bild4 veranschaulicht. Bei
Raumtemperatur wird die Last schritt-
weise erhoht. Nach jeder Laststeige-
rung muss das Gleichgewicht der Struk-
tur nach dem Newton-Raphson-Prozess
wiederhergestellt werden. Ist die Be-
triebslast erreicht, so wird die Last wih-
rend der folgenden Feuersimulation
konstant gehalten. Jetzt werden die
Querschnittstemperaturen jedes Netz-
elementes mit einem kurzen Zeitschritt
berechnet. Nach der Brandsimulation

Spannungs-Dehnungs-Diagramm fiir Beton bei verschiedenen Tempe-
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Bild 3.

von ungefihr einer Minute wird die
thermische Analyse gestoppt. Jetzt er-
mittelt der statische Programmteil die
Verschiebungen der Struktur fiir die be-
rechneten Temperaturen. Hier wird
wiederum die Newton-Raphson-Metho-
de benutzt, um das Gleichgewicht
wiederherzustellen. Dieses aus abwech-
selnden thermischen und statischen Be-
rechnungen bestehende Verfahren wird
solange fortgefiihrt, bis kein Gleichge-
wicht mehr erreicht werden kann. Die-
ser Zeitpunkt ist identisch mit der
Feuerwiderstandsdauer des analysier-
ten Bauelementes.

Um die von «Ceficoss» gelieferten Si-
mulationsergebnisse zu lberpriifen
und grundlegende physikalische Para-
meter mit grosserer Genauigkeit zu be-
stimmen, wurde beschlossen, eine neue
Reihe von Feuertests im natiirlichen
Massstab auf der Basis der Einheitstem-
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Wirmeleitfdhigkeit und spezifische Wirme von Stahl und Beton

Bild 4.

peraturzeitkurve nach ISO834 durchzu-
fiihren. Auf diese Weise wurde ein bes-
serer Vergleich zwischen Test- und Si-
mulationsergebnissen sichergestellt,
und es ergaben sich interessante Aussa-
gen lber eine neue, von Arbed entwik-
kelte Verbundbauweise [11 bis 14].

Feuertests im Massstab 1:1

Erste Priifungsart

Feuertests mit Stiitzen aus blankem
Stahl, geschiitzten Stiitzen und
Verbundstiitzen unter Belastung

An der Universitit Gent wurden Stiit-
zen von 4140 mm Linge bei senkrech-
ter Belastung getestet [15], wobei die Ex-
zentrizitit um die schwache Achse
180 mm betrug. Das getestete Stahlpro-
fil war der «Amerikanische Breit-

Programmablaufplan der Brandsimulation

flanschtriger» W 14x16x500, wobei
eine Stiitze ungeschiitzt direktem Feuer
ausgesetzt war. Bei diesen Tests wurde
klar, dass eine hohe Massivitit-der
Querschnittsfaktor F/V dieses Stahl-
profils betrug 27 m~'-selbst bei blanken
Stahlprofilen eine gute Feuerbestdndig-
keit verleiht.

Nur numerische Programme, die den
Temperaturgradienten lber die Stahl-
dicke bestimmen, sind in der Lage, das
Verhalten von dicken, blanken Stahl-
elementen genau vorauszusagen.

Bei dem Test wurde eine Feuerwider-
standsdauer von 45 Minuten gemessen,
withrend die «Ceficoss»-Simulation 46
Minuten ergab. Das entsprechend be-
rechnete Temperaturfeld ist im Bild S
wiedergegeben.

Spezielle Verbundstiitzen wurden im
Testofen von Gent getestet. Eine dieser
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Stiitzen bestand aus drei gewalzten
H-Profilen, die zusammengeschweisst
und zwischen den Flanschen betoniert
waren. Der Beton dieses oktogonalen
Querschnittes enthielt keine Armie-
rungsstiibe (vgl. Bild 6). «Ceficoss» gab
eine Feuerbestidndigkeit von 170 Minu-
ten, d.h. 99% der gemessenen Feuerbe-
stindigkeitszeit von 172 Minuten. Die-

Bild 7.

Gemessene und berechnete Trager-Durchbiegung

se Stiitze von 4140 mm Lénge verhielt
sich wihrend des Feuertests recht gut,
obwohl ihre vier sichtbaren Stahlflan-
schen dem Feuer unmittelbar ausge-
setzt waren.

