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Flächentragwerke aus Faserverbund=
Werkstoffen
Das zweiachsige Kriech- und Relaxationsproblem

Von Georg Desserich, Luzern, Alfred Rösli, Zürich, und
Urs Meier, Dübendorf

(Fortsetzung von H. 44/84, S. 855)

Die Bestimmung der mechanischen Eigenschaften von Mehrschichtenverbunden aus den

Eigenschaften der einzelnen Schichten gelingt bei Annahme linearelatischen Verhaltens
nach der Kontinuumstheorie, indem aus der Elastizitätsmatrix durch Inversion die
Nachgiebigkeitsmatrix des Verbundes bestimmt wird. Soll das zeitabhängige Verhalten berücksichtigt

werden, so ist die Elastizitätsmatrix durch die Relaxationsmatrix und die Nachgiebigkeitsmatrix

durch die Kriechmatrix zu ersetzen. Im Gegensatz zu den Elastizitäts- und

Nachgiebigkeitsmatrizen gehen die Kriech- und Relaxationsmatrizen nicht durch einfache Inversion

auseinander hervor. Ihr Zusammenhang ist nach der viskoelastischen Theorie durch

Summengleichung gegeben, deren Auflösung im allgemeinen Fall nur durch rekursive
Verfahren mit Hilfe eines Rechenprogrammes möglich ist.
Mit dieser Berechnungsmethode können, ausgehend von einem beliebigen Kriechverhalten
der Einzelschichten, das Kriechverhalten eines damit aufgebauten Mehrschichtenverbundes
und die zeitabhängigen Schichtspannungen infolge äusserer Belastung bestimmt werden.

Eingehende experimentelle Untersuchungen bestätigen die Anwendbarkeit dieser
Rechenmethode.

Einleitung

Am Institut für Baustoffe, Werkstoffchemie

und Korrosion (IBWK) der
ETH Zürich wurde in den Jahren
1976/77 eine umfangreiche
Zusammenstellung und Übersicht über den
Stand der internationalen Forschung auf
dem Gebiet des Langzeitverhaltens von
Faserverbundwerkstoffen erstellt [1].

Im Anschluss daran wurde das

mehrschichtige linearelastische Scheibenproblem

untersucht und die numerische
Berechnung in Form von
Computerprogrammen entwickelt [2, 3]. Seit 1978

liefern eingehende Materialuntersuchungen,

insbesondere ausführliche
Kriechversuche, die erforderlichen
Kennwerte und dienen zur Bestätigung
der getroffenen Annahmen. Diese
Arbeiten konnten im-Rahmen eines von
der ETH Zürich finanzierten
Forschungsprojektes durchgeführt werden,
und die Ciba-Geigy AG in Basel/
Schweiz stellte die benötigten Materialproben

zur Verfügung. Für verschiedene

Versuche standen auch Prüfeinrichtungen

der Eidgenössischen Material-
prüfungs- und Versuchsanstalt
(EMPA), Dübendorf/Schweiz, im
Einsatz.

Zusammen mit den erarbeiteten und
verfügbaren Rechenprogrammen werden

damit dem Ingenieur in der Praxis

moderne Mittel bereitgestellt, um
tragende Bauteile aus faserverstärkten
Mehrschichtenverbunden zu berechnen.

Lineare Viskoelastizitätstheorie

Die Grundlage für die lineare
Viskoelastizitätstheorie ist das Boltzmannsche
Superpositionsprinzip [4]. Bei «nicht-
alternden» Stoffen gilt die Vereinfachung,

dass der Belastungszeitpunkt
keinen Einfluss auf das Stoffgesetz hat,
d. h. es besteht Invarianz bezüglich der
Zeittranslation.

Als einfaches Kriterium für den Übergang

vom linearen zum nichtlinearen
viskoelastischen Verhalten eines Materials

dienen die isochronen Spannungs-
Dehnungs-Diagramme (Bild 1). Die
lineare Theorie verliert ihre Gültigkeit,
wenn die isochronen Spannungs-Deh-
nungs-Beziehungen für ein gegebenes
Material nicht mehr durch Geraden
angenähert werden können.

