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Flichentragwerke aus Faserverbund-

werkstoffen

Das zweiachsige Kriech- und Relaxationsproblem

Von Georg Desserich, Luzern, Alfred Rosli, Ziirich, und

Urs Meier, Diibendorf

(Fortsetzung von H. 44/84, S. 855)

Die Bestimmung der mechanischen Eigenschaften von Mehrschichtenverbunden aus den
Eigenschaften der einzelnen Schichten gelingt bei Annahme linearelatischen Verhaltens
nach der Kontinuumstheorie, indem aus der Elastizitdtsmatrix durch Inversion die Nachgie-
bigkeitsmatrix des Verbundes bestimmt wird. Soll das zeitabhiingige Verhalten beriicksich-
tigt werden, so ist die Elastizititsmatrix durch die Relaxationsmatrix und die Nachgiebig-
keitsmatrix durch die Kriechmatrix zu ersetzen. Im Gegensatz zu den Elastizitits- und Nach-
giebigkeitsmatrizen gehen die Kriech- und Relaxationsmatrizen nicht durch einfache Inver-
sion auseinander hervor. Ihr Zusammenhang ist nach der viskoelastischen Theorie durch
Summengleichung gegeben, deren Auflosung im allgemeinen Fall nur durch rekursive
Verfahren mit Hilfe eines Rechenprogrammes moglich ist.

Mit dieser Berechnungsmethode kénnen, ausgehend von einem beliebigen Kriechverhalten
der Einzelschichten, das Kriechverhalten eines damit aufgebauten Mehrschichtenverbundes
und die zeitabhiingigen Schichtspannungen infolge dusserer Belastung bestimmt werden.
Eingehende experimentelle Untersuchungen bestitigen die Anwendbarkeit dieser Rechen-

methode.

Einleitung

Am Institut fiir Baustoffe, Werkstoff-
chemie und Korrosion (IBWK) der
ETH Zirich wurde in den Jahren
1976/77 eine umfangreiche Zusam-
menstellung und Ubersicht iiber den
Stand der internationalen Forschung auf
dem Gebiet des Langzeitverhaltens von
Faserverbundwerkstoffen erstellt [1].
Im Anschluss daran wurde das mehr-
schichtige linearelastische Scheibenpro-
blem untersucht und die numerische
Berechnung in Form von Computer-
programmen entwickelt [2, 3]. Seit 1978
liefern eingehende Materialuntersu-
chungen, insbesondere ausfiihrliche
Kriechversuche, die erforderlichen
Kennwerte und dienen zur Bestédtigung
der getroffenen Annahmen. Diese Ar-
beiten konnten im-Rahmen eines von
der ETH Ziirich finanzierten For-
schungsprojektes durchgefiihrt werden,
und die Ciba-Geigy AG in Basel/
Schweiz stellte die bendtigten Material-
proben zur Verfiigung. Fiir verschiede-
ne Versuche standen auch Priifeinrich-
tungen der Eidgendssischen Material-
priifungs- und Versuchsanstalt
(EMPA), Diibendorf/Schweiz, im Ein-
satz.

Zusammen mit den erarbeiteten und
verfiigbaren Rechenprogrammen wer-
den damit dem Ingenieur in der Praxis

moderne Mittel bereitgestellt, um tra-
gende Bauteile aus faserverstirkten
Mehrschichtenverbunden zu berech-
nen.

Lineare Viskoelastizititstheorie

Die Grundlage fiir die lineare Viskoela-
stizitdtstheorie ist das Boltzmannsche
Superpositionsprinzip [4]. Bei «nicht-
alternden» Stoffen gilt die Vereinfa-
chung, dass der Belastungszeitpunkt
keinen Einfluss auf das Stoffgesetz hat,
d. h. es besteht Invarianz beziiglich der
Zeittranslation.

Als einfaches Kriterium fiir den Uber-
gang vom linearen zum nichtlinearen
viskoelastischen Verhalten eines Mate-
rials dienen die isochronen Spannungs-
Dehnungs-Diagramme (Bild 1). Die li-
neare Theorie verliert ihre Giiltigkeit,
wenn die isochronen Spannungs-Deh-
nungs-Beziehungen fiir ein gegebenes
Material nicht mehr durch Geraden an-
gendhert werden konnen.