Zwei Stiitzen vom Typ AF30/120 wur-
den an der Universitit Braunschweig
getestet [16], wobei die Last-Exzentrizi-

biegung

tit um die schwache Achse 98 mm be-
trug. Die Stiitzen hatten eine Knickldn-
ge von 3,74 m bzw. 5,71 m. Der Feuer-
test ergab fiir diese letztere Stiitze eine
Widerstandsdauer von 120 Minuten,
wihrend die «Ceficoss»-Simulation 114
Minuten (95%) errechnete.

Um hohere Biegemomente um die

Bild 8. Stiitzen und Triger des untersuchten Rahmens mit Stiitzendurch-
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Bild 9. Ubersicht iiber die verschiedenen Feuerwiderstandstests

Bild 10.  Temperaturverlauf iiber verschiedene Stiitzzenquerschnitte
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schwache Querschnittsachse aufneh-
men zu kdénnen, wurden Bewehrungs-
stibe durch T-Profile ersetzt, die auf
den Steg des H-Profils aufgeschweisst
wurden (vgl. Bild 6). Zwei Stiitzen die-
ses Typs, mit einer Linge von 5,71 m,
wurden in Braunschweig mit Erfolg ge-
testet [16]. Fiir die Stiitze mit einer Last-
Exzentrizitdt von 150 mm betrug die ge-
messene Feuerwiderstandszeit 157 Mi-
nuten, wihrend die numerische Simu-
lation 140 Minuten ergab.

Die entsprechend berechneten und ge-
messenen Werte der vertikalen und ho-
rizontalen Verformungen stimmten
recht gut tiberein.

Zweite Priifungsart

Feuertests mit belasteten Verbund-
1ragern

Im Testofen von Gent wurden vier Tré-
ger getestet [15]. Diese Tréger bestanden
aus dem AF-Verbundprofil mit Beton-
platte, wobei im allgemeinen die Ver-
bindung zwischen diesen beiden Bau-
teilen durch auf dem oberen Flansch
des Stahlprofils aufgeschweisste Kopf-
bolzendilibel gewéhrleistet wird. Beim
ersten Test wurde der Verbund-T-Tré-
ger mit einer freien Spannweite von
6 m einfach an beiden Enden gelenkig
gelagert. Bei Anwendung des Durchbie-
gungs-Kriteriums £ L/30 zur Defini-
tion der Feuerwiderstandsdauer ergibt
sich eine recht gute Ubereinstimmung
zwischen dem Testergebnis von 171 Mi-
nuten und der Simulation von 165 Mi-
nuten (96%).

Beim vierten Test-Trager wurden keine
Diibel zwischen dem AF-Verbundprofil
und der Deckplatte angeordnet. Diese
Abdeckplatte, einfach auf den oberen
Profilflansch aufgelegt, wurde bei der
Berechnung der Temperaturverteilung
berticksichtigt, trug aber nicht zur stati-
schen Funktion des unteren AF-Quer-
schnittes bei. Die bei diesem Test ge-
messene Feuerwiderstandsdauer von 92
Minuten, und die mit «Ceficoss» be-
rechnete Feuerwiderstandsdauer von
90 Minuten zeigen wiederum eine sehr
gute Ubereinstimmung (98%). Bei der
Priifung des zweiten und dritten Ver-
bundtrigers mit Spannweiten von 6 m
wurde das eine Ende einfach unterstiitzt
und das andere Ende eingespannt. In
beiden Fillen wurde ein plastisches Ge-
lenk nahe der Einspannung ausgebil-
det, das auch in der numerischen Simu-
lation bestitigt wurde.

Die Feuerwiderstandszeiten auf der Ba-
sis des Durchbiegungskriteriums <
1.730, berechnet mit «Ceficoss» und
durch die Tests gemessen, zeigen eine
ziemlich gute Ubereinstimmung. Das
Bild 7 zeigt die gemessenen und die si-
mulierten Durchbiegungen in Triger-
mitte des dritten Test-Trigers.
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FRAME just before it’s failure time under
local 1SO-fire action.

Bild 12.

