Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 103 (1985)

Heft: 37

Artikel: Import-, Schulungs- und Service-Center Scania der Truck AG Kloten

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-75880

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Import-, Schulungs- und Service-Center Scania der Truck AG Kloten

In zwei Etappen wurde im Gesamtplanungsauftrag ein Gesamtvolumen von 94 000 m3 umbauten Raumes erstellt. Hauptanliegen des Gesamtplaners waren einfache, saubere Betriebsabläufe, die auch zu entsprechend nachvollziehbaren Tragstrukturen und ästhetischem Ausdruck führten. Für die ganze Anlage stand vom Gesamtkonzept über die Detailplanung bis zur Bauüberwachung mit Thermographie fest, kompromisslos sämtliche Aspekte der energiegerechten Planung zu realisieren. Bei ganz unterschiedlichen Nutzungen der beiden Etappen, wurden Heizenergiekennzahlen von 118 MJ/m²a (I. Etappe) und 130 MJ/m²a (II. Etappe) erreicht. Bemerkenswert ist das Verhalten beider Bauten im letzten strengen Winter: Beide sehr knapp dimensionierten Wärmeerzeugungsanlagen genügten ohne Komforteinbusse, und der Energieverbrauch liegt bei beiden Bauten unter dem Durchschnitt der Vorjahre. Dass diese Resultate nicht mit übertriebenen Kosten erkauft wurden, zeigen die erzielten Kubikmeterpreise von Fr. 316.-/m3 Bürobau, Fr. 94.-/m3 Lager, Fr. 183.-/m3 II. Etappe.

Einleitung

Die Truck AG ist seit 1958 Schweizer Importeur der schwedischen Scania-Nutzfahrzeuge. Der Marktanteil der Scania an schweren Nutzfahrzeugen liegt in der Schweiz bei etwa 18-20 %. Bis heute sind in der Schweiz etwa 6500 Fahrzeuge verkauft worden. Der Umsatz der Truck AG, mit Filialen in Jona SG, Schönbühl BE, Murgenthal BE und Echandens VD beträgt rund 65 Mio bei total 190 Beschäftigten.

Die Gesamtüberbauung auf einer Grundfläche von 25 816 m² besteht aus zwei Gebäudekomplexen und Abstellflächen für insgesamt 200 Nutzfahrzeuge.

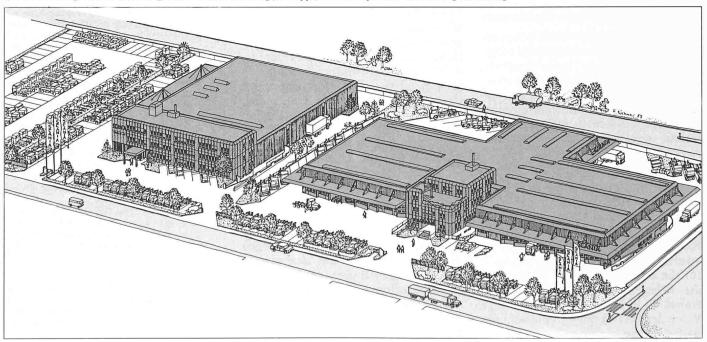
Das Zentrallager und die Zentralverwaltung im Westen sind als erste Etappe ausgeführt worden, mit Bezug im August 1980. Es beherbergt im südlichen, dreistöckigen Büroteil die Verwaltung mit den drei Abteilungen Verkauf, Buchhaltung und Betrieb. Im

Norden ist das Zentrallager für die Schweiz mit 20 000 Lagerpositionen auf 3900 m² untergebracht. Das ganze Gebäude ist unterkellert. (Vgl. Schweizer Ingenieur und Architekt, Sonderdruck aus Heft 1-2/1981.)

Die Reparatur- und Neuwagenabteilung im Osten ist als zweite Etappe ausgeführt worden, mit Bezug im November 1983. Der Gebäudegrundriss basiert auf einem Kreuz mit der Lagerausgabe als Mittelpunkt. Der lange Schenkel wird gebildet durch die Neuwagenabteilung und die Reparaturabteilung. Der kurze Schenkel durch den Büro- und Schulungsteil im Süden und den Lagerund Spezialistenteil im Norden. Das ganze Gebäude ist unterkellert.

2. Etappe: Betriebsorganisation

Umgebung


Eine zentrale Ein- und Ausfahrt mit einer separaten Personaltüre erschliesst das Areal von Süden. Der ganze LKW-Verkehr wird im Einbahnsystem nach rechts um das Gebäude geführt. In der gleichen Weise werden auch die Spezialräume im Norden - Waschen-Schmieren, Dinitrolen-Abtropfen und Bremsprüfstand - durchfahren. Beiden Abteilungen stehen allseitig total 50 LKW-Abstellplätze zur Verfügung.

Büro- und Schulungsteil (Süd)

Das Untergeschoss wird vom Werkstattpersonal direkt über die Aussenrampe Süd zu Fuss oder mit Velo erreicht. Der Automobilist benutzt die Rampe Ost und parkiert in der Parkgarage. Der Garderoben/Waschraum von 166 m² bietet Platz für 50 Personen und ist ausbaubar auf 60 Personen. Der Pausenplatz, zum Aufenthalt mit Überkleid gedacht, ist mit einer Küche ausgerüstet und bietet etwa 40 Personen Platz. Die untere Ebene erlaubt im Sommer den Zugang zu den Sitzstufen im Freien. Die Räume für Haustechnik, sowie der Abwartkeller sind an zentraler Lage zwischen Bürobau und Werkstatt vorgesehen worden.

