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Abflusseigenschaften in offenen Kanélen

Von Willi H. Hager, Lausanne

Die hydraulischen Charakteristika von Abfliissen in offenen Gerinnen
werden anhand einer Diskussion von Normalabfluss, kritischem Ab-
fluss, Wassersprung, Stau- und Senkungskurven sowie der Zweiphasen-
stromung Wasser-Luft vorgestellt. Die wichtigsten Resultate sind an-
wendungsbezogen dargestellt und Beispiele illustrieren den Berech-
nungsgang.

Les caractéristiques hydrauliques des écoulements dans des canaux
découverts sont discutés a l'aide de I'écoulement uniforme, de l'écoule-
ment critique, du ressaut hydraulique, des courbes de remous et de
I"écoulement biphasique cau-air. Les résultats les plus importants sont
presentés graphiquement, et des exemples montrent la marche a suivre
pour les calculs.

Hydraulics of open channel flows are discussed using the uniform and
critical flow conditions, the hydraulic jump, the backwater profiles and
the two-phase flow water-air. The most significant results are represent-
ed in a directly applicable manner, and typical examples illustrate the
computation procedure.

1. Einleitung

Dem Wasser kommt auch in der modernen Gesellschaft ein
gewichtiger Stellenwert zu. Neben dem urspriinglichen Trink-
bediirfnis basiert unser heutiges Leben entscheidend auf der
Funktionstiichtigkeit der Trink- und Brauchwasserversor-
gung, der Abwasserbeseitigung, der Energieerzeugung durch
Wasserkraft, des Hochwasserschutzes und der Schiffahrt, des-
sen Bentitzung zu Heiz- und Kiihlungszwecken, neben vielen
weiteren Anwendungsgebieten. Da das kostbare Gut nur sel-
ten dort zur Verfligung steht, wo es gebraucht wird, sind
Transportleitungen in Form von Druckrohren und Freispie-
gelkandlen unumginglich. Da es sich dabei um beachtliche
Fordermengen handeln kann, ist deren sichere Bemessung
von grosster Bedeutung.

In der vorliegenden Studie soll der Versuch unternommen
werden, die hydraulischen Aspekte des Freispiegelabflusses
mit spezieller Beleuchtung der beiden wohl am hiufigsten
gebrauchten Kanalprofile, Rechteck und teilgefiillter Kreis,
ndher zu verfolgen. Die Untersuchung richtet sich an den
Praktiker, werden doch die wichtigsten Resultate in einer ihm
unmittelbar zuginglichen Form dargestellt, sowie an den
Theoretiker, da die einzelnen Ableitungen in einer allgemei-
nen Betrachtungsweise hergeleitet werden. Dadurch lassen
sich einzelne Problemkreise in ein neues Licht riicken, even-
tuelle Einschrinkungen von heute tiblichen Berechnungsver-
fahren aufdecken und Einfliisse verfeinerter Methoden gegen-
liber den elementaren veranschaulichen.

Im Kapitel 2 wird der Normalabfluss-Zustand eingehend
betrachtet; zwei heute tibliche Berechnungsverfahren werden
verglichen und auf die erwihnten Profiltypen angewandt. Im
Kapitel 3 widmen wir uns dem kritischen Abflusszustand.
Theoretische wie auch praktische Anwendungsgebicte werden
vorgestellt.

Im Kapitel 4 versuchen wir das Phinomen des Wassersprun-
ges nither zu beleuchten. Insbesondere sollen Unterschiede
zum  Fliesswechsel Stréomen-Schiessen verfolgt und  heute
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weitgehend fehlende Dimensionierungs-Grundlagen mitge-
teilt werden. Im Kapitel 5 werden die Stau- und Senkungskur-
ven allgemein untersucht. Ausgangspunkt bilden dabei die
verallgemeinerten Gleichungen fiir beliebige, stetig veridnder-
liche Abflisse, die sich anschliessend auf stationares Fliess-
verhalten in prismatischen Kanidlen anwenden lassen. Die
verschiedenen Voraussetzungen, denen die heute tiblichen Be-
rechnungsverfahren unterliegen, werden diskutiert und deren
Einfluss auf die Loésung qualitativ verfolgt. Anschliessend
folgt die Darstellung einer allgemein giiltigen Methode zur
Berechnung der Stau- und Senkungskurven, die Anwendung
in beliebigen, prismatischen Kanilen findet. Im Kapitel 6 soll
der Einfluss der Selbstbeluftung des Abflusses unter hoher
Fliessgeschwindigkeit im Lichte der modernsten Forschungs-
ergebnisse studiert werden. Die quantitativen Resultate bezie-
hen sich dabei wiederum auf die beiden Profiltypen Rechteck
und Kreis.

Abkiirzungen
b Breite des prismatischen Rechteckkanals
B Kanalbreite
Bou Boussinesq-Zahl
mittlere Luftkonzentration
Durchmesser
Energie

Verhdltnis f=h/h,

Querschnittsfliche

Froude-Zahl

Erdbeschleunigung

Abflusstiefe

Energiehdhe

auf Kanalsohle bezogene Energiechéhe
Impuls

Energielinienneigung
Wandreibungsgradient

Sohlenneigung

dquivalente Wandrauhigkeit
Wandreibungskoeffizient nach Strickler
Wassersprunglinge

spezifischer Abfluss

Durchfluss

hydraulischer Radius
Lingskoordinate

Zeit

seitliche Zu- oder Abflussgeschwindigkeit
mittlere Geschwindigkeit
Lagekoordinate

relative Abflusstiefe y=h/h,
Vertikalkoordinate
Energie-Korrekturbeiwert
Impuls-Korrekturbeiwert

halber Zentriwinkel

Sohlenneigung
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Dichte
Charakteristik fGr Stau- und Senkungskurven
(] Formbeiwert fiir Stau- und Senkungskurven
% Beltiftungs-Kennzahl in teilgefiiliten Kreisprofilen
n Beliiftungs-Kennzahl in Rechteckprofilen
A Reibungsbeiwert nach Prandtl-Colebrook
A typische Wellenlinge
[0} Sohlen-Neigungswinkel
Indizes
N Normalabfluss-Zustand
¢ kritischer Zustand
v Vollftillungs-Zustand
[§ Ausgangs-Zustand
| Querschnitt oberhalb des Wassersprungs
2 Querschnitt unterhalb des Wassersprungs
g Gemisch-Kenngrosse
a Luft-Kenngrosse
w Wasser-Kenngrosse
! Ubergangzustand von Reinwasser zu Gemisch
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2. Normalabfluss

Unter Normalabfluss versteht man den Gleichgewichtszustand
zwischen treibenden und riickhaltenden Kréiften im prismati-
schen, geraden Gerinne konstanter Neigung, gleichbleibender
Rauhigkeit und nicht dnderndem Durchfluss. Anders ausge-
driickt kompensieren sich unter diesen Voraussetzungen das
Sohlengefille J; und das Reibungsgefille J,. Bekanntlich stellt
sich dieser Fliesszustand nur unter bestimmten Zusatzbedin-
gungen ein: das Gerinne muss eine genligend grosse Lings-
ausdehnung besitzen und die geometrischen Eigenschaften
des Kanals diirfen sich dabei nicht indern. Geringe Anderun-
gen im Sohlengefille (Stdsse, Setzungen), in der Rauhigkeit
(Inkrustationen, verschiedene Rohrmaterialien, neue und alte
Leitungsabschnitte) und im Durchfluss (Infiltrationen, seitli-
che Zuflisse) konnen den Normalabfluss-Zustand nicht un-
wesentlich beeinflussen. Liegen gar ortliche Storstellen vor
wie Krimmer, Verengungen und Erweiterungen, Abzweigun-
gen und Vereinigungen, usw., so wird ein Normalabfluss em-
pfindlich gestort, und der Abfluss bendtigt wiederum eine
gewisse Anlaufstrecke, bis sich ein neues Gleichgewicht ein-
stellen kann. Die in Kanélen hdufig vorkommenden Storstel-
len lassen den Normalabfluss-Zustand eigentlich nie eintre-
ten, die Distanz zwischen zwei Storstellen ist daflir meist zu
kurz.

Die exakte physikalische Beschreibung des Normalabflusses
fir turbulente Stromungen ist bis heute nicht gelungen. Zwar
liegt eine Fiille von empirischen Ansidtzen und Messwerten
vor /3/, /19/, die Natur des Problems ldsst jedoch keinen
elementaren Losungsweg zu. Im Laufe der vergangenen Jahre
sind grundsitzlich zwei Berechnungswege eingeschlagen wor-
den. Der erste basiert auf der Formel von Manning-Strickler

(1) Vy= K/JRY

mit V als mittlerer Geschwindigkeit, K als Reibungswert nach
Manning-Strickler, R als hydraulischem Radius und Index N
als Bezeichnung fiir Normalabfluss. Strickler /34/ gibt als
Giltigkeitsbereich von (1) J,>0.01% (vollturbulente Stro-
mung) und /4>0.01 m (kein Einfluss der Oberflichenspan-
nung) an. Berticksichtigt man Versuchsergebnisse an steilen
Kanilen, so muss die erste Forderung infolge der natiirlichen
Selbstbeliiftung erweitert werden zu 0.01% < .J, < 10% (siche 6.).
Nach der Formel von Strickler entspricht K einer fir einen
vorgegebenen Kanal zugehorigen Konstanten. Betrachtet
man beispiclsweise die Experimente von Marchi /27/, der fiir
ein und denselben Kanal den hydraulischen Radius R nicht
variert, sondern lediglich durch Veranderung des Sohlenge-
falles den zugehorigen Durchfluss unter Normalabflussbedin-
gungen misst, so ergeben sich relativ gewichtige Variationen
in K. Normalerweise werden Reibungsbeiwerte in Abhiéingig-
keit der Reynolds-Zahl aufgetragen. Da in offenen Gerinnen
jedoch fast durchwegs der Einfluss der Froude-Zahl domi-
nanter ist, findet man in Bild | den Verlauf von K(Fry) mit

Fry = VyVghy

Die Messwerte bezichen sich auf glatte und rauhe Rechteck-
kanile; man findet maximale Variationen in K von + 15% [Ur
die ersten und + 7% fiir die zweiten.