Zur Charakterisierung des Kriechverhaltens

bei konstanter Temperatur
dient die Kriechnachgiebigkeit O (t) als

Quotient aus Verzerrungsverlauf e(t)
und konstanter Spannung a 0 :

8(0

Im linear viskoelastischen Bereich ist
die Kriechnachgiebigkeit ®(t) (1)
abhängig von der Zeit und nicht von der
Spannung o0.

Die Verknüpfung zwischen dem
Spannungsverlauf o {t) bei konstanter
Temperatur und der konstanten Verzerrung
e0 erfolgt über die Relaxationssteif
igkeit y (f):
(2) V(0=^
Im linear viskoelastischen Bereich ist
die Relaxationssteifigkeit \\i{t) (2)
abhängig von der Zeit, jedoch nicht von
der Dehnung e0.

Methoden zur Beschreibung
linear viskoelastischer Vorgänge

Ein beliebiger, zeitlich sich ändernder
Spannungsverlauf (Bild 2) kann durch
«Stufen» angenähert werden. Für das

entsprechende zeitabhängige
Dehnungsverhalten kann somit verallgemeinert

geschrieben werden:

J

(3) e(0~ 5>(r,-T0Ao,
i=0

oder durch die Integralgleichung

(4) E(0-JO(t-T)-|^-dT

Umgekehrt kann mit Hilfe der
Relaxationssteifigkeit (2) das zu einem beliebigen

Dehnungsverlauf gehörende
zeitabhängige Spannungsverhalten (Bild 2)
bestimmt werden:

j
(5) a(tj) ~ £ u/(ij—Tf) Ae,

i 0

oder als Integralgleichung

de
(6) o-(0=Jv|/(f-T)-^ dt

(1) 0(0
O"0

Verschiedene Methoden zur Lösung
dieser Integralgleichungen werden
aufgezeigt.

Rheologische Modellsysteme

Die Theologischen Modellsysteme
bestehen alle aus einer Kombination der
Elemente Feder zur Kennzeichnung
des linearelastischen bzw. Dämpfungskolbens

zur Kennzeichnung des viskosen

Verhaltens. Durch zweckmässige
Anordnung und Kombination dieser
Elemente können die tätsächlichen
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Verhältnisse angenähert werden. Diese
Modellsysteme beschränken sich auf
die Beschreibung einachsiger Vorgänge,

die Modellparameter werden dabei
über den ganzen Beanspruchungsbereich

als konstant angenommen.
Die Bedeutung der Theologischen
Modelle liegt vor allem darin, dass an sich
komplizierte Mechanismen recht
anschaulich dargestellt werden können
und somit das Verständis viskoelastischen

Verhaltens erleichtert wird.
Insbesondere ermöglichen sie mit ihrer
Transparenz qualitative Aussagen zur
Wirkungsweise zeitabhängiger
Mechanismen.

Angleichung von Kriechkurven durch
spezielle Funktionen

Kriechfunktionen können durch
Potenzansätze wie z. B. :

(7) ®(0 K,.(1 + K2. ?K0

oder

(8) 0(0 Ki (1 + K2- 0K3

angenähert werden. Entsprechend dem
Burger Modell gilt für die Kriechnachgiebigkeit

folgende exponentielle Funktion:

(9) O(0 Ki + K2-i+K3(l-e-^')-
Spline-Interpolation oder Spline-
Approximation
Das Deformationsverhalten kann durch
Messreihen, bestehend aus einzelnen
Messpunkten, beschrieben werden. Vor
der Weiterverarbeitung müssen diese

Messreihen durch eine explizite Funktion

ersetzt werden. Dies ist möglich
durch eine «Spline-Interpolations-
Funktion» f(x), die durch sämtliche
Messpunkte geht. Um die gesuchte
Interpolations-Funktion anschaulich
festzulegen, denken wir uns durch die
gegebenen Stützpunkte (Messpunkte) eine
dünne, homogene Latte (Spline) gelegt.
Dabei soll angenommen werden, dass

die Latte in den Stützpunkten frei drehbar

gelagert sei und keinen äusseren
Kräften unterliege. Die resultierende
Biegelinie f (x) sei die Lösung der
Interpolationsaufgabe.