Das Erdgeschoss, als Hochparterre, vereint auf 300 m² den Büroteil und wird vom Kunden direkt über die gedeckte Aussentreppe erreicht. Die Büros rechts sind der Reparatur-Abteilung zugeordnet, die Büros links der Neuwagenabteilung. Beide Büroflügel haben über die Treppenhäuser Ost und West direkten Zugang zu ihren Abteilungen. Das zentrale Treppenhaus schafft die Verbindung zur Lagerausgabe EG, sowie ins 1. Obergeschoss. Das 1. Oberge-

Die Gesamtanlage. Links: Zentrallager und Zentralverwaltung (1. Etappe); rechts: Reparatur- und Neuwagenabteilung

Ansicht von Süden

schoss dient auf 300 m2 der Schulung und dem Personal-Aufenthalt. Der Aufenthaltsraum kann gegen die Mitte zum Foyer geöffnet werden und bietet dann Platz für Firmenfeste, Apéritifs, Kleinimbisse usw. Das 2. Obergeschoss als Abwartwohnung bietet 175 m² Nettowohnfläche und eine Terrasse von 112 m², zum Teil als gedeckter Sitzplatz.

Die Reparaturabteilung (Ost, rechts)

Das Untergeschoss dient als PW-Parkgarage für das Personal und bietet in zwei Hallen 59 PW Platz. Ein Werkstatt- und Abstellraum von 139 m² dient den Bedürfnissen des Abwarts.

Im Erdgeschoss stehen 14 Reparaturplätze von 5×17,5 m in der Doppelhalle zur Verfügung. Alle sind durch sehr dicht schliessende halbautomatischepneumatische Schiebetüren zugänglich und können quer durchfahren werden. Davon ist eine Boxe mit einem 3-Säulen-Hebelift ausgerüstet, eine zweite dient der Ausmessung der Lenkgeometrie und eine dritte hat einen eingebauten Chassis-Richtrahmen. Die ganze Gebäudefassade ist mit einem 5 m-Vordach versehen, unter dem Schnellreparaturen vorgenommen werden können. Beide Hallenschiffe werden mit einem 5-t bzw. 3,2-t-Kran bestrichen. Diesel/ Elektro sind zwei abgeschlossene Räume von 60 m² für Generatorprüfstand, Anlasserprüfstand, Einspritzprüfbank usw. Die Detailwerkstatt mit 252 m2 ist bestückt mit Werkbänken, hydr. Pres-Bremstrommelbearbeitungsmaschinen usw. Sie kann vom Hallenkran Nord überstrichen werden.

Im 1. Obergeschoss sind 268 m² Abstellfläche mit dem Kran bedienbar. Zudem ist hier die Lehrlingsabteilung untergebracht.

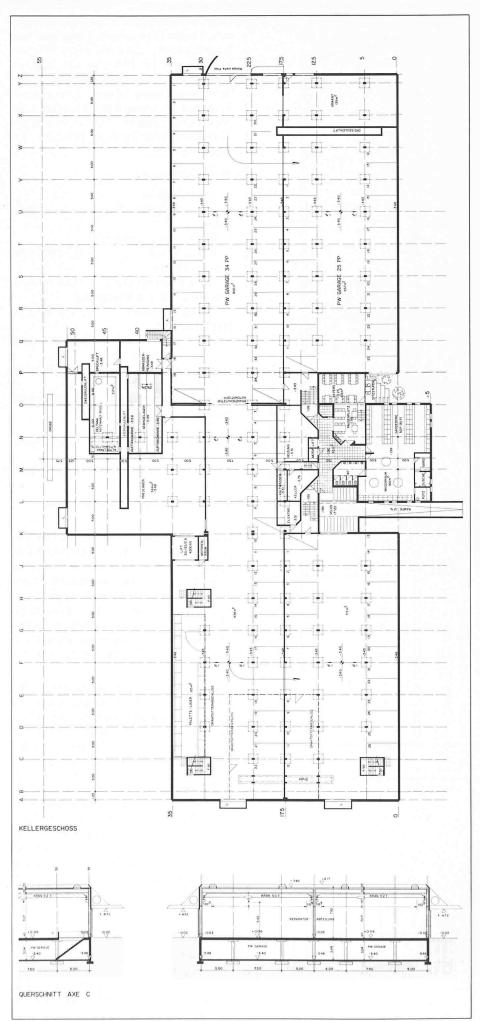
Die Neuwagenabteilung (West, links)

Das Untergeschoss ist auf der Axe 0 durch eine Brandschutz-Schiebetüre von der PW-Garage abgetrennt. Die ganze Fläche von 1653 m² kann grösstenteils als Reserveraum bezeichnet werden und dient als Lager. Es können auch PW untergebracht werden. Erschlossen wird diese Ebene durch den Warenlift von 3,0/3,5/2,8 und 4,2 t Traglast und drei zusätzlichen Fluchttreppenhäusern.

Im Erdgeschoss stehen 10 Arbeitsplätze von 5×17,5 m in der Doppelhalle, an den Hallenenden zusätzlich 120 m² Abstellfläche zur Verfügung. Beide Hallenschiffe werden je mit einem Kran mit 3,2 t Nutzlast bestrichen. Die Pneumontage ist direkt neben dem Warenlift plaziert. Ganz im Westen in einer Doppelboxe befindet sich die Neuwagen-Übergabe mit begehbarer Grube. Für den Schulungsbereich steht eine separate «Reparaturboxe» mit Abstellflächen von 109 m² und einem Leichtkran von 1,6 t zur Verfügung.

Das 1. Obergeschoss ist mit dem Warenlift erreichbar und bietet auf 200 m² Platz für das Eisenlager. Im Schulungsraum sind auf 75 m² Demonstrationsmodelle untergebracht.