Wie anderseits Dallwig /5/ feststellt, besitzt (1) nur unter den
folgenden, zusitzlichen Voraussetzungen
Giltigkeit:

niherungsweise

— vollrauhes Fliessverhalten,
— 510 *<k/D<10"" als Angabe fiir die relative Sandrau-
higkeit mit D als Ersatz-Durchmesser.

Der zweite Berechnungsweg fundiert auf der Turbulenztheorie
und beschreibt den Normalabfluss anhand der Gleichung von
Darcy-Weisbach

2) Vv, = 2 (Bl
mit g=9,81(m/s?) als Erdbeschleunigung und A (—) als Wi-

derstandsbeiwert. Nach Colebrook gilt fiir das volle Kreispro-
fil

il 251 | kR,
VA Rey/n 371

Darin bedeutet Re = 41v/R die Reynolds-Zahl mit v als
kinematischer Zihigkeit und k die dquivalente Sandrauhig-
keit. Durch Einfiihrung eines Formbeiwertes / gelingt Marchi
/27/ die verallgemeinerte Darstellung von (3) fiir geschlossene
und offene Profile. Dieses Verfahren wurde von Bock /2/
durch systematische Messungen iiberpriift. Die beiden Spezi-
alfille glatter (k — 0) und rauher (Re — o) Oberfliche
lassen sich sehr einfach aus (3) finden.

Vergleicht man (1) und (2), (3), so ist in beiden Fillen eine
«Konstante», K oder &, zu bestimmen. Was die Rechnung
selbst betrifft, ist die Anwendung von (1) im Vergleich zu (3)
einfacher, wihrend die zweite Beziehung besser mit den physi-
kalischen Gesetzmadssigkeiten libereinstimmt. Nach den ein-
gangs festgestellten Bemerkungen scheint es deshalb nicht
erstaunlich, dass auch heute die Darstellung nach Manning-
Strickler in der Praxis derjenigen von Colebrook hiufig vor-
gezogen wird /28/. Berticksichtigt man zudem, dass die verall-
gemeinerte Beziehung

3)

= —2log {

V2

) Jy= o

zur Berechnung des Reibungsgefilles von beliebigen stationi-
ren und instationiren Bewegungsabliufen herangezogen
wird, so kann mit Recht behauptet werden, dass (4) mangels
geeigneter anderer Unterlagen volle Berechtigung besitzt. Es
muss in diesem Zusammenhang zudem klar auf die unter-
schiedlichen Bediirfnisse von Forschung und Technik hinge-
wiesen werden: die wissenschaftliche Untersuchung des Nor-
malabflusses als Turbulenzproblem setzt andere Akzente als
die Praxis. Fir die erste soll der Zusammenhang von physika-
lischen Gesetzmissigkeiten moglichst genau und vollstindig
aufgedeckt werden, withrend fiir die zweite Richtwerte und
Dimensionierungsgrundlagen zur Verfigung stehen miissen.
Im folgenden beziehen wir uns deshalb auf Bezichung (4) im
allgemeinen, und aul Gleichung (1) fiir Normalabfluss.

Im Rechteckprofil der Breite b entsteht mit R = bh/(b + 2h)
und (1) fir

9,\ __ D
K/ Jb*" 1 + 20

mit = /,/h. Diese Beziechung ist beispielsweise in /13/ ausge-
wertet.

Das TeilfGllungsproblem in Kreisprofilen unter Normalab-
fluss-Zustand hat wohl unter Sauerbrey /32/ einen vorliufigen
Abschluss gefunden. Fiir 0,07% <.J, < 1.54%, 35<0,<190 //s
sind im Kaliber D = 0,30 m umfangreiche Versuche durchge-
fithrt und die Resultate kritisch mit bekannten Ansiitzen ver-
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glichen worden. Als wesentlichste Schlussfolgerungen Sauer-
breys lassen sich anfilihren:

— Die Reibungsformel nach Prandtl-Colebrook ist zur Zeit der beste Kompro-
miss zwischen Theorie und Praxis,

— Eine kleinliche Diskussion iiber die Rauhigkeit von Rohrmaterialien ist
missig. In Rohrleitungen stellt sich nach einer gewissen Zeit eine Betriebs-
rauhigkeit ein,

— Der hydraulische Radius R ist keine generell giiltige, charakteristische
Linge,

— Esist zweckmissig. den Abfluss bei Teilftillung auf Vollfillung zu beziehen,

— Bei hohen Fiillungsgraden besitzt die Luftzufuhr einen nicht zu unterschit-
zenden Einfluss auf den Abfluss, der sich durch Zuschlagen bemerkbar
machen kann,

— Normalabfluss stellt sich in der Praxis nur sehr selten ein,

— Die hydraulisch gute Ausbildung eines Kanalsystems kann dessen Lei-
stungslihigkeit entscheidend beeinflussen.

Die von Sauerbrey empfohlene Fillungskurve ist in Bild 2

dargestellt.
Der Ansatz

Oy 3Yy

(1— 7Y

T KDV 4 D

(6) N
gibt den experimentellen Kurvenverlauf gut wieder. Y =h/D
entspricht der Teilftillung mit D als Kreisdurchmesser. Der
benetzte Querschnitt F ldsst sich ndherungsweise durch

I Ty
(7) F/D* = =Y"«(1

3 4 25

angeben, womit bei bekannter Teilftllung direkt die entspre-
chende Geschwindigkeit V= Q/F ermittelbar ist.
Es bleibt zu erwihnen, dass Sauerbrey die Normalabfluss-
Beziehung lediglich im Bereich 0<y,<0,95 angibt. Nach
Experimenten ldsst sich kein Normalabfluss fiir 0,95< Y, <1
realisieren, da geringfligige Stérungen ein Zuschlagen verur-
sachen. Die Teilfullungskurve O, (hy) ist somit ein-eindeutig,
d. h. fiir eine bestimmte Abflusstiefe resultiert bei bekannten
Grossen K, J, und D lediglich ein Durchfluss. Die Darstellung
nach (6), (7) ist auf der «sicheren Seite» und ist in Bild 2
dargestellt.
Beispiel
Gegeben ist eine Rohrleitung mit Q=14m?/s, J;=1%,
K =80m'"/s und D=0.90 m. Wie gross ist dic Normalabfluss-
tiefe hy und die zugehorige Geschwindigkeit V/,?
Mit ¢,=1.4/(801/0.01-0.9"%)=0,232 folgt aus Gl. (6) fir
DOy=0,64, womit hy=0,64-0,9=0,575 m. Infolge ®y=0,64
ergibt sich fir F,/D?=0,53, also Fy=0,53-0,81=0,429 m?,
womit Vy=Q0y/Fy=1,4/0,429=325m/s.

3. Kritischer Abfluss

Mochte man an einer bestimmten Stelle eines Kanals den
Durchfluss messen, so kann dies durch Ermittlung des Ge-
schwindigkeitsfeldes und durch simultane Aufnahme der Pro-
filgeometrie geschehen, siehe z. B. /10/. Das Verfahren ist im
Normalfall aufwendig und nur beschrinkt genau. Schon frih
hat man deshalb nach einfacheren, rascheren und priziseren
Verlahren gesucht, die fiir die Praxis zuverlissigere (und oft
auch kontinuierliche) Mengenmessungen erlauben. Ideal
wiire die simple Abtastung der Wasseroberflache und die
daraus unmittelbare Berechnung des Abflusses. Diese Metho-
de lisst sich in der Tat anwenden und findet bei Wehren,
Quersennitts-Einengungen  (Venturikanile
und in beschrinktem Masse auch in Verteilkanilen (ortlich
abnehmender Durchfluss) oder Sammelrinnen (6rtlich zuneh-
mender Durchfluss) Anwendung /9/, /12/. Betrachtet man der

beispielsweise)
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Einfachheit halber einen Rechteckkanal, so gilt fiir die Ener-
gichohe
QZ

(8) H=z4h+—"—.
2¢B*h?

Grundsitzlich konnen dabei die Sohlengeometrie z, die Ab-
flusstiefe /4, der Durchfluss O, die Kanalbreite B in Abhingig-
keit der Langskoordinate x variieren, also H=H(x). Glei-
chung (8) gilt lediglich fiir Abflisse mit nahezu hydrosiati-
scher Druck- und fast uniformer Geschwindigkeits-Verteilung.
Wie unten ausfithrlich erkléirt, beschrinkt sich deren Anwen-
dungsbereich auf sogenannte Flachwasser-Abfliisse. Be-
trachten wir vorerst den Abfluss an der Stelle x=x,, an der
0=0,.z=z, und B= B, gilt mit Index o als Bezeichnung fiir
Grossen an der Stelle x,, so wird

5
i

9 H, = H—z;,= — .
©) ’ 2¢B I?

h +
also H,= H (h). Diese Funktion dritten Grades soll nun dis-
kutiert werden, wobei lediglich 0 <A< H, physikalische Be-
deutung haben. Da dann keine Nullstellen vorliegen, sollen
eventuelle Extremwerte berechnet werden. Aus der Bedin-
gung dAH,/dh=0 folgt 1—Q5/(gB; h*)=0. Wird Index 0 nun
fallengelassen, so ergibt sich daraus fiir die sogenannte kriti-
sche Abflusstiefe

(10) he = (Q*/gB*)'"" .

Wird (10) in (9) eingesetzt, so folgt fiir H,(h,)=H.) = 3h /2.
Die kritische Energieh6he ist somit ein-eindeutig mit der kriti-
schen Abflusstiefe und nach (10) mit dem Abfluss Q verbun-
den. Kennt man (durch Messung) die kritische Energiehohe
H, an einer Stelle v, des Kanals, so ldsst sich unmittelbar der
zugehorige Durchfluss Q, berechnen.

Es fragt sich nun, wo eine Stelle x, zu erwarten ist. Dazu
betrachten wir die Ausgangsgleichung (8) und setzen eine
Potentialstromung voraus, gleichbedeutend mit H'=H" =
H' ~ 0 wobeli i die i.te Ableitung nach x mit /> 2 bedeutet.
Ferner bezeichnet () =d()/dx.

