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Hydraulik Schweizer Ingenieur und Architekt 13/85

Abflusseigenschaften in offenen Kanälen

Von Willi H. Hager, Lausanne

Die hydraulischen Charakteristika von Abflüssen in offenen Gerinnen
werden anhand einer Diskussion von Normalabfluss, kritischem Ab-
fluss, Wassersprung, Stau- und Senkungskurven sowie der Zweiphasenströmung

Wasser-Luft vorgestellt. Die wichtigsten Resultate sind an-
wendungsbezogen dargestellt und Beispiele illustrieren den
Berechnungsgang.

Les caractéristiques hydrauliques des écoulements dans des canaux
découverts sont discutés à l'aide de l'écoulement uniforme, de l'écoulement

critique, du ressaut hydraulique, des courbes de remous et de
l'écoulement biphasique eau-air. Les résultats les plus importants sont
présentés graphiquement, et des exemples montrent la marche à suivre
pour les calculs.

Hydraulics of open channel flows are discussed using the uniform and
criticalflow conditions, the hydraulic jump, the backwater profiles and
the two-phaseflow water-air. The most significant results are represented

in a directly applicable manner, and typical examples illustrate the
computation procedure.

weitgehend fehlende Dimensionierungs-Grundlagen mitgeteilt

werden. Im Kapitel 5 werden die Stau- und Senkungskurven

allgemein untersucht. Ausgangspunkt bilden dabei die

verallgemeinerten Gleichungen für behebige, stetig veränderliche

Abflüsse, die sich anschliessend auf stationäres
Fliessverhalten in prismatischen Kanälen anwenden lassen. Die
verschiedenen Voraussetzungen, denen die heute üblichen
Berechnungsverfahren unterliegen, werden diskutiert und deren
Einfluss auf die Lösung qualitativ verfolgt. Anschliessend

folgt die Darstellung einer allgemein gültigen Methode zur
Berechnung der Stau- und Senkungskurven, die Anwendung
in beliebigen, prismatischen Kanälen findet. Im Kapitel 6 soll
der Einfluss der Selbstbelüftung des Abflusses unter hoher
Fliessgeschwindigkeit im Lichte der modernsten Forschungsergebnisse

studiert werden. Die quantitativen Resultate beziehen

sich dabei wiederum auf die beiden Profiltypen Rechteck
und Kreis.

1. Einleitung

Dem Wasser kommt auch in der modernen Gesellschaft ein
gewichtiger Stellenwert zu. Neben dem ursprünglichen
Trinkbedürfnis basiert unser heutiges Leben entscheidend auf der
Funktionstüchtigkeit der Trink- und Brauchwasserversorgung,

der Abwasserbeseitigung, der Energieerzeugung durch
Wasserkraft, des Hochwasserschutzes und der Schiffahrt, dessen

Benützung zu Heiz- und Kühlungszwecken, neben vielen
weiteren Anwendungsgebieten. Da das kostbare Gut nur selten

dort zur Verfügung steht, wo es gebraucht wird, sind
Transportleitungen in Form von Druckrohren und
Freispiegelkanälen unumgänglich. Da es sich dabei um beachtliche
Fördermengen handeln kann, ist deren sichere Bemessung
von grösster Bedeutung.
In der vorliegenden Studie soll der Versuch unternommen
werden, die hydraulischen Aspekte des Freispiegelabflusses
mit spezieller Beleuchtung der beiden wohl am häufigsten
gebrauchten Kanalprofile, Rechteck und teilgefüllter Kreis,-
näher zu verfolgen. Die Untersuchung richtet sich an den
Praktiker, werden doch die wichtigsten Resultate in einer ihm
unmittelbar zugänglichen Form dargestellt, sowie an den
Theoretiker, da die einzelnen Ableitungen in einer allgemeinen

Betrachtungsweise hergeleitet werden. Dadurch lassen
sich einzelne Problemkreise in ein neues Licht rücken,
eventuelle Einschränkungen von heute üblichen Berechnungsverfahren

aufdecken und Einflüsse verfeinerter Methoden gegenüber

den elementaren veranschaulichen.
Im Kapitel 2 wird der Normalabfluss-Zustand eingehend
betrachtet; zwei heute übliche Berechnungsverfahren werden
verglichen und auf die erwähnten Profiltypen angewandt. Im
Kapitel 3 widmen wir uns dem kritischen Abflusszustand.
Theoretische wie auch praktische Anwendungsgebiete werden
vorgestellt.
Im Kapitel 4 versuchen wir das Phänomen des Wassersprunges

näher zu beleuchten. Insbesondere sollen Unterschiede
zum Fliesswechsel Strömen-Schiessen verfolgt und heute

Abkürzungen
b Breite des prismatischen Rechteckkanals
B Kanalbreite
Bou Boussinesq-Zahl
C mittlere Luftkonzentration
D Durchmesser
E Energie

f Verhältnis f=hjh„
F Querschnittsfläche
Fr Froude-Zahl
g Erdbeschleunigung
h Abflusstiefe
H Energiehöhe
//. auf Kanalsohle bezogene Energiehöhe
/ Impuls
J, Energielinienneigung
¦ff Wandreibungsgradient
J, Sohlenneigung
k äquivalente Wandrauhigkeit
K Wandreibungskoeffizient nach Strickler
L Wassersprunglänge
g spezifischer Abfluss
Q Durchfluss
R hydraulischer Radius
s Längskoordinate
t Zeit
u seitliche Zu- oder Abflussgeschwindigkeit
V mittlere Geschwindigkeit
X Lagekoordinate
y relative Abflusstiefe y—hlhH

Vertikalkoordinate
a Energie-Korrekturbeiwert
ß Impuls-Korrekturbeiwert
E halber Zentriwinkel
6 Sohlenneigung
p Dichte
a Charakteristik für Stau- und Senkungskurven
a> Formbeiwert für Stau- und Senkungskurven
x Belüftungs-Kennzahl in teilgefüllten Kreisprofflen
n Belüftungs-Kennzahl in Rechteckprofilen
\ Reibungsbeiwert nach Prandtl-Colebrook
l typische Wellenlänge
CO Sohlen-Neigungswinkel

Indizes

N Normalabfluss-Zustand
c kritischer Zustand
V Vollfüllungs-Zustand
0 Ausgangs-Zustand

1 Querschnitt oberhalb des Wassersprungs
2 Querschnitt unterhalb des Wassersprungs
g Gemisch-Kenngrösse
a Luft-Kenngrösse
M' Wasser-Kenngrösse
1 Übcrgangzustand von Reinwasser zu Gemisch
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2. Normalabfluss

Unter Normalabfluss versteht man den Gleichgewichtszustand
zwischen treibenden und rückhaltenden Kräften im prismatischen,

geraden Gerinne konstanter Neigung, gleichbleibender
Rauhigkeit und nicht änderndem Durchfluss. Anders
ausgedrückt kompensieren sich unter diesen Voraussetzungen das

Sohlengefälle Js und das Reibungsgefälle Jt. Bekanntlich stellt
sich dieser Fliesszustand nur unter bestimmten Zusatzbedingungen

ein: das Gerinne muss eine genügend grosse
Längsausdehnung besitzen und die geometrischen Eigenschaften
des Kanals dürfen sich dabei nicht ändern. Geringe Änderungen

im Sohlengefälle (Stösse, Setzungen), in der Rauhigkeit
(Inkrustationen, verschiedene Rohrmaterialien, neue und alte
Leitungsabschnitte) und im Durchfluss (Infiltrationen, seitliche

Zuflüsse) können den Normalabfluss-Zustand nicht
unwesentlich beeinflussen. Liegen gar örtliche Störstellen vor
wie Krümmer, Verengungen und Erweiterungen, Abzweigungen

und Vereinigungen, usw., so wird ein Normalabfluss
empfindlich gestört, und der Abfluss benötigt wiederum eine

gewisse Anlaufstrecke, bis sich ein neues Gleichgewicht
einstellen kann. Die in Kanälen häufig vorkommenden Störstellen

lassen den Normalabfluss-Zustand eigentlich nie eintreten,

die Distanz zwischen zwei Störstellen ist dafür meist zu
kurz.
Die exakte physikalische Beschreibung des Normalabflusses
für turbulente Strömungen ist bis heute nicht gelungen. Zwar
liegt eine Fülle von empirischen Ansätzen und Messwerten
vor ßj, 119/, die Natur des Problems lässt jedoch keinen
elementaren Lösungsweg zu. Im Laufe der vergangenen Jahre
sind grundsätzlich zwei Berechnungswege eingeschlagen worden.

Der erste basiert auf der Formel von Manning-Strickler

(1) VH K]/7sRf

mit Fais mittlerer Geschwindigkeit, .ATals Reibungswert nach
Manning-Strickler, R als hydraulischem Radius und Index N
als Bezeichnung für Normalabfluss. Strickler /34/ gibt als

Gültigkeitsbereich von (1) 7,>0.01% (vollturbulente
Strömung) und h>0.0l m (kein Einfluss der Oberflächenspannung)

an. Berücksichtigt man Versuchsergebnisse an steilen
Kanälen, so muss die erste Forderung infolge der natürlichen
Selbstbelüftung erweitert werden zu 0.01% <J,< 10% (siehe 6.).
Nach der Formel von Strickler entspricht K einer für einen
vorgegebenen Kanal zugehörigen Konstanten. Betrachtet
man beispielsweise die Experimente von Marchi /27/, der für
ein und denselben Kanal den hydraulischen Radius R nicht
variiert, sondern lediglich durch Veränderung des Sohlengefälles

den zugehörigen Durchfluss unter Normalabflussbedingungen

misst, so ergeben sich relativ gewichtige Variationen
in K. Normalerweise werden Reibungsbeiwerte in Abhängigkeit

der Reynolds-Zahl aufgetragen. Da in offenen Gerinnen
jedoch fast durchwegs der Einfluss der Froude-Zahl
dominanter ist, findet man in Bild 1 den Verlauf von K(FrN) mit

Fr„ VN/VghN.