Um die ursprünglich geradlinige
prismatische Latte (Spline) in die Endlage
zu verbiegen, muss die
Formänderungsenergie :

(10)

TT
1 xf M2(x) EJ ),;„.,,U=-)—ET dx=^T)V > dx
2

aufgewendet werden. Für eine dünne
Latte kann näherungsweise Gleichung
10) wie folgt geschrieben werden :

(ii) r> i (f ")2 dx Minimum

Die Endlage der Latte (Spline) ist
dadurch gekennzeichnet, dass die
aufzuwendende Formänderungsenergie U
minimal wird, d. h. f (x) minimiert das

Integral in Gleichung (11). Die gesuchte

Interpolierende f (x) ist somit als
Lösung einer Variationsaufgabe mit
Nebenbedingungen charakterisiert. Da die

Messungen mit Unregelmässigkeiten
behaftet sind, wird eine vernünftige
Interpolation oft unmöglich. In diesem
Fall sollte man die Ersatzfunktion f (x)
möglichst glatt im Bereich der
Stützpunkte verlaufen lassen. Dazu kann
eine «Spline-Approximations-Funk-
tion» bestimmt werden. Durch zusätzliche

Angabe einer Standardabweichung
dr und eines Glättungskoeffizienten s

kann die Spline-Approximation
bestimmt werden. In [2] konnte gezeigt
werden, dass die Spline-Interpolation
bzw. -Approximation das wirkliche
Kriechverhalten recht gut beschreibt.
Extrapolationen auf Zeiten, die über
die Versuchsergebnisse hinausgehen,
sind indessen im Unterschied zu den
Ansätzen (7, 8,9) mit diesem Verfahren
nicht möglich.

Laplace-Transformation und die
elastisch-viskoelastische Analogie

Mittels der Laplace-Transformation
können die Integralgleichungen (4, 6)
in algebraische Gleichungen übergeführt

werden. Die ursprünglich diffe-
rentiellen Zusammenhänge der
viskoelastischen Modelle entsprechen im
transformierten Bereich einem linearen

Gleichungssystem, aus dem zusammen

mit den transformierten
Grundbeziehungen (4, 6) die Kriech- und
Relaxationsfunktionen ermittelt werden
können. Mit dem Korrespondenzprinzip

z. B. in [5] kann zur Lösung des

einachsigen linear viskoelastischen
Problems das linear elastische Problem un-

Bild 1. a) Zeit-Dehnlinien-Diagramm
b Isochrones Spannungs-Dehnungs-Diagramm.
c) Kriechmodullinien: Ec(t) ao/e(t). Bild b) und c) können aus dem

Zeit-Dehnlinien-Diagramm ermittelt werden

T= konst.

b)

i¦ l konst.

b
CT) / £3
C / **
ffl / V
a

</)

*¦

T= konst.

Dehnung £ log t

Bild2. Links: Bestimmung des Dehnungsverlaufs aus <S>(t) und o(t)
Rechts: Bestimmung des Spannungsverlaufs aus \]i(t)und s(t)

£o= <D(r0) cto

s, 0>(i|) a0 + a(f0) Aa,
e2 <D(r2) cto + <t>('i) Aa, +

+ <D(4i) Aa2
e3 <t>((3) o0 + <t>(<2) Aa! +

+ fl>(f0) Aa2 + O(I0) Aa3

E(0t

<J(D"

<*o " V(ib) So

°i V('i) E0+ \|/((b) Ae,
CT2 >)/(r2) Eo + V|/('l) AE| +

+ y(!b) AE2

<*3 V(<3) Eo + V|/(f2) AE, +
+ X|/(t0) Ae2 + y(t0) Ae3

tfOH

L_AJ Là* Li! I &i--konst „,
1. t, 2t, 3t,

il 1 At it il konst

>. '

ha
ia

t. 2t, 3t
=t

E(t
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ter Berücksichtigung des transformierten
E-Moduls (Ersatzmodul) verwendet

werden.

Schrittweise Berechnung des
Langzeitverhaltens mittels Rekursionsformeln

Mit den Summen- und Integralgleichungen

(3, 4, 5, 6) wird es möglich,
einerseits bei Kenntnis der Kriechnachgiebigkeit

und der Spannungsgeschichte
den Dehnungsverlauf zu bestimmen,

anderseits bei Kenntnis der Relaxa-
tionssteifigkeit und der Dehnungsgeschichte

den Spannungsverlauf zu
ermitteln (Bild 2).