Extremwerte der Funktion H(x) entstehen dann fiir

% 2 R 2//
any  H-z+w4 22 2B OO0
gB*h?  gB*h*  gB*h?
entsprechend
/ QQ’ 0B ; 02
12) @+ i + (1l — -0
= gB*h? gB3/13) ( gBZhJ)

Vergleicht man (12) mit (10), so erkennt man denselben Aus-
druck in der zweiten Klammer von (12). Definiert man als
Froude-Zahl im Rechteckprofil

(13)

so stellen sich Extremalwerte von H(h) fur Fr=1 oder fur
h"=0 unter der Zusatzbedingung

: 2B
(14) NIRRT
gB*h*  gB3h?

ein. Wie im Anhang I gezeigt, kénnen durch weitere Analyse
die folgenden Resultate ermittelt werden:
— Fr=1entspricht dem kritischen Abfluss: fir gegebenen, konstanten Durch-

fluss @ nimmt dic Energichohe H, nicht nur einen Extremalwert, sondern
zugleich einen Minimalwert an, wihrend fiir gegebene Energichohe H | der
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Bild 1. Reibungsbeiwert K nach Gleichung (1) in Abhéngigkeit der Froude-Zahl Fry im Rechteckkanal nach a)

Marchi [24], |25/, |26]:
a) glatte Kanaloberfliche, b) rauhe Kanaloberfliche

Bild 2. a) Relativer Durchfluss Qx/Q, mit Q, als Vollfiillung bei Normalabflusszustand nach Experimenten
von Sauerbrey |32/ (gestrichelt helt) und nach (6) fir teilgefiilltes Kreisprofil.

b) Relativer Durchfluss Q. L/UD bei kritischem Abflusszustand

Durchfluss maximal wird. Die beiden Darstellungen Q(H,) und H (Q)
entsprechen sich vollstindig.

— h'=0, entsprechend einem an der Stelle x=x, zur Sohle parallelem Wasser-
spiegel, erzeugt nie einen im vorliegenden Sinne kritischen Abflusszustand.

— Kritischer Abfluss ldsst sich lediglich durch Verdinderung der Kanalsohle,
der Kanalbreite, des Durchflusses oder Kombinationen verschiedener Vari-
anten erzeugen.

— Wird lediglich dic Kanalsohle = (x) variiert, so kann sich kritischer Abfluss
nur an wehrférmigen Kérpern einstellen, der kritische Querschnitt fallt mit
dem Schellclquerschmtl zusammen.

— Wird lediglich der Kanalquerschnitt F (x) variiert, so kann sich kritischer
Abfluss nur bei Verengungen einstellen; der kritische Querschnitt fallt mit
dem engsten Querschnitt zusammen.

— Wird lediglich der Abfluss ortlich variiert, so kann sich kritischer Abfluss
nur am Anfang (am Ende) der seitlichen Ausflussstrecke (seitlichen Zufluss-
strecke) einstellen.

— Fir die Wasserspiegelneigung im kritischen Querschnitt lassen sich einfache
Ausdriicke herleiten, die sich jedoch nur auf relativ geringe Abflusstiefen
(Flachwasser) anwenden lassen.

Wie sich anhand der Gleichungen flr instationdre Abfliisse
(Gleichungen von de Saint-Venant, siehe z. B. /19/) weiterhin
zeigen ldsst, konnen sich Storungen des Abflusses fiir Fr< 1
kanalaufwérts und -abwirts bilden, wéhrend sie sich fiir
Fr>1 lediglich stromabwirts fortpflanzen. Der Begriff der
kritischen Tiefe stellt deshalb neben der Moglichkeit der Ab-
flussmessung auch ein fiir die Berechnung von Stréomungen in
offenen Kanilen unerldssliches Hilfsmittel dar (vergl. insbe-
sondere Kapitel 5).

Die kritische Tiefe fiir den Rechteckquerschnitt ist bereits in
(10) mitgeteilt worden, fiir das Kreisprofil dagegen kann kein
einfacher funktioneller Zusammenhang angegeben werden.
Bild 2 b) zeigt die graphische Auswertung fiir die relative
kritische Tiefe y,=h,/D in Abhdngigkeit des relativen Durch-
flusses Q/(gD%) '* /13/.

Beispiel

Fiir das Beispiel nach Kapitel 2 ergibt sich mit Q/)/¢gD’ =14/
1/9,81-0,95=0,58 fiir y, = 0,777, also #,=0,777-0,9=0,70 m.
Infolge h.> hy herrscht fir Normalabfluss schiessender Ab-
flusszustand. Mit y,=0,777 folgt nach Gl. (7) fir F./D*=0,655,
also fur F,=0,655-0,9=0,53 m?, womit V,=Q/F.=14/
0,53=2,63 m/s.

Es ist zu beachten, dass die Definition Fr=V/|/gh nur im
Rechteckprofil gilt. Allgemeine Profile basieren auf der Bezie-
hung

V:B
(15) A =22

gF
mit B=dF/dh als Wasserspiegelbreite.

4. Die konjugierten Tiefen

Wie in Kapitel 3 festgestellt, entspricht die Bedingung Fr=1
einem Fliesswechsel. Unter der Voraussetzung konstanter
Energie ldsst sich jedoch lediglich der Ubergang Stromen-
Schiessen erzeugen. Neben der Kontinuitits- und Energie-
Gleichung muss deshalb auf den Impulssatz zurtickgegriffen
werden. Dieser in der praktischen Hydraulik wenig geldufige
Satz besagt, dass die Summe der auf ein beliebig definiertes
Kontrollvolumen wirkenden &usseren Krifte verschwindet.
Die vorteilhafte Wahl des Kontrollvolumens entscheidet
grundlegend tiber die Aussagekraft des Resultats.

Der Impulssatz entspricht einer Vektorbeziehung, bestehend
aus den Komponentengleichungen in die drei Raumrichtun-
gen. Er leitet sich direkt aus dem zweiten Axiom von Newton
ab.

Die einfachste Anwendung des Impulssatzes findet sich im
prismatischen Rechteckkanal konstanten, geringen Gefiilles.
Die Komponentengleichung in Fliessrichtung lautet mit
Bezug auf Bild 3

(16) g "ppldFl + |~pl/,_,\dQ + gb "pp,,sincod_\' =

g [P]’zsz + [PV:.de + gb ‘ pJyhdx

mit «1» und «2» als Bezeichnung flir zwei Referenzquerschnit-
te, V, als Geschwindigkeitskomponente in x-Richtung, J; als
Reibungsgradient und p als Dichte.

(16) vereinfacht sich unter den folgenden Voraussetzungen:

— «I»und «2» entsprechen den Querschnitten vor und nach
der eigentlichen Storstelle,

— in diesen Querschnitten herrscht niherungsweise hydro-
statische Druck- und uniforme Geschwindigkeits-Vertei-
lung,

— die Dichte ist konstant und gleich der Dichte von Wasser,

— die Gefillskomponente wird durch die Wandreibungs-
komponente kompensiert.

o
o
i
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Bild 3. Kraftegleichgewicht fiir den ebenen Wasser- )
sprung Bild 4. Vereinfachte Darstellung des Wassersprungs 3 @ = Dﬁ e
%
Bild 5. Wassersprung im Kreisprofil mit a) durchwegs Freispiegelabfluss und b) Ubergang vom Freispiegel- 1 VJ'gh1]
zum Druck-Abfluss
i 1 3 5 7 9 n

Bild 6. Linge des Wassersprungs Lih, in Abhdingig-
keit von Vl/'l/gth1 und hy/D nach Kindsvater |22/:
h/D=02(4) 04 (H) 06 (®); volle Zeichen

bedeuten durchgehenden Freispiegelabfluss, wihrend
offene Zeichen auf Abfluss unter Druck im Unter-
wasser hinweisen, vergl. Bild 5

Unter diesen Vereinfachungen entsteht

b 0> _ b 0

(17) = +
2 gbh, 2 gbh,

mit b als konstanter Kanalbreite. Durch Einfthrung der
Froude-Zahl Fri=0%/(gh*h}) folgt fiir das Verhiltnis
Y=h,/h, der konjugierten Tiefen

(18) Y= WT+8F3 = 1).

Durch Anwendung des Energiesatzes

q7=m+AH=m+ 91
2¢b*hy 2¢b*h;

(19 H, = h, + + AH

ergibt sich direkt fiir den mechanischen Energieverlust

(20) Ay = =)
4hihy,

oder niherungsweise nach /17/

AH _ (1 _ Q)
Fr,)

H,

Die Giltigkeit von (18) ist durch umfangreiche Versuche
nachgewiesen worden, vergl. z. B. /33/. Die Ubereinstimmung
zwischen Messung und Rechnung ist so verbliiffend, dass eine
genauere Analyse angebracht erscheint.

In der Berechnung des klassischen Wassersprung-Problems
wird offensichtlich das Kontrollvolumen geschickt gewiihlt,
und die Fehler aufgrund der verschiedenen Annahmen kom-

(21)

pensieren sich gut. In den Querschnitten «I» und 2» darf

effektiv mit hydrostatischer Druckverteilung gerechnet wer-
den, oder der Einfluss eventueller Abweichungen wirkt sich
nur unwesentlich auf die Losung aus. Ferner ist entweder
J,~J, (nahezu Normalabfluss, siche Kapitel 5), oder die
Linge des Wassersprungs ist klein im Vergleich mit der Kanal-
ausdehnung.

Wie an anderer Stelle gezeigt /9/, darf der Einfluss der Nicht-
uniformitit der Geschwindigkeitsverteilung in der Tat fUr
hydraulische Berechnungen hiufig vernachlissigt werden.
Energie E und Impuls 7, in Achsenrichtung an der Stelle
x =X, berechnen sich nach
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: ~12d
(22) E=[Lag+| Q
pp 2g
(23) I.= [pgp-dF, + [V.dQ
entsprechend
(24) E=Q@+QQ>
2gF?
bh? w?
25 L=g|—+ "=
- SN
mit
(26) a = ﬂ:
Q3/F?
V. VdF
(27) p=—"»—n
Q*F

als Geschwindigkeitsbeiwerte mit Bezug auf den Energie- und
Impulssatz. h stellt die Druckhéhe des Abflusses dar. Unifor-
me Geschwindigkeitsverteilungen bedeuten a=B=1. Wie
sich zeigen lasst /9/, gilt a>B>1 sowie nidherungsweise

(28) o =p3.