Gesamtverformung einer Rahmenkonstruktion

Bild 13.  Naturbrandkurven MM1 bis MM4
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Aus diesen vier Trédger-Tests konnen
praktische und recht interessante
Schlussfolgerungen gezogen werden.
Wie der vierte Test-Trdger gezeigt hat,
kann bei diesem Trédger-Typ minde-
stens die ISO-Feuerklasse F90 garan-
tiert werden, selbst ohne den Beitrag
einer Betonplatte, und trotz einer sehr
hohen Belastung (46,1 kN/m). Es ist na-
tirlich wichtig, das Zusammenwirken
zwischen der Betonplatte und dem AF-

Tréager auszunutzen, da die gemessene
Feuerwiderstandszeit von 92 Minuten
beim vierten Trager bis auf 171 Minu-
ten beim ersten Triger ansteigt. Ausser-
dem ist es vorteilhaft, die Kontinuitét
der Tréger zu berticksichtigen, ohne die
Betonplatte speziell zu verstarken, wie
dies der zweite Test-Tridger gezeigt hat.
Hier wurde sogar eine Feurwider-
standszeit von 244 Minuten erreicht.
Die offensichtlich beste Wahl besteht

Bild 17.  Brandkurven-und Tragwerksmodelle
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jedoch darin, die durchlaufende Beton-
platte tiber dem Auflager zu verstédrken,
da wesentlich grossere Lasten getragen
werden kénnen. Der dritte Verbundtra-
ger, mit 74,5kN/m belastet, konnte
praktisch in die ISO-Feuerklasse F 180
eingeordnet werden (vgl. Bild 7).

Dritte Priifungsart

Feuertests mit belasteten
Verbundrahmen

Eine der niitzlichsten Untersuchungen,
die zuklinftig mittels des numerischen
«Ceficossy-Programms durchfiihrbar
wird, ist die Analyse der Feuerwirkung
auf Rahmenfachwerke. Natiirlich gibt
es keinen Testofen, mit dem ein ganzes
Gebdude unter Feuerbelastung getestet
werden konnte. An der Universitit
Braunschweig besteht jedoch die Mog-
lichkeit, einfache Rahmen, bestehend
aus einer Stiitze und einem Triger, zu
testen. So fiihrte Arbed 1985 zwei Rah-
mentests im Massstab 1:1 durch, bei de-
nen die mit dem Simulationsprogramm
erhaltenen numerischen Werte besta-
tigt wurden [17]. Die Stiitzen- und
Trigerarten, aus denen diese zwei Rah-
men bestanden, sind im Bild 8 darge-
stellt, welches auch die gute Uberein-
stimmung zeigt zwischen der gemesse-
nen und der berechneten horizontalen
Verformung der Stiitze, praktisch in
halber Hohe, im Fall des am stirksten
belasteten Rahmens 3.10.

Um diesen erstmaligen erfolgreichen
Versuch, kompliziertere Tests als einfa-
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AR/RPS

AR/RPS

Bild 18. Rechteckige Verbundquerschnitte —mit
sichtbaren Stahlflanschen

che Verbundtrdger- oder Verbundstiit-
zen-Tests zu simulieren, voll zu wiirdi-
gen, sollten wir einen Blick werfen auf
die sehr praktische, starre Stiitzen-Tré-
ger-Verbindung. Hier wird die Schwer-
last iiber die dicke Platte aufgenom-
men, die auf den Stiitzenflansch aufge-
schweisst ist. Die Zugschrauben sind in-
nerhalb der ziemlich kalten Beton-
Deckplatte angeordnet, um das negati-
ve Biegemoment aufnehmen zu kon-
nen. Ausserdem ist diese Stiitzen-Tréa-
ger-Verbindung benutzerfreundlich, da
auf der Baustelle vollstindig vorgefer-
tigte Verbundstiitzen und Verbundtri-
ger miteinander verbunden werden.

Aus diesen Test- und Rechenergebnis-
sen kann der Schluss gezogen werden,
dass die numerische Simulation mittels
«Ceficoss» das Verhalten einer Struk-
tur unter ISO-Feuerbelastung naturge-
treu wiedergibt. Das Bild 9 gibt eine all-
gemeine Ubersicht {iber alle bisher aus-
gefiihrten und simulierten Tests. Dabei
ist festzustellen, dass die Ubereinstim-
mung zwischen Theorie und Testergeb-
nissen iiberaus annehmbarist [6].