Zur Charakterisierung des Kriechver-
haltens bei konstanter Temperatur
dient die Kriechnachgiebigkeit @ (t) als
Quotient aus Verzerrungsverlauf & (1)
und konstanter Spannung o :

1) @)=
0

o

Im linear viskoelastischen Bereich ist
die Kriechnachgiebigkeit @ (t) (1) ab-
hingig von der Zeit und nicht von der
Spannung .

Die Verkniipfung zwischen dem Span-
nungsverlauf ¢ () bei konstanter Tem-
peratur und der konstanten Verzerrung
g, erfolgt iiber die Relaxationssteifig-

keit y (1) :

@ (=20

€0

Im linear viskoelastischen Bereich ist
die Relaxationssteifigkeit y (¢) (2) ab-
hingig von der Zeit, jedoch nicht von
der Dehnungeg.

Methoden zur Beschreibung
linear viskoelastischer Vorginge

Ein beliebiger, zeitlich sich dndernder
Spannungsverlauf (Bild 2) kann durch
«Stufen» angendhert werden. Fiir das
entsprechende  zeitabhingige Deh-
nungsverhalten kann somit verallge-
meinert geschrieben werden:

J
3) e()~ X O(4-1)Ao;

i=0

oder durch die Integralgleichung

_ Py 26
(4 uo—gmu 1) o-dt

Umgekehrt kann mit Hilfe der Relaxa-
tionssteifigkeit (2) das zu einem beliebi-
gen Dehnungsverlauf gehdrende zeit-
abhingige Spannungsverhalten (Bild 2)
bestimmt werden:

(5) o) ~ T w(y=1) Ae

i=0

oder als Integralgleichung

4 oe
6 = —-1)—d
6) o) {w(r ) o7 97

Verschiedene Methoden zur Ldsung
dieser Integralgleichungen werden auf-
gezeigt.

Rheologische Modellsysteme

Die rheologischen Modellsysteme be-
stehen alle aus einer Kombination der
Elemente Feder zur Kennzeichnung
des linearelastischen bzw. Dimpfungs-
kolbens zur Kennzeichnung des visko-
sen Verhaltens. Durch zweckmiissige
Anordnung und Kombination dieser
Elemente konnen die tdtsichlichen
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Verhéltnisse angendhert werden. Diese
Modellsysteme beschrinken sich auf
die Beschreibung einachsiger Vorgin-
ge, die Modellparameter werden dabei
iiber den ganzen Beanspruchungsbe-
reich als konstant angenommen.

Die Bedeutung der rheologischen Mo-
delle liegt vor allem darin, dass an sich
komplizierte Mechanismen recht an-
schaulich dargestellt werden kénnen
und somit das Verstdndis viskoelasti-
schen Verhaltens erleichtert wird. Ins-
besondere ermoglichen sie mit ihrer
Transparenz qualitative Aussagen zur
Wirkungsweise zeitabhingiger Mecha-
nismen.

Angleichung von Kriechkurven durch
spezielle Funktionen

Kriechfunktionen koénnen durch Po-
tenzansitze wie z. B.:

(7 ®(1)=K,-(1+K;-15)
oder
®) P()=K, (1+K,- 0k

angendhert werden. Entsprechend dem
Burger Modell gilt fiir die Kriechnach-
giebigkeit folgende exponentielle Funk-
tion:

(9) @ (1)=K1 + K, 1+K;5 (l —e Ky f).
Spline-Interpolation oder Spline-
Approximation

Das Deformationsverhalten kann durch
Messreihen, bestehend aus einzelnen
Messpunkten, beschrieben werden. Vor
der Weiterverarbeitung missen diese

Bild 1. a) Zeit-Dehnlinien-Diagramm

Messreihen durch eine explizite Funk-
tion ersetzt werden. Dies ist mdglich
durch eine «Spline-Interpolations-
Funktion» f(x), die durch sdmtliche
Messpunkte geht. Um die gesuchte In-
terpolations-Funktion anschaulich fest-
zulegen, denken wir uns durch die gege-
benen Stitzpunkte (Messpunkte) eine
diinne, homogene Latte (Spline) gelegt.
Dabei soll angenommen werden, dass
die Latte in den Stiitzpunkten frei dreh-
bar gelagert sei und keinen &dusseren
Kréften unterliege. Die resultierende
Biegelinie f (x) sei die Losung der In-
terpolationsaufgabe.