Obwohl (18) eine einfache Bezichung fiir die konjugierten
Tiefen darstellt, ldsst sich durch Anwendung des Impulssatzes
in Fliessrichtung x lediglich die Sprungstelle nach Bild 4 be-
rechnen. Hingegen gelingt es weder die Wassersprunglinge L,
noch das interne Fliessverhalten, also beispielsweise die Luft-
aufnahme oder Riickstromungszonen zu ermitteln. Kirzlich
ist es durch Berticksichtigung der Ab/dsungszone oberhalb der
Fliesszone gelungen, Grossenordnungen der beiden Zonen
anzugeben /11/. Dabei liess sich feststellen, dass lediglich
durch den Einbezug beider Zonen verniinftige Ansitze resul-
tieren. Bis heute ist es jedoch noch unmaoglich, den komplet-
ten, internen Fliessmechanismus eines ebenen Wassersprungs
befriedigend durch dic Rechnung zu beschreiben.

Durch Experimente lassen sich Angaben tber die Wasser-
sprunglinge L gewinnen. Diese konnen jedoch lediglich als
Richtwerte auflgefasst werden, da eine eindeutige Abgrenzung
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des Sprungs nicht moéglich ist. Fiir den Wassersprung im
prismatischen Rechteckkanal mit kleinem Gefille gilt

29) L ~ 6h,

wobei diese Angabe einem oberen Wert entspricht.

Im Kreisprofil muss grundsatzlich zwischen zwei Wasser-
sprungtypen unterschieden werden, siche Bild 5. Entweder
herrscht im Unterwasser Freispiegelabfluss, #/D <1, oder die-
ser Gerinneabschnitt steht unter Druck. Die zugehorigen kon-
jugierten Abflusstiefen /1,/D und /i,/D in Abhdngigkeit von
O)/gD5 lassen sich aus /13/ entnehmen.

Uber die Linge des Wassersprungs kann bis heute nur wenig
ausgesagt werden, da entsprechende Versuche weitgehend
fehlen. Erwdhnenswert sind die Beobachtungen von Kindsva-
ter /22/ fir Kreisprofile; eine Auswertung der Resultate fiir
die beiden Fliesszusténde ist aus Bild 6 zu ersehen. Herrscht
im Unterwasser Freispiegelabfluss, so variiert die Wasser-
sprunglinge fiir verschiedene, relative Fiillhohen lediglich mit
der zur Froude-Zahl analogen Kenngrosse V', /|/gh,, wihrend
flir den zweiten Abflusstyp eine zusétzliche Abhdngigkeit von
der relativen Oberwassertiefe /1,/D auftritt. Generell scheinen
Wasserspriinge mit Abfluss unter Druck eine kiirzere Linge
aufzuweisen als durchgehende Freispiegelabfliisse.

Die angegebenen Versuchswerte miissen insofern vorsichtig
verwendet werden, als dass diese bis heute durch keine weite-
ren Messungen gepriift worden sind, und beispielsweise der
Einfluss verschiedener Durchmesser, Rohrmaterialien und
Rohreinbauten nicht erfasst ist. Analoge Versuche in ge-
schlossenen Rechteckkandlen verdanken wir Haindl /18/.
Zum Abschluss sei noch darauf hingewiesen, dass sich die
Wassersprungoberfliche entsprechend der im Oberwasser
herrschenden Froude-Zahl einstellt, siche beispielsweise
Chow /3/. Grundsitzlich sind ondulierende Spriinge mit und
ohne Deckwalze, solche mit einer schwachen oder ausgepriig-
ten Deckwalze voneinander zu unterscheiden. Diese grobe
Klassifikation gilt jedoch nur fiir fast rechteckige Profile. Je
mehr sich das Profil von dieser Grundform unterscheidet,
desto rdumlicher wird der sich einstellende Sprung (schiefe
Front, einseitige Beaufschlagung, variierendes Querprofil,
pulsierender Abfluss).

5. Stau- und Senkungskurven

Unter Stau- und Senkungskurven versteht man im allgemei-
nen die linienformige (eindimensionale) Darstellung des Was-
serspiegels bei stetig-verdnderlichen Abfliissen. Im Speziellen
besitzt der Kanal einen prismatischen Querschnitt, konstantes
Gefille, konstante Rauhigkeit und konstanten Durchfluss.
Stetig verdnderliche Abfliisse lassen sich durch Differential-
gleichungen beschreiben. Je nach dem Verhiltnis einer typi-
schen Abflusstiefe /i, zu einer typischen Wellenlinge der
Oberfliche % unterscheidet man Flachwasserabfliisse
(ho/k — 0), schwach gekriimmte Abfliisse (h,/h < 1), ge-
kriimmte Abfliisse (/,/A~1) und stark gekrimmte Abfliisse
(hy/h — o). Bis heute liegen keine Gleichungen vor, die
erlauben, die Gesamtheit dieser Abflusstypen zu beschreiben.
Die einfachsten Bezichungen gelten fiir Flachwasserabfliisse,
die, wic unten gezeigt wird, hydrostatische Druckverteilung
aufweisen. Werden lediglich Variationen in der Fliessrichtung
beriicksichtigt, so lassen sich die verallgemeinerten Gleichun-
gen von de Saint-Venant anwenden /37/

1 oV VoV 2 9 - 2

L3V o8l O, =D BF

& ges & US gF ds
(30)

+ Lhcosw) = J,—J, + =" d_Q
os gF ds
(31) o, 0 ypy =92
o os ds

mit ¢ als Zeit, s als wenig geneigter und gekrimmter Lings-
koordinate, V' als mittlerer Fliessgeschwindigkeit, B als
Geschwindigkeitsbeiwert, F als Querschnittsfliche, 4 als
Abflusstiefe, o als Sohlenneigung, J; als Tangens der Sohlen-
neigung, J, als Energieliniengradient, u als seitlicher Zufluss-
geschwindigkeit in Hauptfliessrichtung, dQ/ds als seitlicher
Zu- oder Ausfluss, vergl. Bild 7. Die beiden Unbekannten, V
und /7 in Abhdngigkeit der Lage s und der Zeit ¢ lassen sich
bei bekannter Gerinnegeometrie, gegebenen Zu- und Ausflis-
sen und bekannten Beziehungen fiir f durch Vorgabe einer
Anfangs- und zweier Randbedingungen 16sen /23/.

Haufig kann der betrachtete Gerinneabschnitt vereinfacht als
Rechteckkanal ohne seitliche Zu- und Ausfliisse betrachtet
werden. Ist die Geschwindigkeitsverteilung nahezu uniform,
B =1, so vereinfachen sich die Impulsgleichung (30) und die
Kontinuitédtsbeziehung (31) auf

WV VoV 0o
(32) LALATSLE LR O
gdr gix Ox
(33) 2 =o,
ot ox

also den Originalgleichungen nach de Saint-Vernant. Im allge-
meinen sind sie lediglich durch numerische Verfahren l6sbar.
Betrachtet man nun stationédre Abflisse, ¢/6t =0, so gilt in
Analogie zum System (30), (31) die folgende Gleichung fir die
freie Oberfldche h(x) /9/

g 4 BCOF o w0 40 0> dp

(34) d_l;= ' gF? 0Os : gF? ds  gF* ds
© o ds | ~&5F
g3 oh

Diese gewohnliche Differentialgleichung erster Ordnung ldsst
sich fiir bekannten Querschnitt F(/, s) Geschwindigkeitskoef-
fizient B (s), Zu- oder Ausfluss Q(s) mit zugehoriger Ge-
schwindigkeit « in Fliessrichtung s, bekannter Sohlengeome-
trie J,(s) und bekanntem Energieliniengradienten J,(s) unter
Vorgabe einer Randbedingung l6sen.

Wie bereits festgestellt, lasst sich (34) oft vereinfachen. Ver-
nachlissigt man den Einfluss von f, setzt man also p=1 und
dp/ds=0, sind zudem die seitlichen Zu- und Ausfliisse im
Vergleich zum Durchfluss klein und verliuft die Kanalachse
gerade, s — x, so gilt anstelle von (34)

2 '?F

g NIt %* =

(35) L br &
dy | Q7 OF
¢F* Oh

wobei J, Verluste infolge Wandreibung und infolge von Veren-
gungs- und Erweiterungsstrecken beinhalten kann. Wie sich
durch Ableiten zeigen lisst, entspricht (35) dem System
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0?
36 H=% ——
(36) + h+ 2o
(37) H =-1,
mit dz/dx= —J,. Die erste dieser Bezichungen stellt die be-

kannte Gleichung nach Bernoulli fiir nahezu parallele Strom-
linien dar (hydrostatische Druckverteilung und nahezu uni-
forme Geschwindigkeitsverteilung), wihrend die zweite den
Energichaushalt lings der Fliessstrecke vorschreibt.
Fiir prismatische Kanile mit konstantem Gefille reduziert
sich (35) schliesslich auf die spezielle Gleichung von Stau- und
Senkungskurven
(38) dh _ dde

dx 1 — Fr
mit Fr nach (15). J, entspricht dem konstant vorausgesetzten
Sohlengefille, und J, beinhaltet im Gegensatz zu J, lediglich
Wandreibungsverluste.
Im allgemeinen lasst sich Gleichung (38) nur numerisch losen,
wobei zu beachten ist, dass die rechte Seite lediglich von der
Abflusstiefe h abhingt, also ein Integral unter Angabe einer
Randbedingung zu l16sen ist.
Die Berechnung von Stau- und Senkungskurven stellt eines
der iltesten Probleme der analytischen Hydraulik dar. Die
wohl bekannteste Losung verdanken wir Bresse, der vor gut
100 Jahren den Fall eines sehr breiten Rechteckprofils einer
geschlossenen Losung zuftihrte. Da das Reibungsgefille J,
und die Froude-Zahl Fr je nach Querschnittsform variieren,
muss jede Profilform gesondert betrachtet werden. Chow
betrachtet die Klasse der Potenzfunktionen F=ah" (n=1,
Rechteck, n=3/2 Parabel, n=2 Dreieck, usw. mit a als von
/ unabhingige Profilkenngrésse) /3/; wichtige Profiltypen wie
das Trapez- und den teilgefiillten Kreis lassen sich mit diesem
Ansatz jedoch nicht behandeln. Horler /20/ beschreibt einen
iterativen Berechnungsweg fiir den letzteren, der Berech-
nungsaufwand tbersteigt jedoch meistens die zur Verfliigung
stehende Zeit.
In /8/ wird eindringlich auf den Néiherungscharakter der Be-
zichung (38) hingewiesen. Streng genommen gilt die Glei-
chung lediglich fiir hydrostatische Druck- und uniforme
Geschwindigkeitsverteilung in prismatischen Kandlen mit
konstanter Rauhigkeit, unverdnderlichem Sohlengefille und
konstantem Durchfluss, Forderungen, die sich in der Realitét
nur selten einstellen (vergl. auch Kapitel 2). Deshalb ist in
derselben Verdffentlichung der Versuch unternommen wor-
den, Gleichung (38) auf beliebige Profile mit schwach verin-
derlicher Kanalcharakteristik anzuwenden. Bevor wir auf
diese Berechnungsmethode eintreten, soll (38) diskutiert wer-
den.
Ausgezeichnete Punkte der Losung von (38) entstehen fir

a) J=J, Fr#1 <=> h'=0, der Wasserspiegel verlduft
parallel zur Sohle; fiir #”” #0 herrscht Pseudo-Normalab-
fluss (Extremwert), wihrend fiir #/”"=0 sich Normalab-
fluss-Zustand einstellt;

b) Fr=1,J#J,<=> " > o0, der Wasserspiegel verlduft
vertikal zur Sohle;