Spezialräume (Nord, oben)


Untergeschoss: Das Pneulager mit seinen 344 m² ist für die Ver- und Entsorgung direkt durch den Warenlift mit dem Erdgeschoss verbunden. Mit dem Gebindelager und der Tankanlage für Heizöl und Altöl sind diejenigen Räume, die eine öldichte Wanne erfordern, zusammengefasst. Zudem liegen beide Räume direkt unter dem Waschraum. Dadurch sind nur kurze Druckleitungen für Öle, Fette usw. notwendig. Daneben liegen die Räume für Druckluft und Abwasservorreinigung.

Das Erdgeschoss dient beiden Abteilungen. Dadurch wird die Lagerausgabe zum Nabel der ganzen Industrieanlage. Das Kleinteilelager ist im Erdgeschoss auf zwei Etagen, während die palettierten Grossteile über den Warenlift im UG erreicht werden. Grössere Lagerteile werden mit Hubstapler oder Rolli direkt in die Detailwerkstatt oder via Gangtüre in beide Abteilungen geliefert. Waschen/Schmieren ist als Durchfahrboxe 5×30 m mit einer einseitigen durchgehenden Installationsnische von 1,10 m, beidseitigen Falttoren und mit einem 4-Säulen-Hebelift ausgerüstet. Dinitrolen/Abtropfen ist ebenfalls als Durchfahrtsboxe mit 2 Falttoren ausgeführt und mit einem Zweisäulenlift ausgestattet. Der Bremsprüfstand, wiederum eine Durchfahrboxe mit zwei Falttoren, ist mit einer Gruppe und einer Simultananzeige für überlange Fahrzeuge versehen.

Baukonstruktion

Bürobau: Massivbauweise mit Bodenplatte 25 cm und innerer Wärme- und Feuchtigkeitsisolation. Kellerwände mit Betonelementen 8 cm + 8 cm Styropor in Schalung. Decken 20 cm Beton, 6 cm Unterlagsboden, Wohnungsboden zus. 5 cm Isolation. Innenwände Backstein. Fassade aufgehängte Betonelemente, eingefärbt, gestockt mit innenliegender Isolation Styropor 8-25 cm. Böden Novillon bzw. Kunststein. Dekken Täfer nord. Fichte.

Werkstatt: Untergeschoss: Einzelfundamente, Stützen BS 450, Bodenplatte 16 cm schwimmend, Hartbeton, Decke Flachdecke mit Pilz BH 300 Nutzlast

2000 kg/m², 30 cm Beton schlaff armiert 5-7,5 cm Schichtex in Schalung. Erdgeschoss: Stahlkonstruktion 290 t, 7,7 kg/m³. Dach Profilblech 5,0 m gespannt, Foliendach. Boden Hartbeton rot, Detailwerkstatt und Vorarbeiterbüros Hartsteinholz, Lagerbüro Industrieparkett mit Bodenheizung. Wände Profilkassetten mit Zusatzisolation und einbrennlackiert. Profilblech schendecken Verbunddeckenblech, Beton, Hartbeton, Nutzlast 1000 kg/m². Zwischenwände Kalksandstein.

Gebäuderaster

2222	
11/04	kstatt:
wer	Statt.

Axabstand durchgehend 5 m Stützweiten

Erdgeschoss 2×17,5 m $= 35 \, \text{m}$ Untergeschoss $2 \times (5,0+7,5+5,0) = 35 \text{ m}$

Büro:

Axabstand	5,0	m
Fensterelement	1,25	m
Büroraumtiefe inkl. Kastenfront	5,0	m

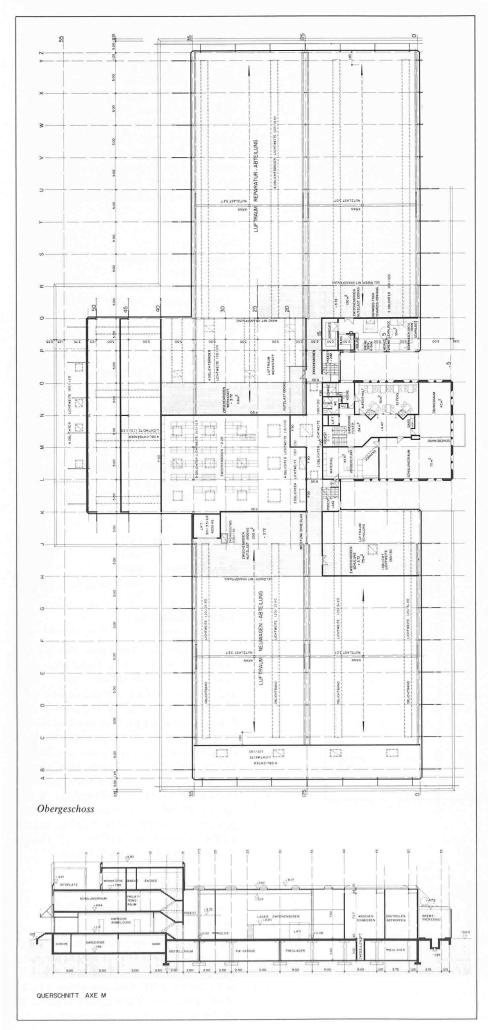
Raumhöhen

Werkstatt:

UG:	Geschosshöhe	3,40 m
	Min. freie Durchfahrt	2,50 m
EG:	Hallenhöhe bis Stahlträger	7,07 m
	Tordurchfahrten	4,37 m
	Geschosshöhe 1.OG	3,72 m

Riiro:

Geschosshöhen	LIG	3,11 m
Geschosshohen	OG	3,32 m
Raumhöhen	Büro	2,96 m
	Wohnung	2,47 m