Feuerwiderstandsbemessung

«Ceficoss» ist ein allgemeines, thermo-
mechanisches, numerisches Computer-
programm, welches gestattet, das Ver-
halten von Konstruktionsbauteilen wie
Stiitzen, Trigern oder Rahmen unter
Feuerbelastung  vorauszubestimmen.
Diese Bauteile kdnnen aus ungeschiitz-
ten oder isolierten Stahlprofilen sowie
aus Verbundprofilen irgendwelcher Art
bestehen (Bild 6). «Ceficoss» ist ein
neues Hilfsmittel, welches endlich eine
Vielzahl neuer Untersuchungen ermag-

Bild 19. Polygonale
sichtbaren Stahlfldchen

Verbundquerschnitte — mit

licht, und somit unser Wissen iiber die
Feuersicherheit realer Tragwerke we-
sentlich verbessern wird.

Da die inneren Temperatur- und Span-
nungsfelder fiir jeden Querschnitt er-
mittelt werden konnen, ist zunéchst
eine optimale Feuerbemessung gege-
ben, bei der nicht fiir einen ibermaéssi-
gen Feuerschutz bezahlt werden muss.
Stahlbewehrungen kdnnen an giinstige-
ren Stellen angeordnet werden, wenn
die Temperaturfelder (wie jene von
Bild 10) bekannt sind. Die inneren
Spannungsfelder konnen die richtige
physikalische Erklarung fiir gewisse
Versagensformen geben.

In dieser Hinsicht zeigt das Bild 11 eine
exzentrisch belastete Verbundstiitze,
bestehend aus dem europdischen Breit-
flanschprofil HE 400 AA, und durch
zwel im Beton eingebettete Halbquer-
schnitte ¥» HE 180 M verstérkt. Das in-
nere Spannungsfeld, welches durch die
gleichzeitige Wirkung der exzentri-
schen Last Nund des differentiellen, in-
neren Temperaturfeldes erzeugt wird,
ist fiir 140 Minuten ISO-Befeuerung
wiedergegeben; zu diesem Zeitpunkt
erfolgt das Knicken der Stiitze. Das
dreidimensionale Spannungsfeld gibt
Einblick in die Beton-Druckspannun-
gen, wobei die dusseren Betonschichten
zerquetscht sind. Wihrend der Steg des
Hauptprofils HE 400 AA infolge der
hoheren Stegtemperaturen gegeniiber
den Halbquerschnitt-Temperaturen [0]
unter Druck steht, werden die Halb-
querschnitte (Y2 HE 180 M) auf Zug und
Druck beansprucht, wodurch sie haupt-
sichlich das Biegemoment aufnehmen.

Weiterhin kann die globale Verformung
von Konstruktionen berechnet werden,
um entweder die zeitabhéngige Verfor-

Bild 20. AF-Verbundbauweise mit Trdger-Stiitzen-
Anschluss

mungsevolution oder den unmittelba-
ren Versagenszustand darzustellen. Das
Beispiel von Bild 12 zeigt das Verfor-
mungsverhalten einer Rahmenkon-
struktion unter Einfluss eines lokalen
ISO-Feuers. Dieser Rahmen mit Stiit-
zen- und Tréger-Verbundquerschnit-
ten, identisch mit denjenigen von
Bild 8, weist eine logische und kontinu-
ierliche Verformung unmittelbar vor
dem Zusammenbruch auf. Dieser tritt
ein nach 216 Minuten lokaler ISO-Be-
feuerung durch Knicken des unteren
erhitzten Teils der zentralen Stiitze.

Fiir den praxisorientierten Ingenieur
werden demnéchst niitzliche Bemes-
sungshilfen erstellt, z.B. fiir zentrisch

Bild 21. Fertigteil-Technik im AF-Verbundbau
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belastete Stiitzen oder fiir Stiitzen mit
vertikaler Belastung N und Biegebean-
spruchung M [18]. Diese knickabhdngi-
gen N-M-Interaktions-Diagramme wer-
den fiir verschiedene ISO-Feuerklassen
aufgestellt.