Für das einachsige Problem kann nach
/. Wiedemann [6] der Relaxationsverlauf

(Bild 2) für eine beliebige Zeiteinteilung

aus dem Kriechverlauf mit
folgenden Formeln bestimmt werden :

(16) Ax|/0

Ay,

Av2

A\|/3

*«o)

«>«o)

OUo)

1

O('o)

;i-o(r,)Av0]

[1-<&(f2) A\|/o -*(r2-ii)A\|/,]

[1 - Q(î3) Avo - ®(h ~ *i) A\|/,-0(f3-f2) Ay2]

Gleichung (16). Algorithmus zur Bestimmung des Relaxations- bzw. Kriechverlaufs

verlauf aus dem Relaxationsverlauf be- sich um sogenannte Rekursionsfor-
stimmt werden:

(12) Wj
1

OOo)
+ E AVi- (14) 0;= V(*o)

+ £ AO,

£ 0(f,— (/)Ay;
i=0

(13) A^= Oöo)

Durch Vertauschung kann der Kriech

(15) AO;=
1

V(*o) 2 V(i;-'DAO,

mein, wobei jeweils ein Wert x.aus den
vorhergehenden Werten x0 bis Xy^^ mit
Hilfe einer festen Formel gefunden
wird. Aus Gleichung (13) ergibt sich
Gleichung (16) für drei Zeitschritte,
vgl. nebenstehenden Kasten.

Die algorithmische Struktur von
Gleichung (16) macht den Einsatz von Re-

Bei den Gleichungen (13,15) handelt es chenautomaten interessant. Mit diesen

Bild 3. Eingabeschema zum Programm *Rekursion*S*

EINGABESCHEMA ZUM PROGRAMM REKURSION *S*

/*

/\
'•N/

/<"

V

HAUPTTITEL MAX. 60 ZEICHEN

UNTERTITEL MAX. 60 ZEICHEN

* STRUKTURELLE EINGABE —

ANFANGSZEIT > —tft—( ENDZEIT —t£ —( REKURSIONSSCHRITTE )^.

<-nREK— ANZAHL SCHICHTEN )— nSCH
~—,

SCHICHT— n — DICKE — D — WINKEL — a «

"ANSATZ— a- KOEFFIZIENTEN )-Kj- K2~ Kj-OC,,)-

FI „ -

FI^)-
FIIU)-

(FI+)-

* RESULTAT C AUSGABE >-

-MESSREIHE —m —

* ANSATZ I: FI

« ANSATZ 2: Fl

• ANSATZ 3: Fl

C 1 + K2.tK3

I + K2.t >K;»

K2.t+ K3.( I-E ""<•')

rALLE C FUNKTIONEN

— EINZELSCHICHTEN

— VERBUND
-KRIECHEN —

RELAXATION -
¦ EINZELSCHICHTEN •

• »ERBUND

¦SPANNUNGEN < INFOLGE EINHEITSKRAEFTEN •

* GRAPHISCHE AUSGABE

BILD-C MIT FAKTOR-F-)—YMIN-YMAX-( BILDTITEL

<r.
z>

MAX, 60 ZEICHEN

KURVE—{K ]

* ENDE -

Bild 4. Abmessungen, Faserorientierung und Schichtung der MSV-Probekörper

r, 5 22 5 mm

r-, 24 5 mm

+ 30/90' + 45 ¦

U> - 30 " tu - 45 •

190*1

3ffiS

13 1

'3 =T 'T '3 M° i - 2

~.~T,.." £ • '¦':" :•;.'•.•. -.— -.:
¦:';•>*•¦'.': S

gf^l90' P 1 + 30'. + 45* oder j- 10"

3ild 5. Zug-Druck-Torsions-Zeitstandanlage mit fünfPrüfständen

z
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Rekursionsformeln (13, 15) kann der
Relaxations- bzw. Kriechverlauf bedeutend

schneller als mit den Summenbzw.

Integralgleichungen (3, 4, 5, 6)
bestimmt werden.

Die Anwendung der Beziehungen (12,
13, 14, 15) gilt für einachsige Beanspruchung,

d. h. unbehinderte Dehnung in
Querrichtung.