Energiekonzept

Ausgezeichnete Resultate für die 1. Etappe (Vgl. Schweiz. Ingenieur- und Architekt Sonderdruck aus 1-2/1981)! In dieser Publikation sind Energiebedarf, Energieverteilung und Energieerzeugung sowie die Energiebilanz dargestellt. Aufgrund der Vorausberechnung auf der Basis des Netto-Wärmebedarfes, d.h. nach Abzug innerer Abwärme und Sonneneinstrahlung, betrug die Verbrauchs-Prognose 33 700 kg/a = 40 100 1/a. Der tatsächliche Verbrauch im Mittel über 3 Jahre betrug 24 800 1/a (84/85: 19 945 1/a). (Siehe Zusammenstellung am Schluss)

Konzept für die 2. Etappe

Untersuchung über mögliche Wärmepumpensysteme

Im März 1982 hatte ein Heizungs-Ingenieur zusammen mit einer Wärmepumpenspezialfirma im Auftrage des Gesamtplanes eine umfangreiche Studie über mögliche Wärmepumpensysteme für beide Etappen zu untersuchen. Das

Ergebnis war negativ, d.h. die Jahresgesamtkosten für Energie, Unterhalt und Kapitalzinsen lagen bei allen Wärmepumpen bei 14–47% über der Basisvariante (ohne Energieteuerung). Unter Berücksichtigung einer Energieteuerung von 6% übersteigen die effektiven Mehrinvestitionen die zulässigen 124 000–485 000 Fr. (vgl. Tabelle 1, Systemvergleich).

Wärmedämmung

Das Gebäude ist	
wie folgt isoliert:	k-Wert
Dach	
100 mm Polystyrol-	
Hartschaum	$0,33 \text{ W/m}^2\text{K}$
Aussenwände	
100 mm Steinwolle	$0.38 \text{W/m}^2 \text{K}$
Decke zu Unterniveauga	rage
75 mm Schichtex	$0.36 \text{W/m}^2 \text{K}$
Bürofassade:	
Vollelement	$0,23 \text{ W/m}^2\text{K}$
Fensterelement	
inkl. Fenster	$1,37 \text{W/m}^2 \text{K}$
Lichtbänder Halle	
Dreifachstegplatten	$1,90 \text{ W/m}^2\text{K}$
Schiebetore	
50 mm PU,	
Stahlrahmen	$1,00 \text{W/m}^2 \text{K}$
Stahlfensterfronten	
VISS, IV	$3,50 \text{W/m}^2 \text{K}$

Verminderung der Lüftungswärmeverluste

Die Lüftungswärmeverluste durch Fugenverluste bei Fenster, Türen und Gebäudehülle, sowie durch mechanische Lüftung und offene Tore machen etwa 60% des Gesamtwärmebedarfes aus. Dadurch kommen den organisatorischen und steuerungstechnischen Massnahmen, die zu einer Reduktion führen, gleiche Bedeutung zu, wie der Gebäudehülle selbst.

Die mechanischen Lüftungsanlagen bestehen aus 24 Abluftanlagen mit einer Gesamtluftleistung von 60 540 m³/h, sowie aus 23 Umluftanlagen mit einer Gesamtleistung von 157 550 m³/h. Bei der Auswahl der Lüftungsaggregate ist neben dem Preis auch auf das Verhältnis elektrische Anschlussleistung zu Luftleistung geachtet worden. Bei Volllast Abluft würden im Winter-Mittel immerhin 30 l Öl/h an die Umwelt abgegeben. Es lohnt sich also, durch betriebliche Massnahmen die Luftmengen und die Betriebsstunden so klein als möglich zu halten.

Die Massnahmen im Einzelnen:

 Fassade: Dichtung aller Stahlpanelen mit Dichtungsband sowie aussen zus. Windkraftpapier. Bürofassade: alle Fugen PU-geschäumt, Storenkästen kaltseitig.

Tabelle 1. Systemvergleiche zwischen Ölheizung (Basisvariante) und Wärmepumpensystemen (Stand März 1982)

Nr.	Variante, System	Leistung	Investition in Fr.	Energie + Unterhalt Heizöl, Diesel 70 (100 kg)	Kapital- kosten p = 6%, n = 10 J	Jahreske Total Fr.	%	Mehrinv effektiv	estitionen zul. bei Energie- teuerung 6% a
la	Ölheizung Niedertemperatur 50/40°C Mod. Brenner, 2. Kessel in I. Etappe Fernleitung, Lufterhitzer, Radiatoren	200 kW I 447 kW II	383 000	99 100	52 100	151 200	+ 3	+26 000	- 6400
1b	wie la aber neue Heizzentrale in II. Etappe ohne Fernleitung	200 kW I 447 kW II	357 000	98 500	48 500	147 000	100	-	-
1c	wie 1b aber Bodenheizung	200 kW I 447 kW II	383 000	98 100	52 000	150 100	+ 2	+26 000	+ 3 200
ld*	wie lb aber Monoblock mit Warmluftkanälen, Radiatoren	200 kW I 447 kW II	426 000	98 600	58 000	156 600	+ 7	+69 000	+ 1000
2a	Dezentrale Kleinelektrowärmepumpen bivalent, 6 Einheiten Luft-Luft nur für II. Etappe	200 kW I 2×17 kW 0° 4×21 kW 0° 447 kW II	518 000	88 700	78 500	167 200	+14	221 000	+ 96 700
2b	wie 2a + Valmet-Diesel-Wärme-Kraft-Kopplung zentral nur für II. Etappe	wie 2a + 88 kWTH 66 kWEL	763 000	85 800	103 700	209 500	+43	+405 000	+125 300
3a	Scania Dieselmotor-Wärmepumpe zentral Luft-Wasser bivalent-parallel für beide Etappen	200 kW I 447 kW II 363 kW 0°	910 000	90 000	123 600	213 400	+45	+553 000	+ 86 400
3b	wie 3a, Luft durch Grossflächen-Luftkollektor vorgewärmt	200 kW I 447 kW II 363 kW 0°	938 000	88 800	127 500	216 300	+47	+581 000	+ 95 800
4	Elektromotor-Wärmepumpe zentral 6 Kompressoren	200 kW I 447 kW II 305 kW 0°	850 000	77 800	115 500	193 300	+32	+493 000	+205 600
5	Zentrale Wärme-Kraft-Kopplung mit Diesel Valmet für beide Etappen	200 kW I 447 kW II 88 kWTH 66 kWEL	605 000	91 700	82 800	173 900	+18	+248 000	+ 67 500