¢) Fr=1und J,=J, diec Differentialgleichung besitzt einen
singuldren Punkt, die zugehorige Wasserspiegelneigung
A" muss durch hohere Ableitungen ermittelt werden.

Wie sich zeigen lisst /9/ ist Zustand b) nicht realisierbar. Tritt
ein Fliesswechsel aufl, Fr=1, so gilt in jedem Falle Bedingung
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¢). Da ein Fliesswechsel ein ausgesprochen lokales Phidnomen
darstellt, also Reibungskrifte den Abfluss nur sekundér zu
beeinflussen vermdgen, kann Gleichung (38) in erster Néhe-
rung trotzdem angewandt werden. Da voraussetzungsgemass
B und Q nicht mit x variieren, ldsst sich somit Beziehung
(K. 2) nach Anhang I als singuldre Wasserspiegelneigung be-
nutzen. Der Ubergang Schiessen-Stromen kann jedoch nicht
durch (38) beschrieben werden, da neben den Wandreibungs-
kriften zusitzliche Stossverluste auftreten.

Beziehung (38) stellt das Verhéltnis von Reibungskraften und
Gewichtskomponente in Fliessrichtung (fir J. —J, =0
herrscht Normalabfluss) zu den dynamischen Kréften (fiir
Fr—1=0 herrscht kritischer Abfluss) dar. Fiir Stau- und
Senkungskurven treten somit die Einfliisse des Normalabflus-
ses und des kritischen Abflusses kombiniert auf. Beschrankt
man sich auf positive Sohlengefille, J; > 0, so ergibt sich mit (4)

v?
-
a/3 G2
(39) R A O A L
dx 1 — Fr? 1 — Fr?

wobel o =0 (K, J,, Profilform). Im Rechteckprofil nimmt o
die folgende Gestalt an

g 20\
(40) o= —ol— I + —) :
K2Lh™ b

Wie sich zeigen ldsst, treten in der Berechnung von Stau- und
Senkungskurven mindestens sechs voneinander unabhdngige
Parameter auf. Da sich die Losung nur flir Spezialfille analy-
tisch bestimmen lésst, ist man bestrebt, diese fiir die praktisch
wichtigen Fille diagrammhaft darzustellen. Allein, mit dieser
grossen Parameterzahl ergibt dies eine umfangreiche und un-
handliche Auswertung. Es bieten sich deshalb die beiden
folgenden Losungsvarianten an:

— entweder wird (38) durch Definition aller bendtigten Para-
meter direkt numerisch fir den zu untersuchenden Fall
integriert,

— oder (38) wird weiterhin vereinfacht, damit eine Darstel-
lung mit maximal drei Parametern entsteht.

Wird der Giiltigkeitsbereich der Ausgangsgleichung kritisch
beleuchtet /8/, so stellt man fest, dass sich eine gesteigerte
Genauigkeit der ersten Losungsvariante aufgrund von (38)
meistens nicht rechtfertigen lisst. Die vereinfachte Berech-
nungsmethode kann als relevant betrachtet werden, falls im-
merhin die beiden ausgezeichneten Abflusstiefen, die kritische
Tiefe und die Normalabflusstiefe, durch das Resultat wieder-
gegeben werden. Die Stau- und Senkungskurven selbst (Uber-
gangskurven zwischen kritischem Zustand und Normalab-
fluss-Zustand) erfahren dann nur eine geringfiigige Variation
von der exakten Losung nach (38) /8/.

Da die eindimensionale Theorie, in der lediglich Variationen
in der Fliessrichtung x berticksichtigt werden, einer ebenen
Behandlung fiir den Abfluss im Rechteckprofil gleichkommt,
liegt der Gedanke nahe, die erwihnten Ubergangskurven
anhand eines rechteckigen Ersatzprofils zu ermitteln. Ersetzt
man J, in der Klammer von (39) durch die Normalabflussbe-
ziehung (1), so entsteht

,M<H4mj“
y T
(41) & =8
, dx L — (/)
mit
42) X =Jxlhy,y = hlhy, ® = hy/b, f = hth,
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wobei sich /1y und /. auf das gegebene (nicht unbedingt recht-
eckige) Profil beziehen. Wie sich zeigen ldsst /8/ iibt der
Formbeiwert @ mit 0 <® < oo nur einen sehr untergeordneten
Einfluss auf den Verlauf y(X) des Wasserspiegels aus. Als
Mittelwert wird deshalb ®=1 gewihlt, womit anstelle von
(41) die folgende, vereinfachte Bezichung fiir den Verlauf der
Stau- und Senkungskurven tritt

| — <1+2’1’>43 v,]()]
dy 3 ’

dx 1 — ()

Eine geringfiigig abgednderte Form dieser Bezichung dient als
Ausgangsgleichung in /8/.

Die allgemeine Losung y (X, /) wird durch Angabe einer
Randbedingung erhalten. Um keine zusitzlichen Parameter
berticksichtigen zu miissen, werden diese asymptotisch ge-
wahlt: in der Praxis erkldrt man den Normalabflusszustand
als erreicht, sobald die effektive Abflusstiefe h weniger als 1%
von hy abweicht. Bild 7 a zeigt die entsprechende Auswer-
tung. Darin lassen sich grundsétzlich sechs Zonen unterschei-
den, die durch die Kurven y=1, y=/und f= 1, entsprechend
h=hy, h=h, und h.,=h, voneinander getrennt sind. Fiir
»< (>) 1 entstehen Senkungs- (Stau-) Kurven, fir y< (>)f
herrscht schiessender (stromender) Abfluss, wihrend fiir
f< (>)1 der Normalabfluss stromend (schiessend) ist. Die
sich in den entsprechenden Zonen einstellenden Oberflichen
lassen sich ebenfalls aus der Auswertung entnehmen.

Die vereinfachte Beschreibung der Stau- und Senkungskurven
nach (38) ist durch zwei Grundmerkmale charakterisiert:

(43)

— der Normalabfluss wird immer asymptotisch erreicht, die
Gerade y=1 (h=hy) wird nie geschnitten,

— der kritische Abfluss y=/'(h=h,) wird von allen Abfluss-
profilen /A(x) vertikal geschnitten, mit Ausnahme der
Kurve f=1 fiir y=1, in dem entweder y' =0 oder y’ = 16/27
(30,6).

Wie bereits im Kapitel 3 erwihnt, ldsst sich ein Wasserspiegel
mit vertikaler Neigung nach Bild 7 a nicht realisieren. Anders
ausgedriickt verliert Gleichung (38) ihre Giiltigkeit, falls die
Wasserspiegelneigung und -krimmung bestimmte, obere
Grenzwerte tiberschreiten. In diesen Fillen muss das System
(36), (37) durch /15/

(44)
Q? 2hH"—h' . ft ‘2
=z +/ | hz!" — Wz — z'?),
H +h+ 2gF-’( =t 3 +h 1 )
(45) H=—1J

ersetzt werden, wobel ()" und ()" die erste und die zweite,
gewohnliche Ableitung nach x bedeuten. Sind die Neigungen
und Krimmungen des Wasserspiegels /i(x) und der Kanalsoh-
le z(x) sehr klein, so reduziert sich der Klammerausdruck von
(44) auf die Einheit, also Gl. (44) auf (36). Wird anderseits der
Klammerausdruck durch (14 ®) dargestellt, so muss ‘ [\ \ <0,5
bleiben, da (44) lediglich die erste Approximation einer allge-
meineren, heute jedoch noch unbekannten Gleichung dar-
stellt.

Durch Bildung von H’ aus (44) und Einsetzen von (45) ent-
steht ecine gewohnliche, aber nicht-lineare Differential-
gleichung dritter Ordnung fiir die Unbekannte A(x). Im Ge-
gensatz zur nullten Approximation, (35), ergeben sich dann
insbesondere Probleme bei der Wahl der nun ndtigen drei
Randbedingungen 7h(xy)=ho. h'(xe)=hi und h"(x,)="hi

sowie bei der Angabe eines Konvergenzkriteriums. Bis heute

sind lediglich einige Berechnungen anhand des Systems (44),

(45) gegliickt, daraus ist der weit gesteigerte Arbeitsaufwand

sowie die entstehende Vielfalt der Losungen gut ersichtlich

/1].

Die vereinfachte Diskussion von (44) gelingt durch Betrach-

tung des sogenannten Pseudo-Normalabflusszustandes, fiir

den J,=J;. Die Energielinie verlauft dann parallel zur kon-
stant geneigten Kanalsohle. Grundsétzlich ergeben sich dann
die folgenden Moglichkeiten von Abflussformen /16/, vergl.

Bild &:

a) Einzelwellen (sogenannte Solitdrwellen) mit konstanter Abflusstiefe /1,
fir x — £ o0; fur A, /hy> 2 bricht jedoch der Wellenkopf, und die
Annahme einer zur Sohle parallelen Energielinie ldsst sich nicht mehr
rechtfertigen.

b)  Uniformer Abfluss mit s, =hy als asymptotische Losung des Falles a).