Die Messwerte beziehen sich auf glatte und rauhe Rechteckkanäle;

man findet maximale Variationen in Kvon ± 15% für
die ersten und ± 7% für die zweiten.
Wie anderseits Dallwig /5/ feststellt, besitzt (1) nur unter den

folgenden, zusätzlichen Voraussetzungen näherungsweise
Gültigkeit:

— vollrauhes Fliessverhalten,

- 5-lO~4<k/D< 10"' als Angabe für die relative Sandrauhigkeit

mit D als Ersatz-Durchmesser.

Der zweite Berechnungsweg fundiert auf der Turbulenztheorie
und beschreibt den Normalabfluss anhand der Gleichung von
Darcy-Weisbach

(2) VN 2
lA

mit g 9,81 (m/s2) als Erdbeschleunigung und X (—) als
Widerstandsbeiwert. Nach Colebrook gilt für das volle Kreisprofil

(3)
]/X

¦21og k/R,
"Re]/X

'

3,71J^ +

Darin bedeutet Re 4Fv/i? die Reynolds-Zahl mit v als
kinematischer Zähigkeit und k die äquivalente Sandrauhigkeit.

Durch Einführung eines Formbeiwertes/gelingt Marchi
/27/ die verallgemeinerte Darstellung von (3) für geschlossene
und offene Profile. Dieses Verfahren wurde von Bock /2/
durch systematische Messungen überprüft. Die beiden Spezialfälle

glatter (k -* 0) und rauher (Re -> oo) Oberfläche
lassen sich sehr einfach aus (3) finden.
Vergleicht man (1) und (2), (3), so ist in beiden Fällen eine

«Konstante», K oder k, zu bestimmen. Was die Rechnung
selbst betrifft, ist die Anwendung von (1) im Vergleich zu (3)
einfacher, während die zweite Beziehung besser mit den
physikalischen Gesetzmässigkeiten übereinstimmt. Nach den

eingangs festgestellten Bemerkungen scheint es deshalb nicht
erstaunlich, dass auch heute die Darstellung nach Manning-
Strickler in der Praxis derjenigen von Colebrook häufig
vorgezogen wird /28/. Berücksichtigt man zudem, dass die
verallgemeinerte Beziehung

(4) Jf
V2

fPR*12

zur Berechnung des Reibungsgefälles von beliebigen stationären

und instationären Bewegungsabläufen herangezogen
wird, so kann mit Recht behauptet werden, dass (4) mangels
geeigneter anderer Unterlagen volle Berechtigung besitzt. Es

muss in diesem Zusammenhang zudem klar auf die
unterschiedlichen Bedürfnisse von Forschung und Technik
hingewiesen werden: die wissenschaftliche Untersuchung des
Normalabflusses als Turbulenzproblem setzt andere Akzente als
die Praxis. Für die erste soll der Zusammenhang von physikalischen

Gesetzmässigkeiten möglichst genau und vollständig
aufgedeckt werden, während für die zweite Richtwerte und
Dimensionierungsgrundlagen zur Verfügung stehen müssen.
Im folgenden beziehen wir uns deshalb auf Beziehung (4) im
allgemeinen, und auf Gleichung (1) für Normalabfluss.

Im Rechteckprofil der Breite b entsteht mit R bh/(b + 2h)
und (1) für

(5)
Qn

Kviy
<b 2/3

1 + 2<D

mit <£ hN/b. Diese Beziehung ist beispielsweise in /13/
ausgewertet.

Das Teilfüllungsproblem in Kreisprofilen unter
Normalabfluss-Zustand hat wohl unter Sauerbrey /32/ einen vorläufigen
Abschluss gefunden. Für 0.07% </,< 1,54%, 35<QN< 190 <f/s

sind im Kaliber D 0,30 m umfangreiche Versuche durchgeführt

und die Resultate kritisch mit bekannten Ansätzen ver-
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glichen worden. Als wesentlichste Schlussfolgerungen Sauer-

breys lassen sich anführen:

— Die Reibungsformel nach Prandtl-Colebrook ist zur Zeit der beste Kompro-
miss zwischen Theorie und Praxis,

— Eine kleinliche Diskussion über die Rauhigkeit von Rohrmaterialien ist
müssig. In Rohrleitungen stellt sich nach einer gewissen Zeit eine
Betriebsrauhigkeit ein,

— Der hydraulische Radius R ist keine generell gültige, charakteristische
Länge,

— Es ist zweckmässig, den Abfluss bei Teilfüllung auf Vollfüllung zu beziehen,
— Bei hohen Füllungsgraden besitzt die Luftzufuhr einen nicht zu unterschät¬

zenden Einfluss auf den Abfluss, der sich durch Zuschlagen bemerkbar
machen kann,

— Normalabfluss stellt sich in der Praxis nur sehr selten ein,
— Die hydraulisch gute Ausbildung eines Kanalsystems kann dessen Lei¬

stungsfähigkeit entscheidend beeinflussen.

Die von Sauerbrey empfohlene Füllungskurve ist in Bild 2

dargestellt.
Der Ansatz

(6) Qs
Qn

K]/7jf': 4 12

gibt den experimentellen Kurvenverlauf gut wieder. Y h/D
entspricht der Teilfüllung mit D als Kreisdurchmesser. Der
benetzte Querschnitt F lässt sich näherungsweise durch

(V) FID2
4 ,n Y
-73/2(l - -3 4

4 F.
~25~

angeben, womit bei bekannter Teilfüllung direkt die entsprechende

Geschwindigkeit V= Q\F ermittelbar ist.
Es bleibt zu erwähnen, dass Sauerbrey die Normalabfluss-
Beziehung lediglich im Bereich 0<yw<0,95 angibt. Nach
Experimenten lässt sich kein Normalabfluss für 0,95 < YN< 1

realisieren, da geringfügige Störungen ein Zuschlagen
verursachen. Die Teilfüllungskurve QN (hN) ist somit ein-eindeutig,
d. h. für eine bestimmte Abflusstiefe resultiert bei bekannten
Grössen K, Js und D lediglich ein Durchfluss. Die Darstellung
nach (6), (7) ist auf der «sicheren Seite» und ist in Bild 2

dargestellt.
Beispiel
Gegeben ist eine Rohrleitung mit Q=l,4m3/s, Js=l%,
K 80 ml/3/s und D 0,90 m. Wie gross ist die Normalabflusstiefe

hN und die zugehörige Geschwindigkeit VN1

Mit qN= 1,4/ (80l/0ÏH-0.98/3) 0,232 folgt aus Gl. (6) für
<D„ 0,64, womit ^ 0,64 • 0,9 0,575 m. Infolge 0^=0,64
ergibt sich für FN/D2 =0,53, also FN=0,53 ¦ 0,81 =0,429 m2,
womit VN=QN/FN= 1,4/0,429 3,25m/s.

3. Kritischer Abfluss

Möchte man an einer bestimmten Stelle eines Kanals den
Durchfluss messen, so kann dies durch Ermittlung des

Geschwindigkeitsfeldes und durch simultane Aufnahme der
Profilgeometrie geschehen, siehe z. B. /10/. Das Verfahren ist im
Normalfall aufwendig und nur beschränkt genau. Schon früh
hat man deshalb nach einfacheren, rascheren und präziseren
Verfahren gesucht, die für die Praxis zuverlässigere (und oft
auch kontinuierliche) Mengenmessungen erlauben. Ideal
wäre die simple Abtastung der Wasseroberfläche und die
daraus unmittelbare Berechnung des Abflusses. Diese Methode

lässt sich in der Tat anwenden und findet bei Wehren,
QuerSwiinitts-Einengungen (Venturikanäle beispielsweise)
und in beschränktem Masse auch in Verteilkanälen (örtlich
abnehmender Durchfluss) oder Sammelrinnen (örtlich
zunehmender Durchfluss) Anwendung /9/, /12/. Betrachtet man der

Einfachheit halber einen Rechteckkanal, so gilt für die

Energiehöhe

Ô2
(8) H + h +

2gB2h2

Grundsätzlich können dabei die Sohlengeometrie z, die
Abflusstiefe h, der Durchfluss Q, die Kanalbreite B in Abhängigkeit

der Längskoordinate x variieren, also H=H(x).
Gleichung (8) gilt lediglich für Abflüsse mit nahezu hydrostatischer

Druck- und fast uniformer Geschwindigkeits-Verteilung.
Wie unten ausführlich erklärt, beschränkt sich deren
Anwendungsbereich auf sogenannte Flachwasser-Abflüsse.
Betrachten wir vorerst den Abfluss an der Stelle x=x0, an der
Q Q0, z z0 und B B0 gilt mit Index o als Bezeichnung für
Grössen an der Stelle x0, so wird

(9) H. H-Za h +
Ql

2gB\h2

also H, Hf\-L). Diese Funktion dritten Grades soll nun
diskutiert werden, wobei lediglich 0<h<H, physikalische
Bedeutung haben. Da dann keine Nullstellen vorliegen, sollen
eventuelle Extremwerte berechnet werden. Aus der Bedingung

dHJdh Q folgt l-Ql/(gBlh3) 0. Wird Index 0 nun
fallengelassen, so ergibt sich daraus für die sogenannte kritische

Abflusstiefe

(10) (Q2lgB2)

Wird (10) in (9) eingesetzt, so folgt für H,(hc) H.c) 3hJ2.
Die kritische Energiehöhe ist somit ein-eindeutig mit der
kritischen Abflusstiefe und nach (10) mit dem Abfluss Q verbunden.

Kennt man (durch Messung) die kritische Energiehöhe

H, an einer Stelle x0 des Kanals, so lässt sich unmittelbar der

zugehörige Durchfluss Qc berechnen.
Es fragt sich nun, wo eine Stelle x0 zu erwarten ist. Dazu
betrachten wir die Ausgangsgleichung (8) und setzen eine

Potentialströmung voraus, gleichbedeutend mit H' H"
Lf ~ 0 wobei ; die i.te Ableitung nach x mit i>2 bedeutet.
Ferner bezeichnet ()' d()/dx.