Um die urspriinglich geradlinige pris-
matische Latte (Spline) in die Endlage
zu verbiegen, muss die Forménde-
rungsenergie:
(10)

_ 1M ElY
U= TE 9=
0

.\'U

(f)2dx

aufgewendet werden. Fiir eine diinne
Latte kann ndherungsweise Gleichung
(10) wie folgt geschrieben werden:

(11) U=~ % J (f")2dx = Minimum
Xy

Die Endlage der Latte (Spline) ist da-
durch gekennzeichnet, dass die aufzu-
wendende Formidnderungsenergie U
minimal wird, d. h. f (x) minimiert das
Integral in Gleichung (11). Die gesuch-
te Interpolierende f (x) ist somit als Lo-
sung einer Variationsaufgabe mit Ne-
benbedingungen charakterisiert. Da die

Messungen mit Unregelmaéssigkeiten
behaftet sind, wird eine verniinftige In-
terpolation oft unméglich. In diesem
Fall sollte man die Ersatzfunktion f (x)
moglichst glatt im Bereich der Stiitz-
punkte verlaufen lassen. Dazu kann
eine  «Spline-Approximations-Funk-
tion» bestimmt werden. Durch zusétzli-
che Angabe einer Standardabweichung
d; und eines Glattungskoeffizienten s
kann die Spline-Approximation be-
stimmt werden. In [2] konnte gezeigt
werden, dass die Spline-Interpolation
bzw. -Approximation das wirkliche
Kriechverhalten recht gut beschreibt.
Extrapolationen auf Zeiten, die lber
die Versuchsergebnisse hinausgehen,
sind indessen im Unterschied zu den
Ansitzen (7, 8, 9) mit diesem Verfahren
nicht moglich.

Laplace-Transformation und die
elastisch-viskoelastische Analogie

Mittels der Laplace-Transformation
kénnen die Integralgleichungen (4, 6)
in algebraische Gleichungen iiberge-
fiihrt werden. Die urspriinglich diffe-
rentiellen Zusammenhénge der visko-
elastischen Modelle entsprechen im
transformierten Bereich einem linea-
ren Gleichungssystem, aus dem zusam-
men mit den transformierten Grundbe-
ziehungen (4, 6) die Kriech- und Rela-
xationsfunktionen ermittelt werden
kénnen. Mit dem Korrespondenzprin-
zip z. B. in [5] kann zur Losung des ein-
achsigen linear viskoelastischen Pro-
blems das linear elastische Problem un-

Bild 2. Links: Bestimmung des Dehnungsverlaufs aus ® (1) und o(t)

b Isochrones Spannungs-Dehnungs-Diagramm. Rechts: Bestimmung des Spannungsverlaufs aus y(t) und €(1)
¢) Kriechmodullinien: E (1) = oy /€(t). Bild b) und c¢) kénnen aus dem
Zeit-Dehnlinien-Diagramm ermittelt werden
T= konst.
al ] & = (1) o9 oo = (k) &
g = ®(n) og + o(1y) Aoy o1 = y(n) g+ wih) Ag
&= ®(1) op + (1) Ao, + 0= y(n) & + w(n) Ag +
+ ®(1) Aoy + y(h) Ag,
g3 = O(1) op + (1) Ao + o3 = y(n) & + y(n) Ag; +
+ O(19) Aoz + O(1) Ao + y(to) Aey + () Ags
w
2
2
£ E()4A o(t)
e |
> Agy Aoy
log t = A€ Ao, |
AE
€, v l % A% | ‘
b) c) Ec = i— LA im ‘_A_' __]Mﬂm -t LA,& Mt ‘At Lﬂhkons(,i,(
\ E(t) ot 24 3y S THE
A T = konst. i =t =13 =t, sty
o
o
w
S 3
. " E
P
§ ¥ F:
a c
w X
>
Dehnung € >t
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ter Beriicksichtigung des transformier-
ten E-Moduls (Ersatzmodul) verwendet

werden. (16)

Ayy =

Schrittweise Berechnung des Langzeit-

verhaltens mittels Rekursionsformeln Py =
=

Mit den Summen- und Integralglei-
chungen (3, 4, 5, 6) wird es moglich,
einerseits bei Kenntnis der Kriechnach-
giebigkeit und der Spannungsgeschich-
te den Dehnungsverlauf zu bestimmen,
anderseits bei Kenntnis der Relaxa-
tionssteifigkeit und der Dehnungsge-
schichte den Spannungsverlauf zu er-
mitteln (Bild 2).