Ausserdem ist es kilinftig moglich, so-
wohl die ISO-Einheitstemperaturkur-
ve, als auch jede natiirliche Aufheizkur-
ve zu berticksichtigen. Im Bild 13 sind
einige Naturbrandkurven MM 1 bis
MM 4 dargestellt, die fiir verschiedene
Feuerbelastungen zwischen 60 und 15
kg Holz pro m? Bodenfldche und einem
Offnungsfaktor von 0,157 m'? experi-
mentell bestimmt wurden [19,20]. Fiir
Berechnungszwecke wird im folgenden
die Gesamthiillkurve CN2 benutzt.

Unser Wissen iiber das Verhalten von
Konstruktionen unter Feuerbelastung
wird wesentlich verbessert, wenn wir
die Evolution der inneren Temperatur-
felder bei Verbundquerschnitten im
Falle von Naturbrdnden analysieren.
Das Bild 14 mit einem durch T-Profile
verstarkten Querschnitt zeigt, dass die-
se Halbquerschnitte nur bis auf 240 °C
erhitzt werden. Dies bedeutet, dass es
im Falle einer Naturbrandkurve ein
kritisches Belastungsniveau gibt, unter-
halb welchem das Bauelement nicht
mehr ausfallt. Im Bild 15 ist eine Verall-
gemeinerung dieses Konzeptes gezeigt,
und zwar wird die dquivalente ISO-
Feuerwiderstandsdauer definiert, bei
der die Tragfidhigkeit bei Einwirkung
eines ISO-Brandes identisch ist mit der
minimalen Tragfahigkeit bei Einwir-
kung eines vorgegebenen Naturbrandes
[21].

Es wurde erstmals versucht, mit «Cefi-
coss» die dquivalente ISO-Feuerwider-
standszeit im Vergleich zur Kurve CN2
(vgl. Bild 13) fiir einen einstdckigen
Rahmen gemiéss Bild 16 zu berechnen.
Die Berechnung fiir diesen Rahmen
unter einer Grundbelastung von y = 1
ergibt eine ISO-Feuerwiderstandsdauer
von 118 Minuten. Bei gleichem Bela-
stungsniveau erfolgt jedoch unter na-
tirlicher Aufheizung CN2 {iberhaupt
kein Versagen. Um bei dieser natiirli-
chen Erhitzung die minimale Tragfi-
higkeit zu erreichen, muss die Bela-
stung bis auf y = 1,8 erhoht werden. Je-
doch ist die CN2-Feuerwiderstandszeit
noch grosser als 180 Minuten, wihrend
die dquivalente ISO-Feuerwiderstands-
zeit nur 50 Minuten betridgt. Da der Na-
turbrand gemiss CN2 jedoch als ein re-
lativ heftiges Feuer angesehen werden
kann, bestitigt dieses Beispiel eindeu-
tig, dass Teil- oder Gesamtstrukturen
berechnet werden sollten, entweder un-
ter Einwirkung natiirlicher Erhitzung,
oder unter Einwirkung eines ISO-
Feuers fiir niedrigere Feuerklassen, bei-
spielsweise F 60 anstatt F120. Natiir-
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lich muss die statische Bemessung fiir
Raumtemperaturen immer erfolgen;
sie wird wahrscheinlich sogar hédufiger
das entscheidende Bemessungskriteri-
um werden.

Diese Uberlegungen fiihren zu der im
Bild 17 wiedergegebenen Matrix, wel-
che die moglichen Beziehungen zwi-
schen Brandkurvenmodellen und Trag-
werksmodellen veranschaulicht. «Cefi-
coss» als ein allgemeines, thermome-
chanisches, numerisches Computerpro-
gramm wird endlich gestatten, diese
von ECCS und CIB [21,22] vorgeschla-
gene Matrix praktisch nutzen zu kon-
nen.

Der Gesichtspunkt des
Architekten

Schliesslich  wird dieses EDV-Pro-
gramm nicht zuletzt dazu beitragen,
das Ansehen des Stahlbaus zu erneu-
ern.