Extremwerte der Funktion H(x) entstehen dann für

(11) H' z' + W +
QQ' Q2B' 02W

gB2h2 sB3h2 gB2h3
0

entsprechend

(12) (z' + 3L2' „muigB2h2 gB3h sB2h3
0.

Vergleicht man (12) mit (10), so erkennt man denselben
Ausdruck in der zweiten Klammer von (12). Definiert man als

Froude-Zahl im Rechteckprofil

(13) Fr2
Q2

gB2h3

so stellen sich Extremalwerte von H(h) für Fr= 1 oder für
h' 0 unter der Zusatzbedingung

(14) z' +
QQ' Q2B'

gB2h2 gB3h2
0

ein. Wie im Anhang I gezeigt, können durch weitere Analyse
die folgenden Resultate ermittelt werden:

- Fr= 1 entspricht dem kritischen Abfluss: für gegebenen, konstanten Durchfluss

Q nimmt die Energiehöhe //, nicht nur einen Extremalwert, sondern
zugleich einen Minimalwert an, während für gegebene Energiehöhe H, der
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140 120
rfc Q

.3 -a ¦
*** bx-120 100.¦

Fr FrBO100

Bild 1. Reibungsbeiwert K nach Gleichung in Abhängigkeit der Froude-Zahl FrN im Rechteckkanal nach
Marchi /24/. 1251, /26[:
a) glatte Kanaloberfläche, b) rauhe Kanaloberfläche

Bild 2. a) Relativer Durchfluss QN/Q» mit Q, als Vollfüllung bei Normalabflusszustand nach Experimenten
von Sauerbrey 132/ (gestrichelt) und nach (6) für teilgefülltes Kreisprofil,

b) Relativer Durchfluss Qc/l/gDs bei kritischem Abflusszustand

Durchfluss maximal wird. Die beiden Darstellungen Q(//.) und H,(Q)
entsprechen sich vollständig.
A'=0, entsprechend einem an der Stelle x=x0 zur Sohle parallelem Wasserspiegel,

erzeugt nie einen im vorliegenden Sinne kritischen Abflusszustand.
Kritischer Abfluss lässt sich lediglich durch Veränderung der Kanalsohle,
der Kanalbreite, des Durchflusses oder Kombinationen verschiedener
Varianten erzeugen.
Wird lediglich die Kanalsohle z (x) variiert, so kann sich kritischer Abfluss
nur an wehrfönnigen Körpern einstellen, der kritische Querschnitt fällt mit
dem Scheitelquerschnitt zusammen.
Wird lediglich der Kanalquerschnitt F (x) varüert, so kann sich kritischer
Abfluss nur bei Verengungen einstellen; der kritische Querschnitt fällt mit
dem engsten Querschnitt zusammen.
Wird lediglich der Abfluss örtlich variiert, so kann sich kritischer Abfluss
nur am Anfang (am Ende) der seitlichen Ausflussstrecke (seitlichen Zuflussstrecke)

einstellen.
Für die Wasserspiegelneigung im kritischen Querschnitt lassen sich einfache
Ausdrücke herleiten, die sich jedoch nur auf relativ geringe Abflusstiefen
(Flachwasser) anwenden lassen.

hN/D
0.8

0,6

0.2

OVO.

0 0,2 0,4 0,6 0,8 1 1,2

ru/D
0.8

0.6

0.4

0.2

Q/l/gD5
0.2 0.4 0.6 0.8

4. Die konjugierten Tiefen

Wie sich anhand der Gleichungen für instationäre Abflüsse
(Gleichungen von de Saint-Venant, siehe z. B. /19/) weiterhin
zeigen lässt, können sich Störungen des Abflusses für Fr < 1

kanalaufwärts und -abwärts bilden, während sie sich für
Fr> 1 lediglich stromabwärts fortpflanzen. Der Begriff der
kritischen Tiefe stellt deshalb neben der Möglichkeit der
Abflussmessung auch ein für die Berechnung von Strömungen in
offenen Kanälen unerlässliches Hilfsmittel dar (vergl.
insbesondere Kapitel 5).
Die kritische Tiefe für den Rechteckquerschnitt ist bereits in
(10) mitgeteilt worden, für das Kreisprofil dagegen kann kein
einfacher funktioneller Zusammenhang angegeben werden.
Bild 2 b) zeigt die graphische Auswertung für die relative
kritische Tiefe yc=hJD in Abhängigkeit des relativen Durchflusses

Q/(gD5) "2 /l3/.

Beispiel
Für das Beispiel nach Kapitel 2 ergibt sich mit Q/\/gD5 1,4/
l/9,81-0,95=0,58 fürj>c 0,777, also hc=0,777-0,9 0,70 m.
Infolge hc>hN herrscht für Normalabfluss schiessender
Abflusszustand. Mit yc=0,777 folgt nach Gl. (7) für FJD2 0,655,
also für /v=0,655-0,92 0,53m2, womit VC=Q/Fc=l,4/
0,53 2,63 m/s.
Es ist zu beachten, dass die Definition Fr= V/\/gh nur im
Rechteckprofil gilt. Allgemeine Profile basieren auf der Beziehung

Wie in Kapitel 3 festgestellt, entspricht die Bedingung Fr= 1

einem Fliesswechsel. Unter der Voraussetzung konstanter
Energie lässt sich jedoch lediglich der Übergang Strömen-
Schiessen erzeugen. Neben der Kontinuitäts- und Energie-
Gleichung muss deshalb auf den Impulssatz zurückgegriffen
werden. Dieser in der praktischen Hydraulik wenig geläufige
Satz besagt, dass die Summe der auf ein beliebig definiertes
Kontrollvolumen wirkenden äusseren Kräfte verschwindet.
Die vorteilhafte Wahl des Kontrollvolumens entscheidet
grundlegend über die Aussagekraft des Resultats.
Der Impulssatz entspricht einer Vektorbeziehung, bestehend
aus den Komponentengleichungen in die drei Raumrichtungen.

Er leitet sich direkt aus dem zweiten Axiom von Newton
ab.
Die einfachste Anwendung des Impulssatzes findet sich im
prismatischen Rechteckkanal konstanten, geringen Gefälles.
Die Komponentengleichung in Fliessrichtung lautet mit
Bezug auf Bild 3

g ppidFi + pVudQ + gb p/76sincDcLx:

pp2dF2 + pK2>xdg + gb pjfhdx

(15) Fr'
V^B

gF

mit B dF/dh als Wasserspiegelbreite.

(16)

mit «1» und «2» als Bezeichnung für zwei Referenzquerschniï-
te, Vx als Geschwindigkeitskomponente in x-Richtung, Jr als

Reibungsgradient und p als Dichte.
(16) vereinfacht sich unter den folgenden Voraussetzungen:

— «1» und «2» entsprechen den Querschnitten vor und nach
der eigentlichen Störstelle,

— in diesen Querschnitten herrscht näherungsweise
hydrostatische Druck- und uniforme Geschwindigkeits-Verteilung,

- die Dichte ist konstant und gleich der Dichte von Wasser,
— die Gefällskomponente wird durch die Wandreibungskomponente

kompensiert.
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S/W 3. Kräftegleichgewicht für den ebenen Wassersprung

Bild 4. Vereinfachte Darstellung des Wassersprungs

Bild 5. Wassersprung im Kreisprofil mit a) durchwegs Freispiegelabfluss und b) Übergang vom Freispiegel-
zum Druck-Abfluss
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B/W 6. Länge des Wassersprungs L/h2 in Abhängigkeit

von V1f\/ghl und hJD nach Kindsvater /22/:
h1/D 0,2 (A), 0,4 (M), 0,6 (*); volle Zeichen
bedeuten durchgehenden Freispiegelabfluss, während
offene Zeichen auf Abfluss unter Druck im
Unterwasser hinweisen, vergl. Bild 5

Unter diesen Vereinfachungen entsteht

bh] O2 bh\ Q2
(17)

gbhi 2 ebh-,

mit b als konstanter Kanalbreite. Durch Einführung der
Froude-Zahl Fr2 Q2/(gb2h]) folgt für das Verhältnis
Y=h2/h1 der konjugierten Tiefen

(18) y= J(Vl+8frf- 1)

Durch Anwendung des Energiesatzes

Q2
(19) Hx=hx +

2gb2h\
Ho AH Q2

lgb2h\
AH

ergibt sich direkt für den mechanischen Energieverlust

(A2-A1)3
(20) AH

4hth2

oder näherungsweise nach /17/

(21)
AH
H,

j/2
Fr,

Die Gültigkeit von (18) ist durch umfangreiche Versuche
nachgewiesen worden, vergl. z. B. /33/. Die Übereinstimmung
zwischen Messung und Rechnung ist so verblüffend, dass eine

genauere Analyse angebracht erscheint.
In der Berechnung des klassischen Wassersprung-Problems
wird offensichtlich das Kontrollvolumen geschickt gewählt,
und die Fehler aufgrund der verschiedenen Annahmen
kompensieren sich gut. In den Querschnitten «1» und 2» darf
effektiv mit hydrostatischer Druckverteilung gerechnet werden,

oder der Einfluss eventueller Abweichungen wirkt sich

nur unwesentlich auf die Lösung aus. Ferner ist entweder

J^Jr (nahezu Normalabfluss, siehe Kapitel 5), oder die

Länge des Wassersprungs ist klein im Vergleich mit der
Kanalausdehnung.

Wie an anderer Stelle gezeigt /9/, darf der Einfluss der Nicht-
uniformität der Geschwindigkeitsverteilung in der Tat für
hydraulische Berechnungen häufig vernachlässigt werden.

Energie E und Impuls Ix in Achsenrichtung an der Stelle

x x0 berechnen sich nach

(22)

(23)

entsprechend

(24)

(25)

mit

(26)

(27)

E ^dQ +
9P

V-dQ

PgP dFx+ \vxdQ

0\h +
aQ2

2gP

h g
bh2

2
+ ßß!