Ay; =

D (19)

S
~

=
=)
-

[1=® (1) Ayl

|

[1=®(1) Ayg =D (1= 17) Ayy]

l

[1 =®(13) Ayy — D (13— 1) Ay — O (13— 13) Ay,]

l

Fiir das einachsige Problem kann nach
J. Wiedemann [6] der Relaxationsver-
lauf (Bild 2) fir eine beliebige Zeitein-
teilung aus dem Kriechverlauf mit fol-

genden Formeln bestimmt werden: stimmt werden:

(14) ;= \U(lto)

(12) v) = Gy + 2 Awi
i=1

i=

=1

R o L K ICRUINT
i=0

Durch Vertauschung kann der Kriech-

Bild 3. Eingabeschema zum Programm *Rekursion*S*

19) 80)= 75y 1= 2

j
+ZA¢’,‘

i=1

J—

i=

verlauf aus dem Relaxationsverlauf be-

V(14— 1) AD;
0

Bei den Gleichungen (13, 15) handelt es

Gleichung (16). Algorithmus zur Bestimnung des Relaxations- bzw. Kriechverlaufs

sich um sogenannte Rekursionsfor-
meln, wobei jeweils ein Wert x;aus den
vorhergehenden Werten x; bis x(;_; mit
Hilfe einer festen Formel gefunden
wird. Aus Gleichung (13) ergibt sich
Gleichung (16) fiir drei Zeitschritte,
vgl. nebenstehenden Kasten.

Die algorithmische Struktur von Glei-
chung (16) macht den Einsatz von Re-
chenautomaten interessant. Mit diesen

Bild 4. Abmessungen, Faserorientierung und Schichtung der MSV-Probekérper

EINGABESCHEMA ZUM PROGRAMM REKURSION %S %

;’ HAUPTTITEL  ( MAX, B0 ZEICHEN )
13

U UNTERTITEL  ( MAX, 60 ZEICHEN )
. % STRUKTURELLE ( EINGABE )

if ( ANFANGSZEIT ) — tg —  ENDZEIT ) — tg — C REKURSIONSSCHRITTE )~
5 Cgeg— ( ANZAHL SCHICHTEN ) — ngpyy —
: SCHICHT— n — ( DICKE ) — D — ( WINKEL ) — O ————————
i ANSATZ— @ — ( KOEFFIZIENTEN )—Kj— Ky— Ky~ (k) —
. (FI,)
é MESSREIHE — m — (s — ¢ ) —————————
g (Fl, ) ANSATZ 1t FI = k) » (1 4 Kot 3)
; (Fly ) ANSATZ 2¢ FI = K = (1 4 Kpoe L |
? ( Fly)—-—— ANSATZ 3: FI = K| + Kot + Kge( I-E Kar®)
| J RESULTAT (¢ AUSGABE )
ALLE ( FUNKTIONEN )
l EINZELSCHICHTEN
| KRIECHEN ——] - D
:
i RELAXATION — :éxz:;cmcmm .
SPANNUNGEN  ( INFOLGE EINHEITSKRAEFTEN )
H GRAPHISCHE ( AUSGABE ) —

BILD—C CHIT) FAKTOR- F - )— YHIN=YWAX—C BILDTITEL ) —
< MAX, 60 ZEICHEN ) —————

T

Kurve— { }
*  ENDE

ri £ 22.5 mm + 30/90° +45 °
Ta Z 245 mm
J_$ Yw
3 &R
e
X §\ N
N
N R
X (0°) \q‘:
E
€ 1 1
| Y T t'3=0 Y3 =5
8| T T
(90°)
= t
e
|
T L/ E90" [x 307, z 45°oder & 10°

Zug-Druck-Torsions-Zeitstandanlage mit fiinf Priifstinden

9
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Rekursionsformeln (13, 15) kann der
Relaxations- bzw. Kriechverlauf bedeu-
tend schneller als mit den Summen-
bzw. Integralgleichungen (3, 4, 5, 6) be-
stimmt werden.

Die Anwendung der Beziehungen (12,
13, 14, 15) gilt fiir einachsige Beanspru-
chung, d. h. unbehinderte Dehnung in
Querrichtung.