Bei einem mehrschichtigen
Faserverbundwerkstoff ist die Voraussetzung
der unbehinderten Querkontraktion
nicht mehr gegeben; aufgrund der
Verträglichkeitsbedingungen wird auch die
Querrichtung beansprucht, indem sich
die Schichten gegenseitig behindern.
Um die bekannten viskoelastischen
Eigenschaften eines Mehrschichtenverbundes

zu berücksichtigen, muss
demzufolge die Zweiachsigkeit berücksichtigt

werden.

Das zweiachsige Kriech- und
Relaxationsproblem

Soll das zeitabhängige Verhalten
berücksichtigt werden, so ist die
Elastizitätsmatrix durch die zeitabhängige
Relaxationsmatrix (17) und die
Nachgiebigkeitsmatrix durch die zeitabhängige
Kriechmatrix (18) zu ersetzen.

Für das zweiachsige Scheibenproblem
(Membranspannungszustand) gilt für
die Relaxationsmatrix \|/(0 (17) bei
Orthotropie

v|/n(0 *M0 0

(17) \|/(0= \|/21(i) y22(0 0

0 0 V33«).

wobei gilt: v|/2i ft) v|/i2 (0 •

und für die Kriechmatrix ®(f) (18) bei
Orthotropie:

®n(0 $12(0 0

O2i(0 O22(0 0

0 0 0)33(0.

wobei gilt: 021 (0 $12 (0-

Im Gegensatz zu den Elastizitäts- und
Nachgiebigkeitsmatrizen gehen die
Kriech- und Relaxationsmatrizen nicht
durch einfache Inversion auseinander
hervor. Ihr Zusammenhang ist nach
der viskoelastischen Theorie durch
Integral- oder Summengleichungen gegeben,

deren Auflösung z. B. über rekursive

Verfahren (12, 13, 14, 15, 16) möglich

ist. Für das zweiachsige Problem
sind die sogenannten gekoppelten
Rekursionsformeln z. B. in [7] ausführlich
hergeleitet. Infolge Orthotropie ist die
antimetrische Schubbelastung von den
beiden symmetrischen Normalbelastungen

entkoppelt. Für die Schubbelastung

genügt demzufolge eine einfache
Umkehrung, während die beiden
symmetrischen Normalbelastungen
hinsichtlich ihrer Auswirkungen gekoppelt

sind.

Computerprogramm
*Rekursion*S*

Das Programm *Rekursion*S* dient zur
Berechnung von zweiachsigen Kriech-
und Relaxationsproblemen bei
mehrschichtigen orthotropen Scheibentrag-
werken aus Faserverbundwerkstoffen.

Aus den Kriechmatrizen der
Einzelschichten wird die Relaxations- und
Kriechmatrix der mehrschichtigen
orthotropen dünnwandigen Scheibe
bestimmt. Die Kriecheigenschaften der
Einzelschichten eines aus bis zu sechs
Schichten bestehenden Mehrschichten-
verbundes können mittels analytischer
Funktionen (7, 8, 9) oder direkt mittels
experimentell bestimmter Messreihen
berücksichtigt werden. Eingegebene
Messreihen werden anschliessend für
die Weiterrechnung entweder durch
eine Spline-Interpolation oder Spline-
Approximation ersetzt. Die zeitabhängigen

Spannungen für die Einzelschichten

im globalen wie auch im lokalen
Koordinatensystem infolge äusserer
Einheitskräfte werden ermittelt. Zu-
sammengefasst sieht der Berechnungsverlauf

folgendermassen aus :

1. Experimentelle Ermittlung der
Grundgrössen (Kriechfunktionen)
der UD-Einzelschichten.

2. Bestimmung der Relaxationssteifig-
keiten der UD-Schichten im lokalen
Koordinatensystem mittels der
Rekursionsformeln.