Auf der einen Seite kann, in der Tat,
der Bauherr davon iiberzeugt werden,
dass wesentliche Kosteneinsparungen
gewdhrleistet sind, da eine genau vorge-
schriebene Feuerbausicherheit erreicht
wird, ohne dass fiir einen iiberméssigen
Feuerschutz bezahlt werden muss; aus-
serdem sind von nun an jegliche unsi-
chere Bauelemente ausgeschlossen, wo-
durch die Brandverluste, infolge eines
Zusammenbruchs des Tragwerkes,
stark vermindert werden.

Auf der anderen Seite wird der Archi-
tekt endlich Verbundquerschnitte jeder
Form frei wihlen kénnen. Vor allem
werden jedoch Konstruktionselemente
mit sichtbaren Stahloberflichen fir
jede beliebige Feuersicherheit verfiig-
bar. Diesen wichtigen Aspekt veran-
schaulichen die Bilder 18 und 19. Hier
sind einige der moglichen Verbundstiit-
zen-Querschnitte gezeigt, die auf ge-
walzten H-Profilen basieren und einen
systematischen ~ Wechsel  zwischen
Stahl- und Betonoberflichen aufwei-
sen. Dieses sogenannte AF-Universal-
konstruktionssystem gestattet zweifellos
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die Schaffung von recht &dsthetischen
Bauelementen und bietet weitreichende
architektonische Moglichkeiten. Aus-
serdem machen folgende Merkmale
diese Verbundbauweise besonders wett-
bewerbsfihig:

O Eine hohe Flexibilitdt ist gewéhrlei-
stet, da zahlreiche Verbindungsmodelle
verfiigbar sind, die immer eine reali-
sierbare, praktische Losung bieten, wie
z.B. das Bild 20 zeigt.

O Eine betrdachtlich schnellere Bauaus-

Stahl-Verbundbauweise

fihrung kann erreicht werden, da tat-
sdchlich eine vollstdndige Vorfertigung
moglich ist, wie das Bild 21 zeigt.

O Die kleinstmdglichen Tragwerks-
querschnitte werden entworfen und
fihren demgemadss zu schlankeren
Konstruktionen.

Aufgrund dieser Uberlegungen wird
verstandlich, weshalb bereits mehr als
20 Gebiude auf der Basis der sogenann-
ten AF-Verbundbauweise in Europa er-
richtet worden sind

AF-Verbundbauweise 30-120 im Stockwerksbau: Biiro- und
Verwaltungsgebdude Val de la Petrusse in Luxemburg

Objekt

Der akute Bedarf an Biirofliche, die unter-
schiedlichsten Anforderungen von Mietern,
sowie die sich in unserer schnellebigen Zeit
eingestellte Ungleichheit zwischen Gebiu-
delebensdauer, Nutzungsart und Ausstat-
tung, waren die Vorgaben des Bauherrn fiir
ein neues Biirogebdude im Zentrum von Lu-
xemburg. Mit der daraus entstandenen For-
derung einer moglichst kurzen Bauzeit so-
wie einer weitgehend flexiblen Raumgestal-
tung kam als Konstruktion ein Skelettbau in
Stahl oder Stahlbeton in Frage, welcher die

Bild 1. Aussenansicht

Feuersicherheit F 90 A aufweisen musste.
Ein Wettbewerb zwischen Stahlverbund-
und Stahlbetonbau ergab, dass die AF-Ver-
bundbauweise kostenglinstiger war.

Technische Daten

Gesamtbauvolumen: 10000 m?

Gesamtnutzfliche: 2800 m?

Geschosse: 2 Unter- + 6 Ober-
geschosse

Reelle Bauzeit: 12 Monate

Die sinnvolle Anwendung des numeri-
schen Computerprogramms «Ceficoss»
sollte jedoch zu einer bei weitem gros-
seren Verbreitung dieser Bauelemente
fiihren, die in jedes praktische Bauwerk
integrierbar sind.

Adresse des Verfassers: J. B. Schleich, Leiter der
Abt. Forschung im Stahlbaubereich, Arbed-For-
schungszentrum, Luxemburg; Vorsitzender TWG
3.2, Unterausschuss TC3/ECCS, «Fire Safety of
Steel Structures».

Bild2. AF-Stahlverbundstiitzenelement

Bild 3. Sichtbare Tragkonstruktion vor dem In-
nenausbau
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