QMP'

\vxVdF

Q2/F

als Geschwindigkeitsbeiwerte mit Bezug auf den Energie- und
Impulssatz, h stellt die Druckhöhe des Abflusses dar. Uniforme

Geschwindigkeitsverteilungen bedeuten a=ß=l. Wie
sich zeigen lässt /9/, gilt a > ß > 1 sowie näherungsweise

(28) a ß3.

Obwohl (18) eine einfache Beziehung für die konjugierten
Tiefen darstellt, lässt sich durch Anwendung des Impulssatzes
in Fliessrichtung x lediglich die Sprungstelle nach Bild 4
berechnen. Hingegen gelingt es weder die Wassersprunglänge L,
noch das interne Fliessverhalten, also beispielsweise die
Luftaufnahme oder Rückströmungszonen zu ermitteln. Kürzlich
ist es durch Berücksichtigung der Ablösungszone oberhalb der
Fliesszone gelungen, Grössenordnungen der beiden Zonen
anzugeben /ll/. Dabei Hess sich feststellen, dass lediglich
durch den Einbezug beider Zonen vernünftige Ansätze
resultieren. Bis heute ist es jedoch noch unmöglich, den kompletten,

internen Fliessmechanismus eines ebenen Wassersprungs
befriedigend durch die Rechnung zu beschreiben.
Durch Experimente lassen sich Angaben über die
Wassersprunglänge L gewinnen. Diese können jedoch lediglich als
Richtwerte aufgefasst werden, da eine eindeutige Abgrenzung
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des Sprungs nicht möglich ist. Für den Wassersprung im
prismatischen Rechteckkanal mit kleinem Gefälle gilt

(29) L ~ 6h,

wobei diese Angabe einem oberen Wert entspricht.
Im Kreisprofil muss grundsätzlich zwischen zwei
Wassersprungtypen unterschieden werden, siehe Bild 5. Entweder
herrscht im Unterwasser Freispiegelabfluss, h/D < 1, oder dieser

Gerinneabschnitt steht unter Druck. Die zugehörigen
konjugierten Abflusstiefen hl/D und h2/D in Abhängigkeit von
QVgD1 lassen sich aus /13/ entnehmen.
Über die Länge des Wassersprungs kann bis heute nur wenig
ausgesagt werden, da entsprechende Versuche weitgehend
fehlen. Erwähnenswert sind die Beobachtungen von Kindsvater

/22/ für Kreisprofile; eine Auswertung der Resultate für
die beiden Fliesszustände ist aus Bild 6 zu ersehen. Herrscht
im Unterwasser Freispiegelabfluss, so variiert die
Wassersprunglänge für verschiedene, relative Füllhöhen lediglich mit
der zur Froude-Zahl analogen Kenngrösse Vl/]/gh1, während
für den zweiten Abflusstyp eine zusätzliche Abhängigkeit von
der relativen Oberwassertiefe h1/D auftritt. Generell scheinen

Wassersprünge mit Abfluss unter Druck eine kürzere Länge
aufzuweisen als durchgehende Freispiegelabflüsse.
Die angegebenen Versuchswerte müssen insofern vorsichtig
verwendet werden, als dass diese bis heute durch keine weiteren

Messungen geprüft worden sind, und beispielsweise der
Einfluss verschiedener Durchmesser, Rohrmaterialien und
Rohreinbauten nicht erfasst ist. Analoge Versuche in
geschlossenen Rechteckkanälen verdanken wir Haindl /18/.
Zum Abschluss sei noch darauf hingewiesen, dass sich die
Wassersprungoberfläche entsprechend der im Oberwasser
herrschenden Froude-Zahl einstellt, siehe beispielsweise
Chow ß/. Grundsätzlich sind ondulierende Sprünge mit und
ohne Deckwalze, solche mit einer schwachen oder ausgeprägten

Deckwalze voneinander zu unterscheiden. Diese grobe
Klassifikation gilt jedoch nur für fast rechteckige Profile. Je

mehr sich das Profil von dieser Grundform unterscheidet,
desto räumlicher wird der sich einstellende Sprung (schiefe
Front, einseitige Beaufschlagung, variierendes Querprofil,
pulsierender Abfluss).

5. Stau- und Senkungskurven

Unter Stau- und Senkungskurven versteht man im allgemeinen

die linienförmige (eindimensionale) Darstellung des

Wasserspiegels bei stetig-veränderlichen Abflüssen. Im Speziellen
besitzt der Kanal einen prismatischen Querschnitt, konstantes
Gefälle, konstante Rauhigkeit und konstanten Durchfluss.
Stetig veränderliche Abflüsse lassen sich durch Differentialgleichungen

beschreiben. Je nach dem Verhältnis einer
typischen Abflusstiefe h0 zu einer typischen Wellenlänge der
Oberfläche I unterscheidet man Flachwasserabflüsse
(h0/% -» 0), schwach gekrümmte Abflüsse (h0/X < 1),
gekrümmte Abflüsse (AoA— 1) und stark gekrümmte Abflüsse
(h0/X -> oo Bis heute liegen keine Gleichungen vor, die
erlauben, die Gesamtheit dieser Abflusstypen zu beschreiben.
Die einfachsten Beziehungen gelten für Flachwasserabflüsse,
die, wie unten gezeigt wird, hydrostatische Druckverteilung
aufweisen. Werden lediglich Variationen in der Fliessrichtung
berücksichtigt, so lassen sich die verallgemeinerten Gleichungen

von de Saint-Venant anwenden /37/

(30)

1 ÖV

g dt
+ (2ß-

g os

V2

g

OC

ds

(ß-l)P2
gF

-1 (/îcosco) Js
ds

-Je + (u-V) dg
gF ds

ÔF
— +
dt ÖS

_dQ' ds

ÖF

ds

(31)

mit t als Zeit, s als wenig geneigter und gekrümmter Längs-
koordinate, V als mittlerer Fliessgeschwindigkeit, ß als

Geschwindigkeitsbeiwert, F als Querschnittsfläche, h als
Abflusstiefe, cù als Sohlenneigung, Js als Tangens der
Sohlenneigung, Je als Energieliniengradient, u als seitlicher
Zuflussgeschwindigkeit in Hauptfliessrichtung, dQ/ds als seitlicher
Zu- oder Ausfluss, vergl. Bild 7. Die beiden Unbekannten, V
und h in Abhängigkeit der Lage s und der Zeit t lassen sich
bei bekannter Gerinnegeometrie, gegebenen Zu- und Ausflüssen

und bekannten Beziehungen für ß durch Vorgabe einer
Anfangs- und zweier Randbedingungen lösen /23/.
Häufig kann der betrachtete Gerinneabschnitt vereinfacht als
Rechteckkanal ohne seitliche Zu- und Ausflüsse betrachtet
werden. Ist die Geschwindigkeitsverteilung nahezu uniform,
ß= 1, so vereinfachen sich die Impulsgleichung (30) und die
Kontinuitätsbeziehung (31) auf

(32)

(33)

l ÔV VdV dh

g öt g öx öx
J.-J,

ôh d jn1 (hV) 0.
öt öx

also den Originalgleichungen nach de Saint-Vernant. Im
allgemeinen sind sie lediglich durch numerische Verfahren lösbar.
Betrachtet man nun stationäre Abflüsse, d/dt 0, so gilt in
Analogie zum System (30), (31) die folgende Gleichung für die
freie Oberfläche h(x) /9/

(34)
dh

ds

Js-Je +
ßg2 dF

gF3 ds V gF2 ds

Q2 dß

gF2 ds

1 - V&dF
gF3 dh

Diese gewöhnliche Differentialgleichung erster Ordnung lässt
sich für bekannten Querschnitt F(h, s) Geschwindigkeitskoeffizient

ß (s), Zu- oder Ausfluss Q(s) mit zugehöriger
Geschwindigkeit u in Fliessrichtung s, bekannter Sohlengeometrie

J£s) und bekanntem Energieliniengradienten JJs) unter
Vorgabe einer Randbedingung lösen.
Wie bereits festgestellt, lässt sich (34) oft vereinfachen.
Vernachlässigt man den Einfluss von ß, setzt man also ß 1 und
dß/dy=0, sind zudem die seitlichen Zu- und Ausflüsse im
Vergleich zum Durchfluss klein und verläuft die Kanalachse
gerade, s -* x, so gilt anstelle von (34)

(35)
dh

dx

Js-Je +
Q2 ÔF

gF3 öx

Q^ÖF
gP öh

wobei Jr Verluste infolge Wandreibung und infolge von Veren-

gungs- und Erweiterungsstrecken beinhalten kann. Wie sich
durch Ableiten zeigen lässt, entspricht (35) dem System
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(36)

(37)

H= z + h +
Q2

2gF2

H' J,

mit dz/dx — Js. Die erste dieser Beziehungen stellt die
bekannte Gleichung nach Bernoulli für nahezu parallele Stromlinien

dar (hydrostatische Druckverteilung und nahezu
uniforme Geschwindigkeitsverteilung), während die zweite den

Energiehaushalt längs der Fliessstrecke vorschreibt.
Für prismatische Kanäle mit konstantem Gefälle reduziert
sich (35) schliesslich auf die spezielle Gleichung von Stau- und
Senkungskurven

df\ _ J,-Jf
dx

~
1 - Fr2

(38)

mit Fr nach (15). Js entspricht dem konstant vorausgesetzten
Sohlengefälle, und Jf beinhaltet im Gegensatz zu Je lediglich
Wandreibungsverluste.
Im allgemeinen lässt sich Gleichung (38) nur numerisch lösen,
wobei zu beachten ist, dass die rechte Seite lediglich von der
Abflusstiefe h abhängt, also ein Integral unter Angabe einer

Randbedingung zu lösen ist.