^{*} aus Komfortgründen ausgeführte Variante

Tabelle 2. Gesamtkosten- und Systemvergleich Garagentore (Basis 35 Tore 4.60/4.37 Lichtmass)

Tortyp	Rolltor autom.	Sektionaltor hand	Sektionaltor autom.	Falttor hand	Falttor autom.	«Kühlraum hand	»-Schiebetor halbautom.*	
Konstruktion	Lamellen hart PVC, PS oben Bürste unten Quetschprof. seitl. ohne Dichtung	Alu-Blech/St Sektionsh Gummidicht seitl. ohne Dich	le 55/45 mm einwolle 25 mm oreite 65 cm ung horizontal atung, Pressdruck	mit Pressdruck		rich 50 mm PU euerverz. einbrennl. nmi m. Pressdruck d Moosgummi 2× Pressdruck		
Toröff-	120 Sek.	66	Sek.	1 11. 9	40 Sek.		40 Sek.	
nungszeit Fugenlänge K-Wert (o. Fenster)	216 m' 2.4 Wm ² K		om' Wm²K	2	32 m' 2.17 Wm²K 1.0 Wm²K			
a-Wert Fugen Fenster Antrieb Schwelle Wärmeverluste	2.5/5.0 m³/h.m Acryl einfach El. Motor		., 5.0 m³/h.m vert. einfach El. Motor	3 cm	.5 m³/h.m IV El. Motor 3 cm	- 1. -	0 m³/h.m IV DL-Zylinder -	
(ohne Fenster) Transmission Fugen offenes Tor	9 503 kg 38 291 kg 2 572 kg	10 0	17 418 kg 10 059 kg 1 414 kg		8 316 kg 3 387 kg 856 kg		3 481 kg 1 266 kg 856 kg	
Total kg Öl∕a %	50 366 kg 401%		891 kg 80%	12 559 kg 100%		5 603 kg 45%		
Investitions-	508 000	541 000	662 000	479 000	727 000	636 000	691 409	
Kosten %	106%	113%	138%	100%	152%	133%	144%	
Kapital- kosten/a	41 508	41 568	51 934	39 238	68 397	49 186	58 525	
kosten/a Energie- kosten/a	40 636	24 761	24 761	10 751	10 751	4 559	4 559	
Gesamt-	82 144	66 329	76 695	49 989	79 148	53 745	63 084	
kosten/a %	164%	133%	153%	100%	158%	108%	126%*	

Randbedingungen: Zins 6%, Öl 80.-/kg, Amortisationszeiten: Tore 25 J, Antrieb 15 J, Anstrich 5 J, Bauteile 50 J, Mittl. Temp. Ti = 16 °C, Ta = +4.7 °C, Torbewegungen 45 Stk/Tor Monat

^{*} ausgeführt, matisch aus halbauto-Komfortgründen

Tabelle 3. Bilanz für den max. stündlichen Wärmebedarf (Ta. - 11 °C)

Raumgruppe	°C	QO kW	QL+ QLW kW	QH kW	QH/ VR W/m³	n
Lager UG Hallen Rep u. Neuwagen EG Lager, Werkstatt, Spezialräume Bürobau UG, EG, 1. OG Wohnung, 2. OG Warmwasser	15 18 18 20 20	41 111 95 19 5 14	2 477 125 59 3	43 588 220 78 8 14	6.1 28.8 18,6 29,7 15,7	1,50
Raumwärmebedarf		285	666	956*	22.4	
Reduktionen für Kesselleistung: Halle + Spezialräume 15° statt 18° Halle n = 0,6 statt 1,5 Spezialräume n = 0,6 statt 1,5		-29 -	- 60 -172 - 37	- 89 -172 - 37		0,60
Raumwärmebedarf reduziert		256 40%	397 60%	653 100%	15,4	
Innere Abwärme (Motoren, Licht) WRG Kompressoren			-	-75 -23		
Kesselleistung Soll red.				555*		
Kesselleistung installiert				464*		

^{*} Die installierte Kesselleistung beträgt 48,5 % des Raumwärmebedarfs oder 83,6 % der red. Solleistung

- Oblichter: Optische Anzeige bei offenem Oblicht auf übersichtlichem Elektrotableau im entsprechenden Raum.
- 7 Falttore 4,0/4,37 m: alle Fugen mit Doppellippendichtung.
- 28 «Kühlraum-Schiebetore» Markus 4.6/4.37 m: Diese Tore sind in einer umfassenden Studie unter Gesamtkostenbetrachtungen mit Einbezug der Wärmeverluste ausgewählt worden. Sie zeichnen sich nebst einem mittleren K-Wert von 1,0 W/m2K vor allem durch kleine Fugenlängen und einer sehr dichten Fuge aus. Dies durch einen patentierten wird Schliessvorgang bewirkt, der dem holländischen Tor einen umlaufenden Anpressdruck verleiht. Die Entwicklung stammt aus dem Kühlraumbau.

Bei der Beurteilung der Bedeutung der Tore wird meist vergessen, dass

sie vor allem auch während der Nicht-Arbeitszeit dicht sein müssen, d.h. während der 63% Nacht + Wochenende, zudem ist der Zeitraum für das offene Tor während der Arbeitszeit durch eine pneumatische Öffnungshilfe stark vermindert worden. Durch einen elektrischen Kontakt wird bei nicht geschlossenem Tor die Warmluftheizung an der entsprechenden Fassadenfront gesperrt. Dadurch wird das Schliessen mit Warmluft belohnt (Tabelle 2).