Bild6a. Experimentell bestimmte Werte On,0|2
und <D33 des MSV ±30/90° im Vergleich mit den

mit Hilfe des Programms *Rekursion*S* theoretisch

ermittelten Werten

Bild 6b. Experimentell bestimmte Werte O,,, Q,2
und d>33 des MSV ±45° im Vergleich mit den mit
Hilfe des Programms *Rekursion *S* theoretisch
ermittelten Werten

Bild 6c. Experimentell bestimmte Werte O,,, <I>|2

und <TJ33 des MSV ±10/90° im Vergleich mit den
mit Hilfe des Programms *Rekursion*S* theoretisch

ermittelten Werten

Zeitpunkt ll HO"4 mm2/N]

(hl Experiment Berechnung M*]

0 .3117 .3120 -.10
0.1 .3153 .3147 +.19

1.0 .3181 .3172 +.28

10.0 .3219 .3212 + .22

100.0 .3269 .3273 -.12
500.0 .3319 .3333 -.42

rooo.o .3352 .3365 -.39

*12 tl0~4 mm2/N]

Zeitpunkt
th] Experiment Berechnung û[»l

0 -.0919 -.0923 -.43
0.1 -.0940 -.0939 + .11

1.0 -.0953 -.0954 -.10
10.0 -.0974 -.0976 -.20

100.0 -.0997 -.1009 -1.19

500.0 -.1021 -.1039 -1.73

1'000.0 -.1043 -.1055 -1.14

*33 [10-4 mm2/N]

Zeltpunkt
[h] Experiment Berechnung MM

0 .6111 .8038 + .91

0.1 .8213 .8118 + 1.17

1.0 .8294 .8195 +1.21

10.0 .8393 .8313 + .96

100.0 .8519 .8492 + .32

500.0 .8647 .B666 -.22

1'000.0 .8735 .8758 -.26

Zeitpunkt lt HO-4 mm2/Nl

(hl Experiment Berechnung M%]

0 .3946 .3986 -1.0

0.1 .4101 .4122 -.51

1.0 .4222 .4198 +.57

10.0 .4369 .4318 + 1.18

100.0 .4579 .4507 + 1.60

500.0 .4784 .4698 +1.83

1'000.0 .4893 .4802 +1.90

Zeitpunkt
4,2 ElO-4 mra2/N]

(hl Experiment Berechnung it»l
0 -.1735 -.1764 -1.64

0.1 -.1828 -.1878 -2.66

1.0 -.1919 -.1943 -1.24

10.0 -.2039 -.2044 -.24

100.0 -.2218 -.2202 + .73

500.0 -.2400 -.2361 + 1.65

rooo.o -.2514 -.2449 +2.66

Zeitpunkt
*33 I10~4 nm2/Nl

[hj Experiment Berechnung A[%]

0 .6191 .6167 + .39

0.1 .6206 .6206 0.0

1.0 .6224 .6222 +.03

10.0 .6256 .6249 +.11

100.0 .6282 .6290 -.13

500.0 .6319 .6331 -. 19

1'000.0 .6342 .6354 -. 19

Zeitpunkt
Eh] Experiment

»n HO""4 mm2/N]

Berechnung M%1

0 .2723 .2731 -.31

0.1 .2738 .2754 -.59

1.0 .2750 .2766 -.57
10.0 .2770 .2784 -.52

100.0 .2797 .2814 -.60
500.0 .2822 .2843 -.73

1'000.0 .2836 .2860 -.83

Zeitpunkt
[h] Experiment

*12 I10"4 ro™2/"]

Berechnung M»l

0 -.0463 -.0484 -4.34

0.1 -.0459 -.0484 -S.17

1.0 -.0458 -.0484 -5.37

10.0 -.0457 -.0484 -5.58

100.0 -.0456 -.0482 -5.39

500.0 -.0455 -.0479 -5.01

l'OOO.O -.0453 -.0478 -5.19

Zeitpunkt
[hl Experiment

»33 [10" mm2/N]

Berechnung M%]

0 1.0804 1.0832 -.26

0.1 1.1207 1.1251 -.39

1.0 1.1497 1.1465 + .10

10.0 1.1884 1.1850 + .29

100.0 1.2393 1.2417 -.19

500.0 1.2928 1.2985 -.44

l'OOO.O 1.3231 1.3292 -.46
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3. Transformation der Relaxationsfunktionen

der Einzelschichten in
das globale Koordinatensystem.

4. Bildung der Relaxationsmatrix der
Einzelschichten für das Scheibenproblem

im globalen Koordinatensystem.

5. Bildung der Relaxationsmatrix des
Verbundes im globalen Koordinatensystem

durch Superposition der
Einzelschichten.