¢)  Stetig abnehmende Abflusstiefe in Fliessrichtung, entsprechend dem Ab-
flussprofil tiber sogenannte Abstiirze /14/.

d)  Ondulierende Wellen, die dem Unterwasserbereich des ondulierenden
Wassersprungs entsprechen; sie lassen sich durch elliptische Funktionen
«cn» ausdriicken und heissen deshalb im Gegensatz zu den symmetri-
schen Sinuswellen Cnoidalwellen.

Wie man weiterhin zeigen kann, lassen sich die Félle a) und

c) lediglich fir Fr,> 1 realisieren, wihrend fiir den Fall d) die

Beschriankung 0,65 < Fr, <1 auferlegt werden muss mit Fr,

als Froude-Zahl des ungestorten Abflusses. Allein Fall b), der

klassische Fall des Normalabflusses ist keinen Beschrinkun-
gen unterworfen. Wie sich aus dieser Diskussion zeigt (und
auch analytisch fiir kompliziertere Stromungen verifiziert ist

/9/), ubt die allgemeinere Darstellung (44) gegeniiber (36)

insbesondere im Bereich der kritischen Abflisse Einfluss auf

den Wasserspiegel aus. Als Grossenordnung liesse sich der

Bereich 0,7 < Fr<1,5 angeben.

Ubertriigt man diese fiir Pseudo-Normalabfluss gefundenen

Resultate auf die Stau- und Senkungskurven, so muss der

oben angegebene Bereich von Froude-Zahlen bei der Anwen-

dung von Bild 7 a ausgeschlossen werden. In der Praxis ent-
sprechen jedoch gerade diese Abflussbereiche ausgesprochen
lokalen Erscheinungen, die nur unwesentlich auf die tibliche

Ausdehnung der Stau- und Senkungskurven Einfluss nehmen.

Mit Bezug auf die gesamte Darstellung der Oberfliche kann

deshalb das Diagramm zu verniinftigen Naherungslosungen

fithren, falls man sich der Beschrinkungen klar bewusst ist.

Beispiel

Fir das bereits betrachtete Beispiel mit O=1,4 m?3/s,
D=09m, K=80 m'"/s, J,= 1% ist die Stauwurzel zu suchen,
falls an der Ausgangslage ein Gefillsknick mit Fliesswechsel
Stromen-Schiessen vorliegt.

Mit hy=0,575 m, h.=hy=0,70 m folgt fir hy/hy=1,22 und
fir h,/hy=1,22. Nach Bild 7 a ergibt sich dann als Integra-
tionskonstante Joxo/hy= —0,63; fir h/hy=1 ist Jx/hy=0,
womit L=0—(—0,63-0,575/0,01)=36 m. Der Einfluss der
Senkungskurve betrigt somit ab Gefillswechsel 36 m, fiir
x>36m herrscht demnach Normalabfluss mit A=/h,=
0,575 m.

6. Zweiphasenstromung Wasser-Luft

In der hydraulischen Praxis sind hauptsichlich zwei Anwen-
dungsgebiete der Zweiphasen-Stromung Wasser-Luft von
breiterem Interesse:

— der bereits in Kapitel 4 behandelte Wassersprung,
— die natiirliche Selbstbeltiftung bei Abfliissen mit hoher
Geschwindigkeit.

259
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A
dQ/dx
a) b)
Q P
— e ==
c) I~ @
a) ‘ _
Bild 8. Mégliche — Abflussformen  fiir ~ Pseudo-
Normalabflusszustand nach |16/ a) solitire Welle,
¥‘ = b) uniformer Abfluss, ¢) Abfluss tiber einen Absturz,
\*0 d) ondulierende Welle
h
4 B
b)””ﬁ% hg/hw
. T ” e i

Bild 7. Bezeichnungen fiir Abflussgleichungen in offenen Kandlen: a) Grundriss,

Bild 7 a. Allgemeine Lisung der Stau- und Senkungskurven in beliebigen prismatischen Kandlen mit konstan-

ter Rauhigkeit, Neigung und unverdnderlichem Durchfluss

b) Léngsschnitt 2,2

18

16 16 14

14

1,2 1 08 05

@ = 3.2 0
h./h 1
/ ¢ /‘ /@ 0 02 04 06 08 1 12
26 h, /b
=, L7 “
\ h[h"—-&ﬁ Bild 9. Verhdlis der Abflusstiefe des Gemisches zu
derjenigen von Reinwasser, hy/h,, in Abhingigkeit
/ der relativen Fiilthéhe hy/b und n=(hK? sin3w/
— \[ / 2 / / @3)" fiir das Rechteckprofil der Breite b
_\\\ = = 1.6 =
> \ \AJV / / // 1
J; x/h{] \ e 12 // J x[hl\ 08 L
8 7 —el =g S NN L LNy | ' | Fr
Tt T T F T o\ 7 i ¢ %% 'Bou
L — s 04
1.9'/ / / \_\ ‘
/ 0’2 .
‘.5@ _// / / j I @ 0O 02 04 06 08 1
i 4 h./hy =
14 12 1 0.8 050 = N/

Bild 10. Verhdltnis der Boussinesq- zur Froude-Zahl

Im folgenden beschrinken wir uns lediglich auf die Darstel-
lung der Abflisse, bei denen eine Selbstbeliiftung eintritt.
Eine Einphasen-Stromung ist vollstindig beschrieben, falls
die Druck- und Geschwindigkeits-Verteilung an jedem Ort
des Abflussgebictes bekannt ist. Dieselbe Stromung ist hy-
draulisch vollstindig beschrieben, falls in einem Querschnitt
lediglich die Abflusstiefe und die mittlere Geschwindigkeit
bekannt ist. Im Gegensatz zur hydrodynamischen Darstel-
lung einer Stréomung, in der die Unbekannten von den drei
Lagekoordinaten sowie der Zeit abhédngen, ergibt die hydrau-
lische Rechnung lediglich eine Aussage in Abhiingigkeit der
Lingskoordinate x sowie der Zeit .

In Zweiphasen-Stromungen variiert neben dem Druck und
der Geschwindigkeit ebenfalls die Dichte p=p (x, v, z, 7). Eine
vereinfachte Betrachtungsweise im hydraulischen Sinne ba-
siert aul den Begriffen «Gemisch», «Reinwasser» und «Luft»;
sie sollen im folgenden mit den Indizes g, w und « versehen
werden. Beispielsweise gilt nun fir den Gemischdurchfluss

(46) Q.

Ein Gemischabfluss ist hydraulisch vollstiindig definiert, falls
die Abflusstiefe /1,, die Geschwindigkeit V,, der Durchfluss
0., die Luftkonzentration C'in Abhingigkeit der Lagekoordi-
nate x und der Zeit ¢ bekannt sind.

=0, +0,.

=W

260

im reilgefiillten Kreisprofil

Die bis heute durchgefiihrten Untersuchungen tiber Gemisch-
abfliisse beziehen sich hauptsichlich auf den Normalabfluss-
zustand. Erst in neuster Zeit sind auch Stau- und Senkungs-
kurven /35/ sowie Abflisse tiber Beliftungselemente zur Ver-
hinderung von Kavitationserscheinungen /29/ niher verfolgt
worden. Es wiirde zu weit [tihren, die einzelnen Studien einer
Analyse zu unterzichen, so dass lediglich der Normalabfluss-
zustand in Rechteck- und Kreis-Profilen untersucht werden
soll.

Die wohl interessanteste Studie, die sowohl eine ausgezeichne-
te theoretische wie auch experimentelle Untersuchung ein-
schliesst, verdanken wir Rao et al. /7/, /30/, /31/. Sie bezieht
sich vor allem aul das Rechteckprofil und kommt zu den
folgenden Resultaten:

Die Dichte des Gemischabflusses zur Dichte des Wassers
betrigt

(47)

pe/pv=1—11C
mit C als mittlerer Konzentration;

— [iir das entsprechende Verhiltnis der Froude-Zahlen fin-
det man
(48) Fr,JFr, = (1-C)"

wobei Fr= V| gh;
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— die mittlere Konzentration C geniigt der Bedingung

1

135

(49) e F
=P+ 1
K

C=1

wobei der K-Wert nach Strickler in der Dimension (m'?/s)

eingesetzt werden muss;
— der Energieverlust AH infolge Luftaufnahme betragt

1
(50) AH/h, = —— — 1,13.
‘ 1-C

Mit diesen Angaben kann der Normalabflusszustand des Ge-
mischabflusses vollstindig beschrieben werden. Die Berech-
nung gestaltet sich folgendermassen: Man berechne vorerst
den Abfluss von Reinwasser unter Zuhilfenahme der Formel
von Strickler

(51) Qy = FyK|/SinoRy’ ,

die im Gegensatz zu (1) den Sinus des Gefillswinkels (anstelle
des Tangens) enthdlt. Fur bekannten Durchfluss, Rauhig-
keitsbeiwert und Winkel o erhélt man die Abflusstiefe /., die
Geschwindigkeit V,, und somit die Froude-Zahl Fr,. Mit (49)
folgt unmittelbar die Konzentration C, also auch die Ge-
misch-Abflusstiefe

(52) hyfh, = (1=C)".

Aus (48) berechnet sich die Froude-Zahl Fr,, also auch die
Geschwindigkeit V, des Gemischabflusses. Schliesslich folgt
die Dichte des Gemisches pg aus (47), und (50) gibt Aufschluss
iber die Energiedissipation.

Dieses allgemeine Vorgehen ldsst sich mit Hilfe von Bild 9
vereinfachen, in der /,/h, in Abhdngigkeit von h,/b und der
dimensionsbehafteten Kanalcharakteristik (4,K? sin®w/g3)"
aufgetragen ist. Die weiteren Unbekannten sind in der Praxis
nur von untergeordneter Bedeutung und lassen sich anschlies-
send nach dem oben gezeigten Berechnungsweg ermitteln.
Wie aus Bild 9 ersichtlich, nimmt die Gemischabflusstiefe mit
zunehmender Gerinnerauhigkeit und mit zunehmendem Soh-
lengefille zu. Fir einen bestimmten Wert n besitzt die Kurve
hy/h,(h,/b) einen Maximalwert falls i1,/b — 0, fir h,/b — o«
entsteht jedoch A,/h, =1.