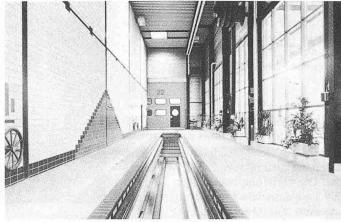
- PW-Garage UG: Die Lüftungsanlage ist je Raum getrennt und ist zudem mit einer CO-Messung ausgerüstet, damit eine minimale Laufzeit resul-
- Kleinlüftungsanlagen wie WC, Grubenabluft usw. sind möglichst getrennt und lichtgesteuert.
- Schulung, - Komfortlüftungen wie

Garderoben und Pausenplatz sind trotz sorgfältiger Dimensionierung mit Stufenwählschaltern ausgerüstet, um wirklich die minimal notwendige Lufterneuerung wählen zu können. Zudem ist die Schulung mit Wärmetauscher ausgerüstet, die Lüftung im Pausenplatz läuft über einen Impulsschalter (30 Min.) und die Garderobenlüftung mit einer programmierten Wochenuhr.

LKW-CO-Absaugung Hallen: erfolgt mit Saugschlitzkanälen auf den Axen 0/17,5/35. Bei Motorenstandläufen wird der Abgasschlauch am Auspuff angehängt und der Ventilator durch Tastendruck in Betrieb gesetzt. Je eine Gelbrundleuchte pro Ventilator zeigt dem Werkstattchef an, ob nicht Missbrauch betrieben wird.

Wärmeerzeugung

Die Wärmeerzeugung erfolgt durch einen Ygnis-Kessel EB 400 mit einer Kesselleistung von 464 KW und einer min. Abgastemperatur von 120 °C, sowie einem modulierendem Brenner Elco und einem Chromstahlkamin mit Falschluftklappe. Die Kesseltemperatur beträgt 75 °C. Diese Kesselleistung genügte im strengen Winter 84/85 auch einer Aussentemperatur von -20 °C jederzeit. Die gesamte Heizung inkl. Umwälzpumpen werden über Nacht und am Wochenende ausgeschaltet und am Morgen bzw. am Montag durch den Optimiser wieder eingeschaltet. Damit die Wohnung mit Wärme versorgt werden kann, wird am Tag ein 10 m3 Speicher geladen. Die Druckluftzentrale mit zwei Niederdruckschraubenkompressoren von je 34 KW Maximalleistung geben die mittlere Leistung von 23 KW zuerst an den 2000 l Wasseraufbereiter, dann an den Wohnungsspeicher ab. Wird im Sommer dort keine Wärme verlangt, gibt er die Wärme in das von der AVRA vorgereinigte Rezirkulationswasser ab. Die Wärme der beiden luftgekühlten Hochdruckkompressoren von je 5 KW wird im Überdrucksystem ins Pneulager und ins Lager gedrückt (Tabelle 3).


Wärmeverteilung

Wärmeverteilung erfolgt Niedertemperatursystem 50/40 °C gemäss Variante I d (Systemvergleiche). Der Bürobau wird mit Radiatoren mit Thermostatventilen beheizt, die Hallen mit Monoblock Hemair und Verteilkanälen entlang den Fassaden mit Ausblasgittern versetzt gegen Hallenmitte. Die Neben- und Spezialräume werden mit Orion-Lufterhitzern beheizt. Dabei sind alle nicht ständig belegten Räume mit Wählschaltern für zwei Sollwerttemperaturen ausgerüstet; belegt = 16°, nicht belegt = 10° .

Neuwagenabteilung

Neuwagen-Übergabe

Reparaturabteilung

Überwachung

Die Gebäudehülle ist mit Thermographie auf Leckstellen geprüft. Dies war den Unternehmern bei der Submission bekannt. Die Sollwerttemperaturen werden laufend mit einem portablen

Temperatur-Feuchtigkeits-Schreiber überwacht. Die wesentlichen Geräte sind mit Impuls- und Betriebsstundenzähler, die Wärmerückgewinnung mit Wärmemessung bestückt. Brennerstufen, Aussentemperatur und Rauchgastemperatur in laufenden Protokollen nachgeführt.

Sanitäranlagen

Die Dachentwässerung mit einem Leitungssystem von 670 m ist im Geberit-UV-System ausgeführt. Die Einsparung durch die kleinen Durchmesser und die günstige Leitungsführung ist offensichtlich.

Das Druckluftnetz ist in zwei Druckstufen unabhängig geführt:

Niederdruck 5 bar, 1380 m Leitungen, 152 Stück Zapfstellen

Hochdruck 18 bar, 870 m Leitungen, 105 Stück Zapfstellen

Die Sanitärinstallation für Büro und Personal entspricht üblichem Standard.

Abwasservorreinigungsanlage (AVRA)

In einem ausführlichen Vergleich sind acht verschiedene Angebote verglichen worden, davon waren je eine Ultrafiltration und eine Elektrofiltration und sechs Emulsionsspaltanlagen.

Es ist die EDK 150 der Firma Awatec AG ausgewählt worden. Die Anlage kommt ohne Papierfilterband aus. Es wird deshalb mit wenigen Betriebsstörungen und weniger Betriebsaufwand gerechnet. Der Abnahme ging ein dreimonatiger Versuchsbetrieb voraus. Der Anlage vorgeschaltet ist ein Schlamm-

und Ölabscheider, sowie zwei Stapelbehälter von je 5 m³ in Weichpolyethylen. Das vorgereinigte Abwasser gelangt ins Reinwasserbecken und wird für das Hochdruckreinigungsgerät rezirkuliert.