Die Berechnung von Stau- und Senkungskurven stellt eines

der ältesten Probleme der analytischen Hydraulik dar. Die
wohl bekannteste Lösung verdanken wir Bresse, der vor gut
100 Jahren den Fall eines sehr breiten Rechteckprofils einer

geschlossenen Lösung zuführte. Da das Reibungsgefälle Jf
und die Froude-Zahl Fr je nach Querschnittsform variieren,
muss jede Profilform gesondert betrachtet werden. Chow
betrachtet die Klasse der Potenzfunktionen F=ah" («=1,
Rechteck, « 3/2 Parabel, n 2 Dreieck, usw. mit a als von
h unabhängige Profilkenngrösse) ßj; wichtige Profiltypen wie
das Trapez- und den teilgefüllten Kreis lassen sich mit diesem

Ansatz jedoch nicht behandeln. Hörler /20/ beschreibt einen

iterativen Berechnungsweg für den letzteren, der
Berechnungsaufwand übersteigt jedoch meistens die zur Verfügung
stehende Zeit.
In /8/ wird eindringlich auf den Näherungscharakter der
Beziehung (38) hingewiesen. Streng genommen gilt die
Gleichung lediglich für hydrostatische Druck- und uniforme
Geschwindigkeitsverteilung in prismatischen Kanälen mit
konstanter Rauhigkeit, unveränderlichem Sohlengefälle und
konstantem Durchfluss, Forderungen, die sich in der Realität
nur selten einstellen (vergl. auch Kapitel 2). Deshalb ist in
derselben Veröffentlichung der Versuch unternommen worden,

Gleichung (38) auf beliebige Profile mit schwach
veränderlicher Kanalcharakteristik anzuwenden. Bevor wir auf
diese Berechnungsmethode eintreten, soll (38) diskutiert werden.

Ausgezeichnete Punkte der Lösung von (38) entstehen für

a) J, — Jf, Fr±\ < > h' 0, der Wasserspiegel verläuft
parallel zur Sohle; für h" 5^ 0 herrscht Pseudo-Normalab-
fluss (Extremwert), während für «" 0 sich
Normalabfluss-Zustand einstellt;

b) Fr=\, Js¥^Jf < > h' ->oo, der Wasserspiegel verläuft
vertikal zur Sohle;

c) Fr=\ und /, Jf, die Differentialgleichung besitzt einen

singulären Punkt, die zugehörige Wasserspiegelneigung
h' muss durch höhere Ableitungen ermittelt werden.

Wie sich zeigen lässt /9/ ist Zustand b) nicht realisierbar. Tritt
ein Fliesswechsel auf, Fr 1, so gilt in jedem Falle Bedingung

c). Da ein Fliesswechsel ein ausgesprochen lokales Phänomen

darstellt, also Reibungskräfte den Abfluss nur sekundär zu
beeinflussen vermögen, kann Gleichung (38) in erster Näherung

trotzdem angewandt werden. Da voraussetzungsgemäss
B und g nicht mit x variieren, lässt sich somit Beziehung

(K. 2) nach Anhang I als singulare Wasserspiegelneigung
benutzen. Der Übergang Schiessen-Strömen kann jedoch nicht
durch (38) beschrieben werden, da neben den Wandreibungskräften

zusätzliche Stossverluste auftreten.
Beziehung (38) stellt das Verhältnis von Reibungskräften und

Gewichtskomponente in Fliessrichtung (für Js—Jf=0
herrscht Normalabfluss) zu den dynamischen Kräften (für
Fr—1=0 herrscht kritischer Abfluss) dar. Für Stau- und
Senkungskurven treten somit die Einflüsse des Normalabflusses

und des kritischen Abflusses kombiniert auf. Beschränkt

man sich auf positive Sohlengefälle, Js > 0, so ergibt sich mit (4)

1

(39) dh= _*^}dx 1 - Fr2

1 - oFr
1 - Fr2

wobei a rj (K, J„ Profilform). Im Rechteckprofil nimmt o
die folgende Gestalt an

(40)
KP-JM

+
2h

Wie sich zeigen lässt, treten in der Berechnung von Stau- und

Senkungskurven mindestens sechs voneinander unabhängige
Parameter auf. Da sich die Lösung nur für Spezialfälle analytisch

bestimmen lässt, ist man bestrebt, diese für die praktisch
wichtigen Fälle diagrammhaft darzustellen. Allein, mit dieser

grossen Parameterzahl ergibt dies eine umfangreiche und
unhandliche Auswertung. Es bieten sich deshalb die beiden

folgenden Lösungsvarianten an:
— entweder wird (38) durch Definition aller benötigten

Parameter direkt numerisch für den zu untersuchenden Fall
integriert,

— oder (38) wird weiterhin vereinfacht, damit eine Darstel¬

lung mit maximal drei Parametern entsteht.

Wird der Gültigkeitsbereich der Ausgangsgleichung kritisch
beleuchtet ßj, so stellt man fest, dass sich eine gesteigerte

Genauigkeit der ersten Lösungsvariante aufgrund von (38)
meistens nicht rechtfertigen lässt. Die vereinfachte
Berechnungsmethode kann als relevant betrachtet werden, falls
immerhin die beiden ausgezeichneten Abflusstiefen, die kritische
Tiefe und die Normalabflusstiefe, durch das Resultat
wiedergegeben werden. Die Stau- und Senkungskurven selbst

(Übergangskurven zwischen kritischem Zustand und
Normalabfluss-Zustand) erfahren dann nur eine geringfügige Variation

von der exakten Lösung nach (38) ß/.
Da die eindimensionale Theorie, in der lediglich Variationen
in der Fliessrichtung x berücksichtigt werden, einer ebenen

Behandlung für den Abfluss im Rechteckprofil gleichkommt,
liegt der Gedanke nahe, die erwähnten Übergangskurven
anhand eines rechteckigen Ersatzprofils zu ermitteln. Ersetzt

man J, in der Klammer von (39) durch die Normalabflussbeziehung

(1), so entsteht

\4/3

1-/
ày

_dX
mit

(41)

+ 2vP>

.+2y
(f/y)3

(42) X Jsx/hN, y hjhN ,<b hN/b,f= hc/hh
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wobei sich hN und hc auf das gegebene (nicht unbedingt
rechteckige) Profil beziehen. Wie sich zeigen lässt ß/ übt der
Formbeiwert <D mit 0 < O < oo nur einen sehr untergeordneten
Einfluss auf den Verlauf y(X) des Wasserspiegels aus. Als
Mittelwert wird deshalb <D 1 gewählt, womit anstehe von
(41) die folgende, vereinfachte Beziehung für den Verlauf der
Stau- und Senkungskurven tritt

(43)
dy_

dX

1
l+2y 4/3

y ¦10/3

1 (fly,

Eine geringfügig abgeänderte Form dieser Beziehung dient als

Ausgangsgleichung in ß/.
Die allgemeine Lösung y (X,f) wird durch Angabe einer
Randbedingung erhalten. Um keine zusätzlichen Parameter
berücksichtigen zu müssen, werden diese asymptotisch
gewählt: in der Praxis erklärt man den Normalabflusszustand
als erreicht, sobald die effektive Abflusstiefe h weniger als 1 %
von hN abweicht. Bild 7 a zeigt die entsprechende Auswertung.

Darin lassen sich grundsätzlich sechs Zonen unterscheiden,

die durch die Kurven y 1, y=fundf= 1, entsprechend
h hN, h hc und hc=hN voneinander getrennt sind. Für
y< (>) 1 entstehen Senkungs- (Stau-) Kurven, für y< (>)f
herrscht schiessender (strömender) Abfluss, während für
f< (>) 1 der Normalabfluss strömend (schiessend) ist. Die
sich in den entsprechenden Zonen einstellenden Oberflächen
lassen sich ebenfalls aus der Auswertung entnehmen.
Die vereinfachte Beschreibung der Stau- und Senkungskurven
nach (38) ist durch zwei Grundmerkmale charakterisiert:

— der Normalabfluss wird immer asymptotisch erreicht, die

Geradey=\ (h hN) wird nie geschnitten,
— der kritische Abfluss y=f(h hc) wird von allen Abfluss¬

profilen h(x) vertikal geschnitten, mit Ausnahme der
Kurve f= 1 fürj/= 1, in dem entweder y 0 odery 16/27
(30,6°).

Wie bereits im Kapitel 3 erwähnt, lässt sich ein Wasserspiegel
mit vertikaler Neigung nach Bild 7 a nicht realisieren. Anders
ausgedrückt verliert Gleichung (38) ihre Gültigkeit, falls die
Wasserspiegelneigung und -krümmung bestimmte, obere
Grenzwerte überschreiten. In diesen Fällen muss das System
(36), (37) durch/l5/
(44)

H z + h +
Q2 „ 2hh"

(1 +
¦h'2

2gF2
+ hz' h'z' z'2),

(45) H' Jr

ersetzt werden, wobei ()' und ()" die erste und die zweite,
gewöhnliche Ableitung nach x bedeuten. Sind die Neigungen
und Krümmungen des Wasserspiegels h(x) und der Kanalsohle

z(x) sehr klein, so reduziert sich der Klammerausdruck von
(44) auf die Einheit, also Gl. (44) auf (36). Wird anderseits der
Klammerausdruck durch (1 + O) dargestellt, so muss | <5> | 5> 0,5
bleiben, da (44) lediglich die erste Approximation einer
allgemeineren, heute jedoch noch unbekannten Gleichung
darstellt.