Beispiel

Gegeben sei ein Rechteckkanal mit der Breite h=10 m, der
Sohlenneigung ®=235", der Rauhigkeit K =75 m'"/s. Welches
sind die Abflusscharakteristika flr einen Durchfluss von
Q=950 m?/s, falls Normalabflusszustand vorausgesetzt
wird?

Mit Beziehung (51) folgt ftr die Abflusstiefe /,=1,51 m,
ferner ergibt sich firn= (1,51 - 75% sin? (35“)/9,813)"4 = 1,14
und fiir &,/b=0,151, also mit Bild 9 fir A,/h, =22, womit
schliesslich /1,=3,30 m. Die mittlere Luftkonzentration be-
trigt nach (52) C'=55% und die Froude-Zahl des Gemisches
nach (48) Fr,=0.89 Fr,: Mit h,=1,51m folgt fir Fr,=
950/(10) - 1,51 1/9,81-1,51=16,35, also Fr,=14,5 und
V,=14,5 1/9,81-3,3=82,5m/s im Vergleich zu ¥V, =950/
(10 - 1,51)=62,9 m/s. Die Dichte des Gemischabflusses be-
trigt nach (47) p,=1(1—1,1-0,39)=0,40 t/m* und der Ener-
gieverlust nach (50) AH=3,3(0,45 '~ 1,13)=3,60 m. Wie
sich aus Bild 7 weiter entnehmen lisst, benotigt dieser Abfluss
eine grosse Anlaufstrecke, bis sich die Normalabfluss-Verhilt-
nisse einstellen.

Die wohl interessanteste Untersuchung tiber Selbstbeliiftung

in teilgefiillten Kreisrohren verdanken wir Volkart /36/. Im
Gegensatz zur Studie von Rao et al. werden jedoch alle Ab-
flussparameter der Gemischstromung auf den hydraulischen
Radius R bezogen. Anstelle der Froude-Zahl tritt deshalb die
(physikalisch nicht ganz verstdndliche) Boussinesq-Zahl
Bou=V//gR. Im breiten Rechteckprofil, #/b — 0 entsteht
zwar fiir R=h; die Messwerte Rao’s et al. beziehen sich jedoch
nicht nur auf diesen Grenzfall. Wie sich einfach zeigen lasst,
besteht der Zusammenhang

B . an
Ly (¢e/sing)"?
-

(33)
mit € als halbem Zentriwinkel /36/. Unter Verwendung der
Beziehung fiir die Abflusstiefe in Abhédngigkeit dieses Winkels

h 1
(54) 5= 5(1 —Cosg)
lasst sich die in Bild 10 dargestellte Funktion Fr/Bou(h/D)
ermitteln. Daraus erkennt man, dass Fr~ Bou fiir geringe
Teilfiillung entsteht, fiir tbliche /#/D wird jedoch die Froude-
Zahl kleiner als die Boussinesq-Zahl.
Die Experimente Volkart’s beziehen sich auf die folgenden Pa-
rameterbereiche: 0,11 <J,<0,956, 1,5<0,<1913//s,
0,11<D<0,7 m, was Geschwindigkeiten der Gemischabfliisse
zwischen 1,72 m/s und 10,54 m/s ergab. Aus insgesamt 59 Ex-
perimenten resultiert fiir die mittlere Konzentration C die em-
pirische Beziehung

1
0,02 (Bou,—6)"* + 1’

(55) C=1

woraus sich unmittelbar die untere Grenze der Luftaufnahme zu
Bou,(C=0)= Bou,,=06 ergibt. Die meisten hydraulischen Ver-
suche sind fur Teilfillungen zwischen 0,25 <//D <0,65 ausge-
fihrt worden. Nimmt man als Mittelwert rund h/D=
0,4, so ergibt sich nach Bild 10 fiir Fr~0,85Bou. Eine genaue
Umrechnung ldsst sich einfach mit den beiden Bildern 10 und
11 ausfiihren.

Volkart |36/ vergleicht Gleichung (55) mit Messungen anderer
Autoren im Rechteckkanal (die sich auf Fr, beziechen) auf
Basis der Boussinesq-Zahl, ohne sie vorher entsprechend um-
zurechnen. Wie oben gezeigt, ist dieses Verfahren lediglich fir
sehr geringe Abflusstiefen giiltig. Eine Umrechnung der Mess-
werte Volkarts auf die Froude-Zahl bestitigt jedoch, dass im
teilgefiillten Kreisprofil geringere Luftkonzentrationen als im
Rechteckprofil unter derselben Froude-Zahl Fr, zu erwarten
sind.

Neben (55) findet Volkart experimentell als Verhéltnis der
Geschwindigkeiten

(56) VJV,=1-C2,

sowie fiir das Verhiltnis der benetzten Flichen des Gemisches
zu derjenigen von Reinwasser

(57) F/F,=1—2In(1-C).
Bou,, lisst sich nun folgendermassen schreiben
v, KV/I.R¥ K/ID" ,
(58) Bow, = i = e, o VT (g e
V&R, 'gR, Ve
oder
) 16
| SINECOSEy,
(59) Bou, =% {- (1 — ——)
4 S
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1
) 02 04 06 08 1 Bild 13. Abfluss iiber einen wehrférmigen Kdrper im prismatischen Kanal. Untersuchung der Energiehdhe
im Scheitelquerschnitt falls h"=0 (Wasserspiegel parallel zur Kanalsohle) a) Fr<1, h”>0 entspricht

H=H_ ..

Bild 11. Halblogarithmische Darstellung der redu-
zierten Froude-Zahl Fr/(Q[|/gD?% ) in Abhingigkeir
der Teilfiillung h/D im Kreisprofil nach {15)

H eingetragen.

b) Fr>1, h”" <0 entspricht H =H
der Verlauf der kritischen Abflusstiefe, ausgezogen der Wasserspiegel und strich-punktiert die Energielinie

wm © Fr21, h"=0 entspricht H =H_ . Gestrichelt ist

Bild 14. Anordnungen, in denen sich a) ein kritischer Abfluss einstellen kann (Fr=1) und b) in denen sich

Bild 12. Relative Gemischabflusstiefe h,/D in Ab-
héingigkeit der relativen Abflusstiefe fiir Reinwasser
h,/D und der Kanalcharakteristik »= K[,-"'J D"/ g

lediglich ein relatives Energieminimum ausbilden kann: A Querschnittsvariation, B Sohlenvariation, C
Durchflussabnahme und D Durchflusszunahme

fiir teilgefiillte Kreisprofile A B c D
X-—5030 20 1512 10 8
1 I e a3y
€ —~zz !
; . P | el | T
K} : ! b |
Z B . o L | I
3 a)
N
I i e S , - o
l | — .
i / B —scan [
| I
02 |- — bl ~—— 7 ‘ "
5 h,/D
0 0,2 0,4 0,6 0,8 1 B()jspi()/

mit = K|/J.D"%/|/g. Eliminiert man aus (55) und (57) C, so
ergibt sich eine Beziehung zwischen den Abflusstiefen /,/D,
h,/D und der Kanalcharakteristik ». Diese in Bild 12 ausge-
wertete Relation erlaubt die unmittelbare Bestimmung der
Gemischabflusstiefe /,.

Nach Volkart bedeutet Bou=6 den Beginn der Luftaufnah-
me; aus Bild 12 geht jedoch hervor, dass »~8 denselben
Ubergangsbereich festhilt. Im Gegensatz zur Boussinesq-
Zahl ist » unmittelbar zu berechnen, anhand des Gefilles J,,
der Rauhigkeit K und des Durchmessers D kann deshalb
abgeschitzt werden, ob sich eine Luftaufnahme einstellen
wird. Da die iblichen Rohrdurchmesser im Bereich
0,2<D<3,0m zu finden sind, kann der Einfluss von D"°
weitgehend unterdriickt werden (0,2'2=0,77, 3"°=1,2).
Nimmt man als Mittelwert D=1 m an, so vereinfacht sich das
neue Kriterium auf (K]/J,), =25, wobei K in m'“/s einzusetzen
ist und «z» auf den Ubergang von unbeliiftetem zu beliiftetem
Abfluss hindeutet. Betrachtet man den héufigen Fall eines
Rohres mit einer Rauhigkeit K=85m'"/s, so ergibt sich fiir
das Ubergangsgefille rund J, ,=10%.

Mit Hilfe von %, =8 lassen sich noch weitere «Faustformeln»
aufstellen. Fir hohe Teilftllungen hy/D>1/2 gelten nach
Bild 2 die Approximationen Vy~V, und Qy~Q,, wobei
Index v den Vollfiillungszustand bezeichnet. Ersetzt man
(K//J) in % durch die Vollfillungsgeschwindigkeit
V,=K)/J, (D}4)*", so entsteht fiir

(60) V, = 10/D , D(m) ,

eine Beziehung, die von Volkart schon experimentell gefunden
wurde. Fiir den Durchfluss ergibt sich analog

(61) 0, = 78/D%, D(m) ,
wobei Q,(m?/s).
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Gegeben ein Bemessungsdurchfluss von Q=2,5m?3/s, der
unter einem Gefille von J,=25% und mit einem Rohr der
Rauhigkeit von K=85 m'?/s unter Normalabflusszustand ab-
geleitet werden soll. Welches sind die hydraulischen Abfluss-
kenngrossen?

Unter Vollfillung ergibt sich fiir den Durchmesser
D, = {47 0/ (nK\/T,) 17¥=0,535m. Um keine Abflussinsta-
bilitaten infolge Zuschlagen zu erhalten, wihlt man fir
D=0,7m. Der zugehérige Abfluss unter Vollfiillung be-
trigt dann Q,=5,12 m3/s, womit nach Bild 2 h,/D=0.485
(0Qy/0,=0,488), also hy=h,=0,340 m. Der Parameter x» er-
gibt sich zu »=85)/0,25(0,7)"°/1/9,81=12,8, weshalb mit
Luftaufnahme zu rechnen ist (x>%=8). Mit h,/D=
0.34/0,7=0,486 und Bild 12 folgt fiir A,/D=0,61, also
h,=0,61-0,7=0,43 m.