Es zeigte sich leider, dass die Anlagelieferanten unrichtige Angaben über die Betriebskosten machen. Ein vertraglich vereinbarter Spaltmittelverbrauch von 250 g/m3 bis 1200 g/m3 bei Ölfrachten von 200 mg/l bis 600 mg/l, konnten anfänglich bei weitem nicht eingehalten werden. Bei Ölfrachten von bis zu 4000 mg/l und 6200 g/m³ Spaltmittel mussten Änderungen auf Seite der Waschmittelchemie vorgenommen werden. Zusammen mit be-

Die Energiekennzahlen für die 1. Etappe (Zentrallager und Zentralverwaltung):	
Beheizte Geschossflächen unnormiert	5837 m ²
Beheizte Geschossflächen 20° C temperaturnormiert	4728 m ²
Beheizte Geschlossfläche temperatur- + geschosshöhennormiert	7525 m ²
Beheizte Gesamtvolumen 20°C temperaturnormiert	22 575 m ³

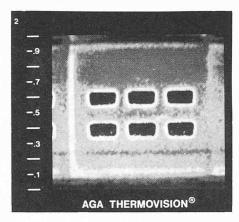
Energiekennzahl	20° C temperatur-	temperatur- +	Vergleich Mittel
	normiert	höhennormiert	Verwaltung Bund
E-Heizöl	188 MJ/m²a	118 MJ/2 ² a	560 MJ/m²a
E-Strom	52 MJ/m2a	32 MJ/2 ² a	170 MJ/m²a
E-Total	240 MJ/m²a	150 MJ/2 ² a	730 MJ/m²a
Verhältnis		1	zu 5

VEK = Volumenenergiekennzahl 20° normiert total 50 MJ/m³a Mittlere Heiztage: 164; Mittlere Brennerlaufzeit: 1300 h/Jahr

Daten I. Etappe:			
Zentralager und Zentralverwaltung			
Bauende	Juli 1980	Kosten: Kubikmeterpreise	
Total Fläche		Bürobau	$316/m^3$
Industrieparzelle	25 816 m ²	Lagerbüro	$280/m^3$
Umbautes Volumen		Lagerbau	$94/m^3$
SIA	36 000 m ³	Anlagekosten (ohne Land)	7 000 000

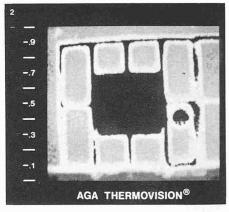
7814 m ²
5902 m ²
11 027 m ²
33 081 m ³

Energiekennzahl	20° C temperatur-	temperatur- +	Vergleich Mittel
	normiert	höhennormiert	Verwaltung Bund
E-Heizöl (gemessen)	243 MJ/m²a	130 MJ/2 ² a	560 MJ/m²a
E-Strom (Prognose)	110 MJ/m2a	60 MJ/2 ² a	205 MJ/m²a
E-Total	$353 \text{ MJ/m}^2\text{a}$	190 MJ/2 ² a	$765 \text{ MJ/m}^2\text{a}$


VEK = Volumenenergiekennzahl 20° normiert total 63 MJ/m³a

Daten II. Etappe: Neuwagen- und Reparaturabteilung		Kosten: Kubikmeterpreise Bürobau	413/m³
Baudaten		Werkstatt	$163/m^3$
Baubeginn	18. August 1982	Gesamtüberbauung	$183/m^3$
Bezug	1. November 1983	Anlagekosten	
Betriebsaufnahme	28. November 1983	Gebäudekosten	10 700 000
Bauzeit	15 Monate	Umgebung	900 000
Umbautes Volumen nach SIA:		Baunebenkosten	400 000
Bürobau	4763 m ³	Feste	
Werkstatt	52 954 m ³	Betriebseinrichtungen	1 000 000
Total	57 717 m ³	Total (ohne Land)	13 000 000

trieblichen Massnahmen liegt der Spaltmittelbedarf nun bei Ölfrachten von etwa 450 mg/l bei etwa 1600 g/m3, was zu Reinigungskosten (ohne Wartung) von etwa Fr. 5.50/m3 führt.


Elektroinstallationen

Es wird mit einer gleichzeitigen elektrischen Belastung von 220 KW gerechnet. Die Hallenbeleuchtungen sind auf 600 Lux ausgelegt und mit Mischlichtleuchten aus Quecksilber-Leuchtstofflampen HgL und Hochdrucknatriumlampen NaH bestückt. Büros und Nebenräume sind mit Fluoreszenzleuchten ausgestattet. In den verschiedenen Werkstätten sind 96 schlagfeste Steckdosenkasten mit Sicherheitsautomaten und Fehlerstromschutzschaltern installiert. Sämtliche wichtigen Maschinenfunktionen sind mit Alarmmeldungen mit Anzeige beim Empfang und in der Abwartwohnung versehen. Für die Kommunikation im Haus, auf dem Vorplatz und mit der Verwaltung stehen nebst dem Telefon eine Gegensprechanlage und eine Personensuchanlage mit Gegenantwortmöglichkeit zur Verfügung. Die Gesamtinstallation benötigte 33 770 m Kabel.

Thermogramm des «Kühlraumschiebetores». Die Aufnahme von aussen mit Ti = + 17,5°C, Ta = + 2,5°C, zeigen Oberflächentemperaturen von To = + 3,3°C (hellgrauer Ton). Die dunklen Stellen oben sind auf Reflektionen zurückzuführen. Wesentlich ist die Feststellung, dasss neben den Fenstern (schwarz = Temperatur über + 5,7°C) keine schwarzen Fugen am Torrand auftreten, was auf hermetisch dicht schliessende Tore hinweist, d. h. kein Warmluftaustritt (Fotos: Consultherm AG Zürich)

Adresse des Verfassers: Gesamtplanung und Bauleitung: K. Haas, dipl. Ing. ETH/SIA in Haas+Tschupp Ingenieurbüro AG, Grüneckweg 19, 8645 Jona; freier Mitarbeiter: B. Ernst, Architekt HTL.