6. Bestimmung der Kriechfunktionen
des Verbundes im globalen
Koordinatensystem aus den Relaxationsfunktionen

mittels der Rekursionsformeln.

7. Berechnung der Spannungen in den
einzelnen Schichten infolge
Einheitskräften im globalen
Koordinatensystem.

8. Berechnung der Spannungen in den
einzelnen Schichten infolge
Einheitskräften im lokalen
Koordinatensystem.

Die Programmeingabe ist
problemorientiert und formatfrei. Sie wird mit
Hilfe eines Eingabeschemas (Bild 3)
beschrieben.

Anwendungsbeispiele

Beispiel I
Bestimmung der Kriechfunktionen an
glasfaserverstärkten Mehrschichten-
verbunden zur experimentellen
Überprüfung der gekoppelten Rekursionsformeln.

Bild 7. Brückenbrüstung mit glasfaserverstärkter
Polyesterbeschichtung (Viadukt Kerzers, Kanton
Freiburg)

1. UD-Probekörper

Die UD-Rohrproben (unidirektional in
Umfangsrichtung verstärkte Rohre)
wurden auf einem Wickeldorn aus
Leichtmetall mit einem Durchmesser
von 45 mm und einer Länge von
1000 mm hergestellt. Angefertigt wurden

Rohre von 1000 mm Länge, wobei
alle 160 mm ein konischer Bund
aufgewickelt wurde. Nach der Fertigstellung
wurden die Rohre geschnitten und die
Auflagerränder der 160 mm langen
Zylinder planparallel geschliffen. Die
aufgewickelten Bunde haben die Aufgabe,
Brüche im Krafteinleitungsbereich zu
vermeiden. Verwendet wurde das

«Heisshärtende Laminierharzsystem
LY 556 /HY 917 /DY 070» der Ciba-
Geigy AG, Basel, sowie die E-Glasfaser
«859 Cosmostrand 890 tex» von
Owens/Corning Fiberglass Europe S.A.
Die UD-Flachproben (unidirektional in
Längsrichtung verstärkte Flachproben)
mit einer Länge von 90 mm und einer
Breite von 25 mm wurden aus einem
nur in Längsrichtung verstärkten
Werkstück herausgeschnitten. Der
Glasvolumenanteil Oy der UD-Probekörper

betrug 0,68.

2. MSV-Probekörper

Folgende drei verschiedenen Mehr-
schichtenverbunde wurden untersucht:
±45°: ausgeglichener Wickelver¬

bund (Bild 4b)
±10/90°: als Ersatz für den mit her¬

kömmlichen Wickelverfahren

aufwendig herstellbaren
Kreuzverbund 0/90° (Bild
4c)

±30/90°: sogenannter quasi isotroper
Schichtaufbau (Bild 4a)

Der Anteil der in Umfangsrichtung
verstärkten Schichten am Gesamtlaminat

wird durch t3/t t'3 angegeben.
Hierin ist fj die Summe der Dicken aller
Schichten, deren Fasern in Umfangs¬

richtung verlaufen, * ist die Wanddicke
des Probekörpers.

3. Prüfmaschine

Zur Bestimmung der Kriecheigenschaften
bei Zug/Druck- und Schubbeanspruchung

standen zwei Zeitstandanlagen

mit total sieben Prüfständen zur
Verfügung. Die auftretenden Dehnungen

wurden mittels DMS-Rosetten
gemessen (Bild 5).

4. Vergleich der experimentell ermittelten

Kriechfunktionen mit den berechneten

Werten

Mit dem Computerprogramm *Rekur-
sion*S* erfolgte für die drei beschriebenen

Mehrschichtenverbunde (Bild 4)
die Bestimmung der Kriechfunktionen
rechnerisch. Folgende Inputdaten wurden

dabei verwendet:

tA 0,001 h
1000 hU

Anfangszeit:
Endzeit:
Anzahl Rekursionsschritte : nRek 50

Anzahl Schichten: ±30/90°, ±10/90°; 3

±45°; 2

Kriechfunktionen der UD-Schicht:

«1,(0 0,187. 10_4(1 +0,007- r0-1)

Ox(0 0,466 • 10_4(1 + 0,0227 •

j0,2415\

«x||(0 O|ll(0 0,053- 10 ~4

konstant
O#(0 1,15 • 10_4(1 + 0,068 • t0-195)

In den Bildern 6a bis 6c sind die
experimentell bestimmten Mittelwerte Oj, (f),
<D12 (0 und 033(f) den mit Hilfe des

Programms *Rekursion*S* theoretisch
ermittelten Werten gegenübergestellt.