Durch Bildung von H' aus (44) und Einsetzen von (45)
entsteht eine gewöhnliche, aber nicht-lineare Differentialgleichung

dritter Ordnung für die Unbekannte h(x). Im
Gegensatz zur nullten Approximation, (35), ergeben sich dann
insbesondere Probleme bei der Wahl der nun nötigen drei
Randbedingungen h(x0) h0, h'(x0) — h& und h"(x0) hô

sowie bei der Angabe eines Konvergenzkriteriums. Bis heute
sind lediglich einige Berechnungen anhand des Systems (44),
(45) geglückt, daraus ist der weit gesteigerte Arbeitsaufwand
sowie die entstehende Vielfalt der Lösungen gut ersichtlich
/!/•
Die vereinfachte Diskussion von (44) gelingt durch Betrachtung

des sogenannten Pseudo-Normalabflusszustandes, für
den Js Jf- Die Energielinie verläuft dann parallel zur
konstant geneigten Kanalsohle. Grundsätzlich ergeben sich dann
die folgenden Möglichkeiten von Abflussformen /16/, vergl.
Bild 8:

a) Einzelwellen (sogenannte Solitärwellen) mit konstanter Abflusstiefe h0
für x -> ± oo; für h^JhQ > 2 bricht jedoch der Wellenkopf, und die
Annahme einer zur Sohle parallelen Energielinie lässt sich nicht mehr
rechtfertigen.

b) Uniformer Abfluss mit ha=h„ als asymptotische Lösung des Falles a).
c) Stetig abnehmende Abflusstiefe in Fliessrichtung, entsprechend dem Ab¬

flussprofil über sogenannte Abstürze /14/.
d) Ondulierende Wellen, die dem Unterwasserbereich des ondulierenden

Wassersprungs entsprechen; sie lassen sich durch elliptische Funktionen
«cn» ausdrücken und heissen deshalb im Gegensatz zu den symmetrischen

Sinuswellen Cnoidalwellen.

Wie man weiterhin zeigen kann, lassen sich die Fälle a) und
c) lediglich für FrQ > 1 realisieren, während für den Fall d) die

Beschränkung 0,65 < Fr0 < 1 auferlegt werden muss mit Fr0
als Froude-Zahl des ungestörten Abflusses. Allein Fall b), der
klassische Fall des Normalabflusses ist keinen Beschränkungen

unterworfen. Wie sich aus dieser Diskussion zeigt (und
auch analytisch für kompliziertere Strömungen verifiziert ist
/9/), übt die allgemeinere Darstellung (44) gegenüber (36)
insbesondere im Bereich der kritischen Abflüsse Einfluss auf
den Wasserspiegel aus. Als Grössenordnung Hesse sich der
Bereich 0,7 < Fr < 1,5 angeben.
Überträgt man diese für Pseudo-Normalabfluss gefundenen
Resultate auf die Stau- und Senkungskurven, so muss der
oben angegebene Bereich von Froude-Zahlen bei der Anwendung

von Bild 7 a ausgeschlossen werden. In der Praxis
entsprechen jedoch gerade diese Abflussbereiche ausgesprochen
lokalen Erscheinungen, die nur unwesentlich auf die übliche
Ausdehnung der Stau- und Senkungskurven Einfluss nehmen.
Mit Bezug auf die gesamte Darstellung der Oberfläche kann
deshalb das Diagramm zu vernünftigen Näherungslösungen
führen, falls man sich der Beschränkungen klar bewusst ist.

Beispiel
Für das bereits betrachtete Beispiel mit g=l,4m3/s,
D 0,9 m, K= 80 mI/3/s, Js 1 % ist die Stauwurzel zu suchen,
falls an der Ausgangslage ein Gefällsknick mit Fliesswechsel
Strömen-Schiessen vorliegt.
Mit hN 0,575m, hc=ho=0,70m folgt für h0/hN=\,22 und
für hc/hN= 1,22. Nach Bild 7 a ergibt sich dann als
Integrationskonstante JsxQ/hN= — 0,63; für h/hN=l ist Jxx/hN=0,
womit L 0-(-0,63 • 0,575/0,01) 36 m. Der Einfluss der
Senkungskurve beträgt somit ab Gefällswechsel 36 m, für
jc>36m herrscht demnach Normalabfluss mit h hN=
0,575 m.

6. Zweiphasenströmung Wasser-Luft

In der hydraulischen Praxis sind hauptsächlich zwei
Anwendungsgebiete der Zweiphasen-Strömung Wasser-Luft von
breiterem Interesse:

- der bereits in Kapitel 4 behandelte Wassersprung,
- die natürliche Selbstbelüftung bei Abflüssen mit hoher

Geschwindigkeit.
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dO/dx
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Qïh
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>H

Bild 8. Mögliche Abflussformen für Pseudo-
Normalabflusszusland nach /16/ a) solitäre Welle,
b) uniformer Abfluss, c) Abfluss über einen Absturz,
d) ondulierende Welle

Bild 7. Bezeichnungen für Abflussgleichungen in offenen Kanälen: a) Grundriss, b) Längsschnitt

Bild 7 a. Allgemeine Lösung der Stau- und Senkungskurven in beliebigen prismatischen Kanälen mit konstanter

Rauhigkeit, Neigung und unveränderlichem Durchfluss
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Bild 9. Verhältnis der Abflusstiefe des Gemisches zu
derjenigen von Reinwasser, hg/hw, in Abhängigkeit
der relativen Füllhöhe hw/b und r\ fh.K2 sin3m/
g3)'14 für das Rechteckprofil der Breite b

0,8
Fr

0.6
Bou

0,4

^ h D
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Bild 10. Verhältnis der Boussinesq- zur Froude-Zahl
im teilgefüllten Kreisprofil

Im folgenden beschränken wir uns lediglich auf die Darstellung

der Abflüsse, bei denen eine Selbstbelüftung eintritt.
Eine Einphasen-Strömung ist vollständig beschrieben, falls
die Druck- und Geschwindigkeits-Verteilung an jedem Ort
des Abflussgebietes bekannt ist. Dieselbe Strömung ist
hydraulisch vollständig beschrieben, falls in einem Querschnitt
lediglich die Abflusstiefe und die mittlere Geschwindigkeit
bekannt ist. Im Gegensatz zur hydrodynamischen Darstellung

einer Strömung, in der die Unbekannten von den drei
Lagekoordinaten sowie der Zeit abhängen, ergibt die hydraulische

Rechnung lediglich eine Aussage in Abhängigkeit der

Längskoordinäte x sowie der Zeit t.

In Zweiphasen-Strömungen variiert neben dem Druck und
der Geschwindigkeit ebenfalls die Dichte p p (x, y, z, /). Eine
vereinfachte Betrachtungsweise im hydraulischen Sinne
basiert auf den Begriffen «Gemisch», «Reinwasser» und «Luft»;
sie sollen im folgenden mit den Indizes g, w und a versehen

werden. Beispielsweise gilt nun für den Gemischdurchfluss

(46) Ô, Q« + Qa

Ein Gemischabfluss ist hydraulisch vollständig definiert, falls
die Abflusstiefe hg, die Geschwindigkeit Vg, der Durchfluss

gr die Luftkonzentration Cin Abhängigkeit der Lagekoordinate

x und der Zeit t bekannt sind.

Die bis heute durchgeführten Untersuchungen über Gemischabflüsse

beziehen sich hauptsächlich auf den Normalabfluss-
zustand. Erst in neuster Zeit sind auch Stau- und Senkungskurven

/35/ sowie Abflüsse über Belüftungselemente zur
Verhinderung von Kavitationserscheinungen /29/ näher verfolgt
worden. Es würde zu weit führen, die einzelnen Studien einer

Analyse zu unterziehen, so dass lediglich der Normalabfluss-
zustand in Rechteck- und Kreis-Profilen untersucht werden
soll.
Die wohl interessanteste Studie, die sowohl eine ausgezeichnete

theoretische wie auch experimentelle Untersuchung ein-
schliesst, verdanken wir Rao et al. /!/, ß0/, ßl/. Sie bezieht
sich vor allem auf das Rechteckprofil und kommt zu den

folgenden Resultaten:

- Die Dichte des Gemischabflusses zur Dichte des Wassers

beträgt

(47) p,/p, 1 - 1,1C

mit C als mittlerer Konzentration;

- für das entsprechende Verhältnis der Froude-Zahlen findet

man

(48) Frg/FrK (1-Q"7
wobei Fr— V\fgh\
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— die mittlere Konzentration C genügt der Bedingung

(49) C 1

1,35

K
Fr3'2 + 1

wobei der K-Wert nach Strickler in der Dimension (m1/3/s)

eingesetzt werden muss;
der Energieverlust AH infolge Luftaufnahme beträgt

(50) AH/hs
C

,13

Mit diesen Angaben kann der Normalabflusszustand des

Gemischabflusses vollständig beschrieben werden. Die Berechnung

gestaltet sich folgendermassen: Man berechne vorerst
den Abfluss von Reinwasser unter Zuhilfenahme der Formel
von Strickler
(51) QN FNK]/smä>Rf

die im Gegensatz zu (1) den Sinus des Gefällswinkels (anstelle
des Tangens) enthält. Für bekannten Durchfluss,
Rauhigkeitsbeiwert und Winkel co erhält man die Abflusstiefe h„, die

Geschwindigkeit V„ und somit die Froude-Zahl Frw. Mit (49)
folgt unmittelbar die Konzentration C, also auch die
Gemisch-Abflusstiefe

(52) hJhw=(l-Q-
Aus (48) berechnet sich die Froude-Zahl Frg, also auch die

Geschwindigkeit Vg des Gemischabflusses. Schliesslich folgt
die Dichte des Gemisches p^ aus (47), und (50) gibt Aufschluss
über die Energiedissipation.
Dieses allgemeine Vorgehen lässt sich mit Hilfe von Bild 9

vereinfachen, in der hg/h„ in Abhängigkeit von hjb und der
dimensionsbehafteten Kanalcharakteristik (hKK? sin3co/g3)"4

aufgetragen ist. Die weiteren Unbekannten sind in der Praxis

nur von untergeordneter Bedeutung und lassen sich anschliessend

nach dem oben gezeigten Berechnungsweg ermitteln.
Wie aus Bild 9 ersichtlich, nimmt die Gemischabflusstiefe mit
zunehmender Gerinnerauhigkeit und mit zunehmendem
Sohlengefälle zu. Für einen bestimmten Wert n besitzt die Kurve
hg/hw(hjb) einen Maximalwert falls hjb -> 0, für hjb -> oo

entsteht jedoch hg/h„ 1.