Thermogramm eines qualitativ hochstehenden Falttores. Die Aufnahme von aussen mit Ti = + 17,5°C, Ta = +2.5°C, zeigen in der Mitte der Sandwichfelder wohl die gleichen Oberflächentemperaturen, To = +3,3°C, wie beim «Kühlraumtor», alle Randprofile sind aber über + 4,9°C (weiss) und alle Fugen sind trotz Doppelgummidichtung undicht (schwarz), d. h. Warmluftaustritt bei grossen Fugenlängen (siehe Torvergleich Tabelle 2)

Literatur

- [1] Haas K.: «I. Etappe Zentrallager und Zentralverwaltung der Truck AG Kloten», Schweizer Ingenieur und Architekt, Sonderdruck aus Heft 1-2/1981
- [2] Haas K.: «Energiebewusst geplante Gebäude», IVBH Internationale Vereinigung für Brückenbau und Hochbau, Ausgabe August 1985

Wettbewerb kirchliches Zentrum St. Josef, Köniz BE

Die römisch-katholische Gesamtkirchengemeinde Bern und Umgebung, vertreten durch den Kleinen Kirchenrat, veranstaltete einen Projektwettbewerb unter 11 eingeladenen Architekten für ein kirchliches Zentrum im Gebiet Stapfen, Köniz BE. Das Preisgericht setzte sich wie folgt zusammen: M. Appetito, Köniz, Präsident, R. Hofer, Pfarrer, Köniz, M. U. Rohrer, Bauingenieur, Liebefeld, die Architekten G. Derendinger, Bern, W. Egli, Zürich, W.M. Förderer, Thayngen, E. Rausser, Bern, Katharina Steib, Basel; Ersatzpreisrichter war R. Felder, Elektroingenieur, Muri. Für Preise und Ankäufe standen insgesamt 50 000 Fr. zur Verfügung.

Zur Aufgabe

Aus dem Programm: Grundlage für die Überbauung des Gebietes Stapfen bildet der Gestaltungsrichtplan. Das für das kirchliche Zentrum vorgesehene Grundstück misst rund 5000 m2. Auf dem westlich angrenzenden Areal sind ein Altersheim für 65 Betagte, eine öffentliche Bibliothek, Alters- und Invalidenwohnungen sowie eine Autoeinstellhalle vorgesehen; das nördliche Nachbargrundstück liegt in der Grünzone und soll nicht überbaut werden. Die kirchlichen Neubauten sollen in die bestehenden Quartierstrukturen gut integriert werden. Die ortsspezifischen Besonderheiten sind zu berücksichtigen. Das kirchliche Zentrum soll von aussen als solches erkennbar sein. Sehr wichtig ist der Bezug der Neubauten zur Schlossgruppe und zum «Rappentöri». Es sind grundsätzlich geneigte Dächer erwünscht. Eine angemessene Durchgrünung des Aussenraumes ist anzustreben. Die Umgebung der Neubauten steht auch den Quartierbewohnern als Aufenthalts- und Begegnungsort zur Verfügung.

Raumprogramm

Kirche mit Sitzbänken für rund 300 Personen, erweiterbar auf 450 Personen, Sängerchor mit Pfeifenorgel, 50 Sänger, in gutem räumlichem Bezug zu Altarraum und Gemeinde, Sakristei, Sigristenraum; Foyer 120 m²; Pfarrsaal 230 m²; 2 Mehrzweckräume je 50 m², 6-8 Jugendräume 150 m², Werkraum 40 m², Küche, Stuhlmagazin; 3 Büros je 20 m², Sitzungszimmer 25 m², Sprechzimmer 15 m2; Wohnung Pfarrer 90 m2, Wohnung Sigrist 90 m², Wohnung Haushälterin 40 m², Gästezimmer 20 m²; 3 Jugendräume im UG; Glockenträger für 1-2 Glocken; 12 Parkplätze.

Ergebnis

Es wurden acht Entwürfe eingereicht und beurteilt. Ein Architekturbüro verzichtete innerhalb der dafür vorgesehenen Frist auf die Teilnahme; zwei weitere zogen sich vom Wettbewerb zu einem Zeitpunkt zurück, da für den Veranstalter keine Möglichkeit mehr bestand, andere Architekten einzuladen. «Veranstalter und Preisgericht verurteilen dieses Vorgehen. Das Fehlen dieser Projekte bringt eine Einbusse, die nicht mehr korrigiert werden konnte.

Allgemeine Überlegungen des Preisgerichtes: Der ausgeprägte Hang, Richtung und Lage des projektierten Altersheimes sind bestimmende Gegebenheiten für den Entwurfsansatz. Mit diesen Rahmenbedingungen haben sich nur einige Teilnehmer auseinandergesetzt. Die vorgegebenen Richtbaulinien wurden in allen Projekten mehr oder weniger überschritten. Diese Möglichkeit war auch ausdrücklich gegeben. Da das Altersheim im Sinne der Richtbaulinien mit seinem Haupttrakt beträchtlich von der Stapfenstrasse zurücksteht, entsteht ein Freiraum, welcher durch die kirchlichen Bauten in bedeutendem Mass mitgestaltet werden kann. Der Wettbewerb hat hierzu verschiedene Hinweise ergeben. Das Preisgericht stellt fest, dass die Aufgabe mit Hinsicht auf die Randbedingungen, das umfangreiche Raumprogramm und die knappe Landfläche sehr anspruchsvoll war. Das Ergebnis zeigt, dass der Entschluss zur Durchführung eines Wettbewerbes richtig war.