Bei einem mehrschichtigen Faserver-
bundwerkstoff ist die Voraussetzung
der unbehinderten Querkontraktion
nicht mehr gegeben; aufgrund der Ver-
traglichkeitsbedingungen wird auch die
Querrichtung beansprucht, indem sich
die Schichten gegenseitig behindern.
Um die bekannten viskoelastischen
Eigenschaften eines Mehrschichtenver-
bundes zu beriicksichtigen, muss dem-
zufolge die Zweiachsigkeit bertiicksich-
tigt werden.

Das zweiachsige Kriech- und
Relaxationsproblem

Soll das zeitabhdngige Verhalten be-
riicksichtigt werden, so ist die Elastizi-
tdtsmatrix durch die zeitabhéngige Re-
laxationsmatrix (17) und die Nachgie-
bigkeitsmatrix durch die zeitabhéngige
Kriechmatrix (18) zu ersetzen.

Fiir das zweiachsige Scheibenproblem
(Membranspannungszustand) gilt fiir
die Relaxationsmatrix y () (17) bei
Orthotropie

Bild 6a. Experimentell bestimmte Werte @, D,
und M3 des MSV +30/90° im Vergleich mit den
mit Hilfe des Programms *Rekursion®S* theore-
tisch ermittelten Werten

i v () wyi(r) 0
v (1) wa(t) O
0 0 wi(r)

a7) v (=

wobei gilt: o (1) = w2 (1) .

und fiir die Kriechmatrix @ (z) (18) bei
Orthotropie: h

O (1) @i2(2) O
Dy (1) Dn(2) O

0 0 Ds(1)
wobei gilt: @y (1) = D2 ().

(18) ® (1) =

Im Gegensatz zu den Elastizitdts- und
Nachgiebigkeitsmatrizen gehen die
Kriech- und Relaxationsmatrizen nicht
durch einfache Inversion auseinander
hervor. Thr Zusammenhang ist nach
der viskoelastischen Theorie durch In-
tegral- oder Summengleichungen gege-
ben, deren Auflésung z. B. liber rekur-
sive Verfahren (12, 13, 14, 15, 16) mog-
lich ist. Fiir das zweiachsige Problem
sind die sogenannten gekoppelten Re-
kursionsformeln z. B. in [7] ausfiihrlich
hergeleitet. Infolge Orthotropie ist die
antimetrische Schubbelastung von den
beiden symmetrischen Normalbela-
stungen entkoppelt. Fiir die Schubbela-
stung geniigt demzufolge eine einfache
Umkehrung, wihrend die beiden sym-
metrischen Normalbelastungen hin-
sichtlich ihrer Auswirkungen gekop-
pelt sind.

Bild 6b.  Experimentell bestimmte Werte ®y), @,
und ®sy des MSV £45° im Vergleich mit den mit
Hilfe des Programms *Rekursion*S* theoretisch er-
mittelten Werten

Computerprogramm
*Rekursion*S*

Das Programm *Rekursion*S* dient zur
Berechnung von zweiachsigen Kriech-
und Relaxationsproblemen bei mehr-
schichtigen orthotropen Scheibentrag-
werken aus Faserverbundwerkstoffen.

Aus den Kriechmatrizen der Einzel-
schichten wird die Relaxations- und
Kriechmatrix der mehrschichtigen or-
thotropen diinnwandigen Scheibe be-
stimmt. Die Kriecheigenschaften der
Einzelschichten eines aus bis zu sechs
Schichten bestehenden Mehrschichten-
verbundes kénnen mittels analytischer
Funktionen (7, 8, 9) oder direkt mittels
experimentell bestimmter Messreihen
berticksichtigt werden. Eingegebene
Messreihen werden anschliessend fiir
die Weiterrechnung entweder durch
eine Spline-Interpolation oder Spline-
Approximation ersetzt. Die zeitabhidn-
gigen Spannungen fiir die Einzelschich-
ten im globalen wie auch im lokalen
Koordinatensystem infolge &usserer
Einheitskrifte werden ermittelt. Zu-
sammengefasst sieht der Berechnungs-
verlauf folgendermassen aus:

1. Experimentelle  Ermittlung der
Grundgrossen (Kriechfunktionen)
der UD-Einzelschichten.

2. Bestimmung der Relaxationssteifig-
keiten der UD-Schichten im lokalen
Koordinatensystem mittels der Re-
kursionsformeln.