Die prozentualen Abweichungen der
Versuchsergebnisse von den berechneten

Werten liegen im allgemeinen
zwischen 0% und 3%. Nur beim ±10/90°
Mehrschichtenverbund sind die
Abweichungen bezüglich der Kriechfunktion
«nCO etwas grösser, d.h. im Bereich

Bild8. Spannungsverteilung infolge AT* +25°C in der GFK-Beschichtung und im Beton für eine

Schichtstärke des Polyesters von 2 mm und einer Betonstärke von 200 mm mit vorgegebenen Materialkennwerten

0= - 8.9 N/mm2 Druck

,GFK

/ Beschichtung' /// / / / /.
Beton

(T=* 0.43 N/mm

(Zug)

¦0,25
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Bild 9a. Relaxationsverlauf des glasfaserverstärkten Polyesters zwischen 10

Stunden und 1000 Stunden
Bild 9b. Spannungsverlauf im glasfaserverstärkten Polyesterfür den Lastfall,
gleichmässige Erwärmung um AT +25° C zwischen 10~3 Stunden und 1000
Stunden

von 5%. Bei diesem Verbund gilt es
jedoch zu beachten, dass die Verformungen

senkrecht zur Beanspruchungsrichtung
äusserst klein sind und damit Mes-

sungenauigkeiten ein erhebliche Rolle
spielen.

Die Ergebnisse können somit als sehr

gut bezeichnet werden. Die Versuche
bestätigen die Anwendbarkeit des

Programms *Rekursion*S*. Diese gute
Übereinstimmung wurde an im Labor
hergestellten Proben gezeigt. Bei
Probekörpern aus laufenden Produktionen
darf wegen der Fertigungsvariationen
diese Genauigkeit nicht erwartet werden.

Beispiel II
Beschichtung von Brückenbrüstungen
mit glasfaserverstärktem Polyester.

Zum Schutz von Beton gegen
Umwelteinflüsse, insbesondere gegen die
Einwirkung von Frost- und Tausalz, werden

in neuerer Zeit auch glasfaserverstärkte

Polyesterbeschichtungen
angewendet. Bild 7 zeigt eine solche
beschichtete Brückenbrüstung
(Ausschnitt). Die Laboruntersuchungen
ergaben eine Dicke der Beschichtung von
1,05 bis 2,07 mm und einen Glasfasergehalt

von 22,4 bis 28,4 Massen-%. Mit
der Mehrschichten-Kontinuumstheorie
wurden in einem ersten Berechnungsgang

die Spannungen in der Kunststoffschicht

und im Beton für den Lastfall
bei gleichmässiger Erwärmung um AT
— 25 °C mit folgenden Ausgangswerten
berechnet, wobei beim Kunststoff als

Näherung die Matrialeigenschaften bei
Raumtemperatur eingesetzt wurden :

Beton:
E 35 000 N/mm2
v =0,16
a =io. io_o °c~l
t 200 mm (Dicke des Betons)

GFK:
E =9700 N/mm2
v =0,33
a =35. io-6°C-'
t 2 mm (Dicke der GFK-Beschich-

tung)

In Bild 8 sind die Resultate dieses
Berechnungsganges aufgezeigt. Die
Unterschiedlichen Temperaturausdehnungskoeffizienten

der Beschichtung
und des Betons führen bei Temperaturänderungen

zu einer Beanspruchung
der Grenzfläche Beschichtung/Beton
(Bild 8).

In einem zweiten Rechengang wurde
mit dem Programm *Rekursion*S* der
Relaxationsverlauf der GFK-Beschich-
tung bestimmt.

Folgende Kriechfunktion wurde für
das glasfaserverstärkte Polyester
verwendet:

O,, 1,0309 • 10 _4(1 + 0,103 • i0-172)

In Bild 9a sind der Relaxationsverlauf
und in Bild 9 b der Spannungsverlauf in
Funktion der Zeit für den Lastfall,
gleichmässige Erwärmung um AT
25 °C dargestellt.
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