Nach der Berechnungsmethode von Volkart ergibt sich als
Luftbeiwert f,=1,5, also Q,=1,5-2,5=3,75m?/s. Nach
Fig. 2 resultiert fir Q,/Q,=3,75/5.12=0,73 die Abflusstiefe
h/D=0,62, womit h,=0,43 m.

Nach Bild 11 ergibt sich mit /h,/D=0,485 fir Fr/(Q/
/¢D¥)=4, also Fr,=7,8; mit Bild 10 ergibt sich anschliessend
fur das Verhiltnis Fr,/Bou,=0.8, also Bou, = Fr,/0,8=9,75.
Nach Bezichung (55) folgt dann C=0,127. Mit (7) ergibt sich
fiir die benetzte Fliache F,=0,186 m?, also V,,=Q,/F,=2,5/
0,186=13,5m/s, womit V,=13,5(1-0,127*)=13,25m/s
nach (56).

Als wesentliche Schlussfolgerungen der Untersuchung tiber
den Lufteintrag in Abflisse in Rechteck- und Kreisprofile
lassen sich anfiihren:

[J In beiden Fillen gestattet eine geeignete graphische Aus-
wertung der Versuchsresultate eine unmittelbare Bestimmung
der Gemischabflusstiefen,

[ Im Rechteckprofil tritt die Kennzahl n=(/,K* sindo/
23" als wichtiger Bemessungsparameter auf, im Kreisprofil
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spielt die analoge Grosse x= K|/J,D"° | |/g einen vergleichba-
ren Einfluss auf den Selbstbeliiftungsvorgang.

[ Im Kreisprofil tritt fiir x < 8 keine nennenswerte Beliftung
auf.

7. Zusammenfassung

Die vorliegende Untersuchung beschiftigt sich mit den wich-
tigsten Eigenschaften von Freispiegelabfliissen. Spezielle Auf-
merksamkeit wird dem Rechteck- und Kreisprofil gewidmet,
die wichtigsten Resultate sind unmittelbar aus graphischen
Darstellungen zu entnehmen. Die folgenden Schlussfolgerun-
gen scheinen angebracht:

L.

o

Normalabfluss stellt sich nur nach extrem langer Fliessdi-
stanz ein, auf welcher simtliche Abflussparameter keine
Anderung erfahren; das Fliessgesetz von Strickler gentigt
meistens den Genauigkeitsanforderungen der Praxis, seine
Verallgemeinerung ldsst sich zur Berechnung des Wandrei-
bungsgradienten beliebiger Abfliisse ndherungsweise an-
wenden.

Kritischer Abfluss ldsst sich lediglich durch Variation der
Sohlengeometrie, des Querschnitts des Kanals oder durch
Variation des Durchflusses erzeugen. Da kritischer Abfluss
normalerweise betrichtlich geneigte und gekriimmte
Stromlinien hervorruft, kann die Abflusstheorie mit hy-
drostatischer Druckverteilung nur beschrinkt angewandt
werden.

Die Anwendung des Impulssatzes in Fliessrichtung ergibt
einen Ausdruck fir die konjugierten Abflusstiefen, also der
Tiefen vor und nach dem Wassersprung. Dagegen gelingt
es bis heute nur beschrinkt, Angaben iiber den internen
Abflussvorgang eines Wassersprungs zu machen.

Stau- und Senkungskurven entsprechen im allgemeinen der
linienformigen Darstellung der Wasseroberfliche von ste-
tig-veriinderlichen Abflissen. Der Spezialfall des prismati-
schen Kanals mit konstanter Sohlenneigung und unverin-
derlichem Durchfluss wird einer genaueren Analyse unter-
zogen.

Die meisten Angaben tber die Zweiphasenstrémung Was-
ser-Luft sind experimenteller Natur. Bis heute ist deshalb
noch nicht restlos geklirt, welche Kennzahlen den Luft-
aufnahme-Mechanismus beeinflussen. Die Ausfithrungen
beziiglich des Rechteckprofils beziehen sich auf die Frou-
de-Zahl, diejenigen beztiglich des Kreisprofils auf die
Boussinesq-Zahl.

Anhang 1

Kritischer Abfluss im Rechteckkanal

Nach Bezichung (8) gilt fiir die auf einen bestimmten Quer-
schnitt an der Stelle x, bezogene Energichohe

(A)

QZ

H,=h+—=—
2¢B*h?

wobei Index o nicht wiederholt wird. Darnach ist /, lediglich
abhiingig von der Wassertiefe A, H (h). Es soll in der Folge
untersucht werden, unter welchen Bedingungen /, ein Mini-
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mum (¢*H,/dh? > 0), ein Maxmimum (3% H,/dh* <0) oder ein
neutraler Punkt (6*H,/dh?>=0) darstellt. Mit
oH 0?

B r=1 — =0
) 0h gB*h?

folgt unter Berticksichtigung der kritischen Bedingung (B)
72 2

C_[i* — 3Q — é > 0 h > 0.

ch? eB* it h

Fr=1 erzeugt demnach immer cine minimale Energichohe

(©)

Hs = H‘. min*
Betrachtet man nun die Ableitung von Gl. (A) nach x,
(D) 0A, =h(=F)=0

ox

fir Fr#1 und ' =
6 H

0, so folgt

3020
—Fr?) + —=—— =
) gB*h*

1" (1— h" (1—Fr?)

Fiir Fr<1 und 4”7 <0 (k"> 0) ergibt sich demnach ein Maxi-
mum (Minimum) und fir Fr>1 und 4" <0 (h”>0) folgt ein
Minimum (Maximum) in H,. Fiir /”"=0 ergibt sich schliess-
lich ein neutraler Punkt. Diese drei Fille sind in Bild 13 fir
den Abfluss lber eine variable Sohle (wehrférmiger Korper)
dargestellt. Man stellt fest, dass die beiden Fille Fr<1, /" <0
und Fr>1, h”">0 physikalisch nicht realisierbar sind. Dem-
nach entspricht die relative Energichéhe H, im Scheitel des
Wehres entweder einem relativen Minimum (Fille a), b)) oder
einem neutralen Wert (Fall c)). Dieses relative Energiemini-
mum ist jedoch fiir Fr#1 immer kleiner als die kritische
Energie. Der Fall /’=0, Fr#1 ldsst sich somit im Zusammen-
hang mit kritischem Abfluss ausschliessen. Analoge Resultate
ergeben sich ebenfalls fiir Querschnitts- und Durchfluss-Va-
riation.

Gleichung (10) entspricht der Bedingung fiir eine minimale
Energichohe im Rechteckkanal, Fr=1, unter der Zusatzfor-
derung (12)

(F) =z +

Es soll nun weiter untersucht werden, unter welchen Gegeben-
heiten sich kritischer Abfluss tiberhaupt einstellen kann. Dazu
betrachten wir die Energiehdhe H = H(x) und bilden mit Hilfe
von (10)

H =2 4 b (1—F) + 2 297
gB*h?  gB*h?
400'B° 400l B
G _400® 400w 08
gB*h? gB*hd  gB3n?
3B 4QB'h 3Q*h
gB*h? gB3n’ gB*h*

Setzt man darin die Bedingung fiir kritischen Abfluss ein,
0*=gB*h*, so folgt

2 & 400'B° 400’ hB”
M) o4 2 Qh Q0B 400U hE
gB%h? h gB3n? gB*h? B
3B°h 4B 34

=0.

— + +
B? B h
Nach (F) muss die Summe der Gradienten in =,
simultan mit der Forderung Fr—1=0 verschwinden.

B und Q'
Als

264

wichtigen Spezialfall betrachten wir z’=Q’=B =0, womit
(F) identisch erfiillt ist. Fiir die allgemeine Diskussion verwei-
sen wir auf /9/, der Einfachheit halber beschrinken wir uns
auf den angegebenen Spezialfall. Dieser bezieht sich somit auf
ein Wehr im prismatischen Kanal, einen Venturikanal mit
horizontaler Sohle oder auf einen prismatischen Sammel-
oder Verteilkanal mit horizontalem Boden.

Setzt man die Zusatzforderung in (H) ein, so entsteht

/// ’r 2
0 g &0 _hBT 37,

0 B h
womit

1 h*B” S h*Q”
) \/ i)
0

Fiir einen Venturikanal mit z’=0und Q° 0 ergibt sich dem-

nach fiir die Wasserspiegelneigung im kritischen Querschnitt

h}( = + ITZ—BI:

1l
(K. 1) 3B,

wobei sich zeigen ldsst /9/, dass das positive (negative) Vorzei-
chen einem Fliesswechsel Schiessen-Stromen (Strémen-
Schiessen) entspricht. Infolge der Annahme einer Potential-
stromung (H'= 0 lasst sich (K. 1) lediglich auf den zweiten
Fliesswechsel anwenden.

Analog zu (K. 1) gilt im Falle B'=0 (prismatischer Kanal)

und Q"= 0 (konstanter Durchfluss)
—h,z,
(K. 2) B =2 %

und fiir 7= 0 und B'=0

B, = * hin\
V30,

wobei auch fiir diese Fille lediglich das negative Vorzeichen

physikalische Relevanz besitzt. Kritische Abfliisse stellen sich

demnach ein, falls

— B”>0 (mit z’=z"=0 und Q'=Q"=0), also in Quer-
schnittsverengungen mit dem kritischen Querschnitt an
der engsten Stelle (B"=0),

— /<0 (mit B=B"=0und Q'=Q"” =0), also in Sohlener-
hebungen mit dem kritischen Querschnitt an der hochsten
Stelle (z'=0),

— Q7<0 (mit z’=0 und B'=B"=0), also in Kanilen mit
variablem Durchfluss, mit dem kritischen Querschnitt im
Einlauf (Q' =0, Q" <0) fiir Verteilkanile, oder im Auslauf
(Q'=0, Q7 <0) fiir Sammelkanile. Diese vier moglichen
Fille von kritischen Querschnitten und ihre Gegenstlicke
sind in Bild 14 dargestellt.

(K. 3)

Naturlich lassen sich auch Kombinationen der erwihnten
Grundtypen behandeln, so beispielsweise A und C /9/, A und
D /12/ oder auch A und B nach Bild 14. Weiterhin lassen sich
diese Resultate in analoger Weise und mit entsprechenden
Resultaten auf beliebige Querschnitte anwenden.
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