Bild 6¢.  Experimentell bestimmte Werte ®,;, @,
und ®y3 des MSV £10/90° im Vergleich mit den
mit Hilfe des Programms *Rekursion*S* theore-
tisch ermittelten Werten

Zeitpunke 11 (1074 mm2/N) paiepunke 0y, 11074 mm2/N)
tnl Experiment Berechnung ale) thl Experiment Berechnung als)
o «BT7 -3120 =19 a L1946 .3986 -1.0
0.1 .3153 L3147 +.19 0.1 4101 4122 -.51
1.0 .3181 3172 +.28 0.6 4222 L4198 +.57
19-6 -39 -3z .22 10.0 L4369 L4318 +1.18
100.0 »3269 -3273 -.12 100.0 .4579 .4507 +1.60
500.0 L3319 .3333 -.42 500.0 L4784 4698 +1.83
1'000.0 ©3352 #3363 “x39 11000.0 .4893 L4802 +1.90

0y 1107 mm2/m " y—

Zeitpunkt Ze itpunkt Pi3 (110 tw2/H)
[h) Experiment Berechnung a(s) (h] Experiment Berechnung ald)
0 -.0913 -.0923 =43 0 -.1735 -.1764 -1.64
0.1 -.0940 -.0939 +.11 0.1 ~.1828 -.1878 -2.66
1.0 -.0953 -.0954 =10 1.0 -.1919 -.1943 -1.24
10.0 --0974 -.0976 =-20 10.0 -.2039 -.2044 -.24
100.0 -.0997 -.1009 -1.19 100.0 _.2218 _.2202 +.73
500.0 -.1021 -.1039 -1.73 £06.0 -.2400 -.2361 +1.65
1'000.0 -.1043 - 1055 -1.14 1'000.0 -.2514 -.2449 +2.66

¢33 1107 mm2/n) — eas (678 iy

Zeitpunkt zeltpunkt P33 (107 mm2/N)
(h) Experiment Berechnung alb) (h1 Experiment Berechnung als]
o .B111 .8038 +.91 0 L6191 6167 +.39
0.1 .8213 .8ne +1.17 0.1 L6206 .6206 0.0
1.0 8294 .8195 +1.21 1.0 L6224 .6222 +.03
10.0 .8193 L8313 +.96 10.0 L6256 6249 w11
100.0 L8519 .8492 +.32 100.0 .6282 .6290 -3
500.0 8647 L8666 -.22 500.,0 L6319 L6311 -.19
1'000.0 .8738 8758 -.26 11000.0 .6342 6354 -.19

Zeitpunkt py 11074 mm2/N)
h) Experiment Berechnung al%]
0 .2723 L2731 -3
0.1 .2738 .2754 -.59
1.0 .2750 L2766 -.57
10.0 .2770 .2784 -.52
100.0 L2797 .2814 -.80
500.0 .2822 .2843 =73
1'000.0 .2836 . 2860 -.83
Zedtpunkt 0yp 11074 mm2/n)
(h] Experiment Berechnung ale]
o -.0463 -.0484 -4.34
0.1 ~.0459 -.0484 =-5.17
1.0 -.0458 -.0484 -5.37
10.0 -.0457 -.0484 -5.58
100.0 -.0456 -.0482 -5.39
500.0 -.0455 -.0479 -5.01
1'000.0 -.0453 -.0478 -5.19
& -4 2 /N
sadtpuiith $33 (1077 mm2/N)
(h] Experiment Berechnung ale)
0 1.0804 1.0832 -.26
0.1 1.1207 1.1251 -.39
1.0 1.1497 1.1485 +.10
10.0 1.18B4 1.1850 +.29
100.0 1.2393 19
500.0 1.2928 -.44
1'000.0 1.3231 a6
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3. Transformation der Relaxations-
funktionen der Einzelschichten in
das globale Koordinatensystem.

4. Bildung der Relaxationsmatrix der
Einzelschichten fiir das Scheiben-
problem im globalen Koordinaten-
system.

5. Bildung der Relaxationsmatrix des
Verbundes im globalen Koordina-
tensystem durch Superposition der
Einzelschichten.

6. Bestimmung der Kriechfunktionen
des Verbundes im globalen Koordi-
natensystem aus den Relaxations-
funktionen mittels der Rekursions-
formeln.