Beispiel
Gegeben sei ein Rechteckkanal mit der Breite b= 10 m, der
Sohlenneigung cd 35°, der Rauhigkeit K=75 ml/3/s. Welches
sind die Abflusscharakteristika für einen Durchfluss von
g 950 m3/s, falls Normalabflusszustand vorausgesetzt
wird?
Mit Beziehung (51) folgt für die Abflusstiefe hH.= 1,51m,
ferner ergibt sich für r|= (1,51 • 752 sin3 (35°)/9,813)"4 1,14

und für hjb 0,151, also mit Bild 9 für hg/hw 2,2, womit
schliesslich hg 3,30m. Die mittlere Luftkonzentration
beträgt nach (52) C=55% und die Froude-Zahl des Gemisches
nach (48) Frg 0,89 ¦ Frn: Mit Aw=l,51m folgt für Frw=
950/(10)-1,51 1/9,81-1,51 16,35, also Frg= 14,5 und

^=14,5 1/9,81-3,3 82,5 m/s im Vergleich zu F, 950/
(10- l,51) 62,9m/s. Die Dichte des Gemischabflusses
beträgt nach (47) p?= 1(1- 1,1- 0,39) 0,40 t/m3 und der
Energieverlust nach (50) A//= 3,3(0,45""'- l,13) 3,60m. Wie
sich aus Bild 7 weiter entnehmen lässt, benötigt dieser Abfluss
eine grosse Anlaufstrecke, bis sich die Normalabfluss-Verhältnisse

einstellen.
Die wohl interessanteste Untersuchung über Selbstbelüftung

in teilgefüllten Kreisrohren verdanken wir Volkart /36/. Im
Gegensatz zur Studie von Rao et al. werden jedoch alle
Abflussparameter der Gemischströmung auf den hydraulischen
Radius R bezogen. Anstelle der Froude-Zahl tritt deshalb die

(physikalisch nicht ganz verständliche) Boussinesq-Zahl
Bou V/]/g~R. Im breiten Rechteckprofil, h/b -> 0 entsteht
zwar für R h; die Messwerte Rao 's et al. beziehen sich jedoch
nicht nur auf diesen Grenzfall. Wie sich einfach zeigen lässt,
besteht der Zusammenhang

(53)
Bou

Fr
(e/sine)"2

mit 8 als halbem Zentriwinkel /36/. Unter Verwendung der
Beziehung für die Abflusstiefe in Abhängigkeit dieses Winkels

(54)
Ä 1,
— -(1— cose)
D 2

lässt sich die in Bild 10 dargestellte Funktion Fr/Bou(h/D)
ermitteln. Daraus erkennt man, dass Fr~Bou für geringe
Teilfüllung entsteht, für übliche h/D wird jedoch die Froude-
Zahl kleiner als die Boussinesq-Zahl.
Die Experimente Volkart's beziehen sich auf die folgenden
Parameterbereiche: 0,11<7,<0,956, 1,5 <g„< 1913 <f/s,

0,11 < D< 0,7 m, was Geschwindigkeiten der Gemischabflüsse
zwischen 1,72 m/s und 10,54 m/s ergab. Aus insgesamt 59

Experimenten resultiert für die mittlere Konzentration C die
empirische Beziehung

(55) C
1

O,O2CB0!/„,-6)3/2+ 1

woraus sich unmittelbar die untere Grenze der Luftaufnahme zu

BouK(C= 0) BoUtf) 6 ergibt. Die meisten hydraulischen
Versuche sind für Teilfüllungen zwischen 0,25 < h/D < 0,65 ausgeführt

worden. Nimmt man als Mittelwert rund h/D —

0,4, so ergibt sich nach Bild 10 für Fr^0,85Bou. Eine genaue
Umrechnung lässt sich einfach mit den beiden Bildern 10 und
11 ausführen.
Volkart /36/ vergleicht Gleichung (55) mit Messungen anderer
Autoren im Rechteckkanal (die sich auf Frw beziehen) auf
Basis der Boussinesq-Zahl, ohne sie vorher entsprechend
umzurechnen. Wie oben gezeigt, ist dieses Verfahren lediglich für
sehr geringe Abflusstiefen gültig. Eine Umrechnung der Messwerte

Volkarts auf die Froude-Zahl bestätigt jedoch, dass im

teilgefüllten Kreisprofil geringere Luftkonzentrationen als im
Rechteckprofil unter derselben Froude-Zahl Frw zu erwarten
sind.
Neben (55) findet Volkart experimentell als Verhältnis der

Geschwindigkeiten

(56) Vg/VK 1 -C2,
sowie für das Verhältnis der benetzten Flächen des Gemisches

zu derjenigen von Reinwasser

(57) Fg/Fw= 1 - 2-ln(l-Q.
Bou„ lässt sich nun folgendermassen schreiben

(58)

oder

(59)

Bou..
Vu, KVZ-R2!3 KvTß

vW, w«

Bou,, <u<!

'g

sine«€ossw

(RJD)1

£„•

1/6
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Bild 11. Halblogarithmische Darstellung der
reduzierten Froude-Zahl Fr/fQ/l/gD5,) in Abhängigkeit
der Teilfüllung h/D im Kreisprofil nach (15)

Bild 12. Relative Gemischabflusstiefe hg/D in
Abhängigkeit der relativen Abflusstiefe für Reinwasser

h»/D und der Kanalcharakteristik x=K]/JÎD"6 / ]/g
für teilgefüllte Kreisprofile

Bild 13. Abfluss über einen wehrförmigen Körper im prismatischen Kanal. Untersuchung der Energiehöhe
im Scheitelquerschnitt falls h' 0 (Wasserspiegel parallel zur Kanalsohle) a)Fr<l, h">0 entspricht
H. H. „j,; b) Fr> 1, h"<0 entspricht H, H^rfn; c) Fr£ 1, h" 0 entspricht H.=H^„„. Gestrichelt ist
der Verlauf der kritischen Abflusstiefe, ausgezogen der Wasserspiegel und strich-punktiert die Energielinie
H eingetragen.

Bild 14. Anordnungen, in denen sich a) ein kritischer Abfluss einstellen kann (Fr= 1) und b) in denen sich
lediglich ein relatives Energieminimum ausbilden kann: A Querschnittsvariation, B Sohlenvariation, C
Durchflussabnahme und D Durchflusszunahme
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mit y. K]/7sD[l6/v/g. Eliminiert man aus (55) und (57) C, so

ergibt sich eine Beziehung zwischen den Abflusstiefen hJD,
hJD und der Kanalcharakteristik x. Diese in Bild 12

ausgewertete Relation erlaubt die unmittelbare Bestimmung der
Gemischabflusstiefe hg.

Nach Volkart bedeutet Bou 6 den Beginn der Luftaufnahme;

aus Bild 12 geht jedoch hervor, dass k^8 denselben
Übergangsbereich festhält. Im Gegensatz zur Boussinesq-
Zahl ist x unmittelbar zu berechnen, anhand des Gefälles Js,

der Rauhigkeit K und des Durchmessers D kann deshalb

abgeschätzt werden, ob sich eine Luftaufnahme einstellen
wird. Da die üblichen Rohrdurchmesser im Bereich

0,2<D<3,0m zu finden sind, kann der Einfluss von Z)1/6

weitgehend unterdrückt werden (0,2l/2 0,77, 31/6=1,2).

Nimmt man als Mittelwert D 1 m an, so vereinfacht sich das

neue Kriterium auf (AV7j), 25, wobei A^in m1/3/s einzusetzen
ist und «t» auf den Übergang von unbelüftetem zu belüftetem
Abfluss hindeutet. Betrachtet man den häufigen Fall eines

Rohres mit einer Rauhigkeit AT=85 m'/3/s, so ergibt sich für
das Übergangsgefälle rund Js 10%.
Mit Hilfe von x, 8 lassen sich noch weitere «Faustformeln»
aufstellen. Für hohe Teilfüllungen hN/D>\/2 gelten nach
Bild2 die Approximationen VN^V, und gw —g„ wobei
Index v den Vollfüllungszustand bezeichnet. Ersetzt man
(K\/Ts) in x, durch die Vollfüllungsgeschwindigkeit
V, K]/7S(D/A)2ß, so entsteht für

(60) V, \0\/D ,D(m)

eine Beziehung, die von Volkart schon experimentell gefunden
wurde. Für den Durchfluss ergibt sich analog

(61)

wobei g,(m3/s).

g, 7,81/E*, D(ra).

Beispiel
Gegeben ein Bemessungsdurchfluss von g 2,5 m3/s, der

unter einem Gefälle von 7^ 25% und mit einem Rohr der

Rauhigkeit von K= 85 m'/3/s unter Normalabflusszustand
abgeleitet werden soll. Welches sind die hydraulischen Abfluss-
kenngrössen?
Unter Vollfüllung ergibt sich für den Durchmesser

D, {45/3 Q/ (%K]/7^ }3/8 0,535 m. Um keine Abflussinstabilitäten

infolge Zuschlagen zu erhalten, wählt man für
D 0,7 m. Der zugehörige Abfluss unter Vollfüllung
beträgt dann gv=5,12m3/s, womit nach Bild2 hN/D 0,485

(QnIQ,=0,488), also hN=h„=0,340 m. Der Parameter x
ergibt sich zu x 85l/öi25(0,7)l/6/l/9T8T=12,8, weshalb mit
Luftaufnahme zu rechnen ist (x>x, 8). Mit hJD
0,34/0,7 0,486 und Bild 12 folgt für hg/D 0,6l, also

hg 0,6l- 0,7 0,43 m.
Nach der Berechnungsmethode von Volkart ergibt sich als

Luftbeiwert A =1,5, also Qg= 1,5 • 2,5 3,75 m3/s. Nach
Fig. 2 resultiert für gg/g,= 3,75/5,12 0,73 die Abflusstiefe

hg/D 0,62, womit ^ 0,43 m.
Nach Bild 11 ergibt sich mit hJD 0,485 für FrJ(Q/
\/gD5) 4, also Frw=7,$; mit Bild 10 ergibt sich anschliessend

für das Verhältnis FrJBouK 0,&, also Boua FrJ0,8 9,75.