7. Berechnung der Spannungen in den
einzelnen Schichten infolge Ein-
heitskriften im globalen Koordina-
tensystem.

8. Berechnung der Spannungen in den
einzelnen Schichten infolge Ein-
heitskriaften im lokalen Koordina-
tensystem.

Die Programmeingabe ist problem-
orientiert und formatfrei. Sie wird mit
Hilfe eines Eingabeschemas (Bild 3) be-
schrieben.

Anwendungsbeispiele

Beispiel I

Bestimmung der Kriechfunktionen an
glasfaserverstdrkten ~ Mehrschichten-
verbunden zur experimentellen Uber-
prifung der gekoppelten Rekursions-
formeln.

Bild 7. Briickenbriistung mit glasfaserverstirkter

Polyesterbeschichtung (Viadukt Kerzers, Kanton
Freiburg)

1. UD-Probekdrper

Die UD-Rohrproben (unidirektional in
Umfangsrichtung verstirkte Rohre)
wurden auf einem Wickeldorn aus
Leichtmetall mit einem Durchmesser
von 45mm und einer Léinge von
1000 mm hergestellt. Angefertigt wur-
den Rohre von 1000 mm Léinge, wobei
alle 160 mm ein konischer Bund aufge-
wickelt wurde. Nach der Fertigstellung
wurden die Rohre geschnitten und die
Auflagerrdnder der 160 mm langen Zy-
linder planparallel geschliffen. Die auf-
gewickelten Bunde haben die Aufgabe,
Briiche im Krafteinleitungsbereich zu
vermeiden. Verwendet wurde das
«Heisshirtende Laminierharzsystem
LY 556 /ZHY 917 /DY 070» der Ciba-
Geigy AG, Basel, sowie die E-Glasfaser
«859 Cosmostrand 890 tex» von
Owens/Corning Fiberglass Europe S.A.
Die UD-Flachproben (unidirektional in
Lingsrichtung verstirkte Flachproben)
mit einer Linge von 90 mm und einer
Breite von 25 mm wurden aus einem
nur in Lingsrichtung verstdrkten
Werkstiick  herausgeschnitten.  Der
Glasvolumenanteil @, der UD-Probe-
korper betrug 0,68.

2. MSV-Probekdorper

Folgende drei verschiedenen Mehr-
schichtenverbunde wurden untersucht:
+45°: ausgeglichener ~ Wickelver-
bund (Bild 4b)

als Ersatz fir den mit her-
kommlichen Wickelverfah-
ren aufwendig herstellbaren
Kreuzverbund 0/90° (Bild
4c)

sogenannter quasi isotroper
Schichtaufbau (Bild 4a)

Der Anteil der in Umfangsrichtung
verstirkten Schichten am Gesamtlami-
nat wird durch /t = t’; angegeben.
Hierin ist ¢; die Summe der Dicken aller
Schichten, deren Fasern in Umfangs-

+10/90°:

+30/90°:

richtung verlaufen, ¢ ist die Wanddicke
des Probekorpers.

3. Priifmaschine

Zur Bestimmung der Kriecheigenschaf-
ten bei Zug/Druck- und Schubbean-
spruchung standen zwei Zeitstandanla-
gen mit total sieben Priifstinden zur
Verfigung. Die auftretenden Dehnun-
gen wurden mittels DMS-Rosetten ge-
messen (Bild 5).

4. Vergleich der experimentell ermit-
telten Kriechfunktionen mit den berech-
neten Werten

Mit dem Computerprogramm *Rekur-
sion*S* erfolgte fiir die drei beschriebe-
nen Mehrschichtenverbunde (Bild 4)
die Bestimmung der Kriechfunktionen
rechnerisch. Folgende Inputdaten wur-
den dabei verwendet:

Anfangszeit: t4=0,001h
Endzeit: tg=1000h
Anzahl Rekursionsschritte:  ng, = 50

Anzahl Schichten: £30/90°, £10/90°;3
+45°; 2
Kriechfunktionen der UD-Schicht:

@, (1) =0,187 - 10 7*(1 + 0,007 - 1%
@, (1)=0,466 - 10 ~*(1 + 0,0227 -
. 10‘2‘“5)
q)_L”(t) = (D”L(I) = 0,053 - 10 =
= konstant
®.(t)=1,15-107*(1 + 0,068 - 1>1*)

In den Bildern 6a bis 6¢ sind die experi-
mentell bestimmten Mittelwerte @, (1),
@, (1) und O3(7) den mit Hilfe des Pro-
gramms *Rekursion*S* theoretisch er-
mittelten Werten gegeniibergestellt.

Die prozentualen Abweichungen der
Versuchsergebnisse von den berechne-
ten Werten liegen im allgemeinen zwi-
schen 0% und 3%. Nur beim £10/90°
Mehrschichtenverbund sind die Abwei-
chungen beziiglich der Kriechfunktion
@, (1) etwas grosser, d. h. im Bereich

Bild8. Spannungsverteilung infolge AT = +25°C in der GFK-Beschichtung und im Beton fiir eine
Schichtstirke des Polyesters von 2 mm und einer Betonstcirke von 200 mm mit vorgegebenen Materialkenn-

werten

/GFK/

/
Beschichtung

2mm

200 mm

0= -89 N/mm’ (Druck)

0=+ 0.43N/mm’
( Zug)

-0,25
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Bild 9a. Relaxationsverlauf des glasfaserverstirkten Polyesters zwischen 107 Bild 9b. Spannungsverlauf im glasfaserverstirkten Polyester fiir den Lastfall,

Stunden und 1000 Stunden

von 5%. Bei diesem Verbund gilt es je-
doch zu beachten, dass die Verformun-
gen senkrecht zur Beanspruchungsrich-
tung dusserst klein sind und damit Mes-
sungenauigkeiten ein erhebliche Rolle
spielen.

Die Ergebnisse konnen somit als sehr
gut bezeichnet werden. Die Versuche
bestitigen die Anwendbarkeit des Pro-
gramms *Rekursion*S*. Diese gute
Ubereinstimmung wurde an im Labor
hergestellten Proben gezeigt. Bei Probe-
korpern aus laufenden Produktionen
darf wegen der Fertigungsvariationen
diese Genauigkeit nicht erwartet wer-
den.

Beispiel 11

Beschichtung von Briickenbriistungen
mit glasfaserverstdrktem Polyester.

Zum Schutz von Beton gegen Umwelt-
einflisse, insbesondere gegen die Ein-
wirkung von Frost- und Tausalz, wer-
den in neuerer Zeit auch glasfaserver-
starkte Polyesterbeschichtungen ange-
wendet. Bild 7 zeigt eine solche be-
schichtete  Briickenbristung  (Aus-
schnitt). Die Laboruntersuchungen er-
gaben eine Dicke der Beschichtung von
1,05 bis 2,07 mm und einen Glasfaser-
gehalt von 22,4 bis 28,4 Massen-%. Mit
der Mehrschichten-Kontinuumstheorie
wurden in einem ersten Berechnungs-
gang die Spannungen in der Kunststoff-
schicht und im Beton fiir den Lastfall
bei gleichmissiger Erwdrmung um AT
= 25°C mit folgenden Ausgangswerten
berechnet, wobei beim Kunststoff als
Niherung die Matrialeigenschaften bei
Raumtemperatur eingesetzt wurden:
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gleichmssige Erwirmung um AT = +25°C zwischen 1073 Stunden und 1000

Stunden
Beton:
E =35000 N/mm?
v =0,16

a =10-107% °C™!
t =200 mm (Dicke des Betons)

GFK:

E =9700 N/mm?

v =0,33

g =35+ 107%C™

t = 2 mm (Dicke der GFK-Beschich-

tung)

In Bild 8 sind die Resultate dieses Be-
rechnungsganges aufgezeigt. Die Un-
terschiedlichen Temperaturausdeh-
nungskoeffizienten der Beschichtung
und des Betons flihren bei Temperatur-
inderungen zu einer Beanspruchung
der Grenzfliche Beschichtung/Beton
(Bild 8).

In einem zweiten Rechengang wurde
mit dem Programm *Rekursion™S* der
Relaxationsverlauf der GFK-Beschich-
tung bestimmt.

Folgende Kriechfunktion wurde fiir
das glasfaserverstiarkte Polyester ver-
wendet:

(DH = 1,0309 - 10 _4(1 + 0,103 - 10.172)

In Bild 9a sind der Relaxationsverlauf
und in Bild 9 b der Spannungsverlauf in
Funktion der Zeit fiir den Lastfall,
gleichmissige Erwdrmung um AT =
25 °C dargestellt.
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