Nach Beziehung (55) folgt dann C=0,127. Mit (7) ergibt sich

für die benetzte Fläche F„. 0,186m2, also VW QJFW=2,5/
0,186= 13,5 m/s, womit Vg= 13,5(1 -0,1272)= 13,25 m/s
nach (56).
Als wesentliche Schlussfolgerungen der Untersuchung über
den Lufteintrag in Abflüsse in Rechteck- und Kreisprofile
lassen sich anführen:

D In beiden Fällen gestattet eine geeignete graphische
Auswertung der Versuchsresultate eine unmittelbare Bestimmung
der Gemischabflusstiefen,
D Im Rechteckprofil tritt die Kennzahl n (hJK? sin3o)/
g3)'14 als wichtiger Bemessungsparameter auf, im Kreisprofil
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spielt die analoge Grösse y, K\/rTsD[ 6 / ]/g einen vergleichbaren

Einfluss auf den Selbstbelüftungsvorgang.
D Im Kreisprofil tritt für x < 8 keine nennenswerte Belüftung
auf.

7. Zusammenfassung

Die vorhegende Untersuchung beschäftigt sich mit den
wichtigsten Eigenschaften von Freispiegelabflüssen. Spezielle
Aufmerksamkeit wird dem Rechteck- und Kreisprofil gewidmet,
die wichtigsten Resultate sind unmittelbar aus graphischen
Darstellungen zu entnehmen. Die folgenden Schlussfolgerungen

scheinen angebracht:
1. Normalabfluss stellt sich nur nach extrem langer Fliessdistanz

ein, auf welcher sämtliche Abflussparameter keine
Änderung erfahren; das Fliessgesetz von Strickler genügt
meistens den Genauigkeitsanforderungen der Praxis, seine

Verallgemeinerung lässt sich zur Berechnung des

Wandreibungsgradienten beliebiger Abflüsse näherungsweise
anwenden.

2. Kritischer Abfluss lässt sich lediglich durch Variation der

Sohlengeometrie, des Querschnitts des Kanals oder durch
Variation des Durchflusses erzeugen. Da kritischer Abfluss
normalerweise beträchtlich geneigte und gekrümmte
Stromlinien hervorruft, kann die Abflusstheorie mit
hydrostatischer Druckverteilung nur beschränkt angewandt
werden.

3. Die Anwendung des Impulssatzes in Fliessrichtung ergibt
einen Ausdruck für die konjugierten Abflusstiefen, also der

Tiefen vor und nach dem Wassersprung. Dagegen gelingt
es bis heute nur beschränkt, Angaben über den internen

Abflussvorgang eines Wassersprungs zu machen.

4. Stau- und Senkungskurven entsprechen im allgemeinen der

linienförmigen Darstellung der Wasseroberfläche von
stetig-veränderlichen Abflüssen. Der Spezialfall des prismatischen

Kanals mit konstanter Sohlenneigung und
unveränderlichem Durchfluss wird einer genaueren Analyse
unterzogen.

5. Die meisten Angaben über die Zweiphasenströmung
Wasser-Luft sind experimenteller Natur. Bis heute ist deshalb

noch nicht restlos geklärt, welche Kennzahlen den

Luftaufnahme-Mechanismus beeinflussen. Die Ausführungen
bezüglich des Rechteckprofils beziehen sich auf die

Froude-Zahl, diejenigen bezüglich des Kreisprofils auf die

Boussinesq-Zahl.

Anhang I

Kritischer Abfluss im Rechteckkanal

Nach Beziehung (8) gilt für die auf einen bestimmten
Querschnitt an der Stelle x0 bezogene Energiehöhe

(A) H. h +
Q2

2gB2h2

wobei Index o nicht wiederholt wird. Darnach ist H, lediglich
abhängig von der Wassertiefe h, H,(h). Es soll in der Folge
untersucht werden, unter welchen Bedingungen H, ein Mini-
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mum (ö2HJöh2 > 0), ein Maxmimum (ö2HJöh2 < 0) oder ein
neutraler Punkt (ö2HJdh2 0) darstellt. Mit

(B) d_H.= {
Q2

dh " gB2h3
0

folgt unter Berücksichtigung der kritischen Bedingung (B)

d2H. 3g2 3
(Q > 0, h > 0

ôh2 gB2h* h

Fr 1 erzeugt demnach immer eine minimale Energiehöhe
H, H,^n.
Betrachtet man nun die Ableitung von Gl. (A) nach x,

ÔH.
(D)

dx
'- h' (1 - Fr2) 0

für Frj^l und h' 0, so folgt

(E)
ö2H.
öx2

h" (l-Fr2) +
3Q2h'-

gB2h*
h"(\-Fr2)

Für Fr< 1 und h"<0 (h">0) ergibt sich demnach ein Maximum

(Minimum) und für Fr> 1 und h"<0 (h">0) folgt ein
Minimum (Maximum) in //,. Für h" 0 ergibt sich schliesslich

ein neutraler Punkt. Diese drei Fälle sind in Bild 13 für
den Abfluss über eine variable Sohle (wehrförmiger Körper)
dargestellt. Man stellt fest, dass die beiden Fälle Fr< 1, h"<0
und Fr> 1, h">0 physikalisch nicht realisierbar sind. Demnach

entspricht die relative Energiehöhe //, im Scheitel des
Wehres entweder einem relativen Minimum (Fälle a), b)) oder
einem neutralen Wert (Fall c)). Dieses relative Energieminimum

ist jedoch für Fr^l immer kleiner als die kritische
Energie. Der Fall h' 0, Fr # 1 lässt sich somit im Zusammenhang

mit kritischem Abfluss ausschliessen. Analoge Resultate
ergeben sich ebenfalls für Querschnitts- und Durchfluss-Variation.

Gleichung (10) entspricht der Bedingung für eine minimale
Energiehöhe im Rechteckkanal, Fr=\, unter der Zusatzforderung

(12)

(F) gg' Q2B'

gB2h2 gB3h2
0

Es soll nun weiter untersucht werden, unter welchen Gegebenheiten

sich kritischer Abfluss überhaupt einstellen kann. Dazu
betrachten wir die Energiehöhe H H(x) und bilden mit Hilfe
von (10)

H" z' h"(\-Fr2) +
Q'2

+
QQ'

gB2h2 gB2h2

_ AQQ'B'
_

AQQ'h'
_ g^T

gB3h2 gB2h3 gB3h2

3Q2B'2 4Q2B'h' 3Q2h'

gB*h2 gB3h3 gB2h*
0

Setzt man darin die Bedingung für kritischen Abfluss ein,
Q2=gB2h3, so folgt

(H)
Q'2 Q"h AQQ'B' AQQ'h' hB"

gB2h2 h gB3h2 gB2h3 B

3B'2h AB'h' 3h'2
+ + —-

B2 B h
0,

Nach (F) muss die Summe der Gradienten in z', B' und Q'
simultan mit der Forderung Fr—1=0 verschwinden. Als

wichtigen Spezialfall betrachten wir z'=Q' B' 0, womit
(F) identisch erfüllt ist. Für die allgemeine Diskussion verweisen

wir auf /9/, der Einfachheit halber beschränken wir uns
auf den angegebenen Spezialfall. Dieser bezieht sich somit auf
ein Wehr im prismatischen Kanal, einen Venturikanal mit
horizontaler Sohle oder auf einen prismatischen Sammeloder

Verteilkanal mit horizontalem Boden.
Setzt man die Zusatzforderung in (H) ein, so entsteht

(I)

womit

(J)

+

W

(Th
Q

hB"

B

3h'2
0

3

h2B'
hz' h2Q'

Q

Für einen Venturikanal mit z' 0 und g' 0 ergibt sich demnach

für die Wasserspiegelneigung im kritischen Querschnitt

(K. 1) K \h\B"k

3Bk

wobei sich zeigen lässt /9/, dass das positive (negative) Vorzeichen

einem Fliesswechsel Schiessen-Strömen (Strömen-
Schiessen) entspricht. Infolge der Annahme einer Potentialströmung

(H'= 0 lässt sich (K. 1) lediglich auf den zweiten
Fliesswechsel anwenden.

Analog zu (K. 1) gilt im Falle B'= 0 (prismatischer Kanal)
und g'= 0 (konstanter Durchfluss)

(K.2) a;
-hzl

und für z'=0 und B'= 0

(K.3)
h2kQl

3g*

wobei auch für diese Fälle lediglich das negative Vorzeichen
physikalische Relevanz besitzt. Kritische Abflüsse stellen sich
demnach ein, falls

- B">0 (mit z' z" 0 und g' g" 0), also in
Querschnittsverengungen mit dem kritischen Querschnitt an
der engsten Stelle (B' 0),

- z" < 0 (mit B' B" 0 und g' Q" 0), also in Sohlener-
hebungen mit dem kritischen Querschnitt an der höchsten
Stelle (z' 0),

- Q" < 0 (mit z 0 und B" B" 0), also in Kanälen mit
variablem Durchfluss, mit dem kritischen Querschnitt im
Einlauf (g' 0, Q" < 0) für Verteilkanäle, oder im Auslauf
(g' 0, g"<0) für Sammelkanäle. Diese vier möglichen
Fälle von kritischen Querschnitten und ihre Gegenstücke
sind in Bild 14 dargestellt.

Natürlich lassen sich auch Kombinationen der erwähnten
Grundtypen behandeln, so beispielsweise A und C /9/, A und
D /12/ oder auch A und B nach Bild 14. Weiterhin lassen sich
diese Resultate in analoger Weise und mit entsprechenden
Resultaten auf beliebige Querschnitte anwenden.
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