Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 102 (1984)

Heft: 49: Zur Eröffnung des Loppertunnels - N8

Artikel: Fernwirkungsanlagen für die Nationalstrassenabschnitte N2/N8 auf

dem Gebiet der Kantone Nidwalden und Obwalden

Autor: Roth, H. / Heitzer, A.

DOI: https://doi.org/10.5169/seals-75588

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

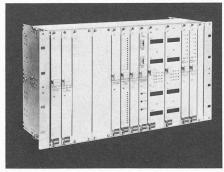


Bild 4. IMPERATOR-Bleuchtungssteuerung

Da die Verzweigung im Tunnel nach Luzern oder zum Gotthard besondere Sehaufgaben stellt, wird die optische Führung durch Lichtbänder mit TU-

NAL-Fluoreszenzleuchten verbessert. die über jeder Fahrspur angebracht sind. Auch die Leistungsaufnahme der Fluoreszenzlampen lässt sich durch spezielle Vorschaltgeräte der Firma Leuenberger auf 3 verschiedenen Leistungen einstellen, so dass auch hier eine gute Anpassung des Lichtniveaus an den momentanen Bedarf möglich

Steuerung der Beleuchtung

Während die Mittelzone nach Zeit und Verkehrsdichte geführt wird, ist es zweckmässig, die Einfahrzonen entsprechend der Helligkeit in den Annäherungszonen vor den Portalen zu führen. Um dies einerseits verkehrsgerecht und anderseits energiesparend zu tun, werden mit den Leuchtdichtemessern LAMET die entsprechenden Leuchtdichten vor dem Portal, aber auch die Istwerte in der Einfahrzone gemessen. Aufgrund dieser Messwerte und unter Berücksichtigung anderer Rahmenbedingungen berechnet der Regler IMPERATOR mit einem Mikroprozessor das anzuwendende Beleuchtungsprogramm.

Adresse des Verfassers: W. Riemenschneider, dipl. Ing., ATB AG für technische Beleuchtung, 8952 Schlieren, Tel. 01/730 77 11.

Fernwirkanlagen für die Nationalstrassenabschnitte N2 / N8 auf dem Gebiet der Kantone Nidwalden und Obwalden

Von H. Roth, Zug, und A. Heitzer, Zürich

Die technischen Installationen der Nationalstrassenabschnitte von der Kantonsgrenze Luzern-Nidwalden bis zum Seelisbergtunnel der N2 und der Abschnitte Hergiswil bis Sarnen der N8 sollen von Stans und Sarnen aus überwacht und bedient werden. Es handelt sich dabei um die Energie-, Beleuchtungs-, Ventilations-, Verkehrsregelungs-, Fernseh- und Alarmanlagen der Galerie in Hergiswil, der beiden Achereggtunnel, der Überdachung und des Lehnenviaduktes in Beckenried sowie des Loppertunnels mit seinen Vorzonen.

Die betriebsmässige Führung erfolgt von Stans aus. Sarnen erhält sämtliche Informationen und kann auf die Verkehrsregelungs- und Fernsehanlagen einwirken, soweit dies keine Folgen auf die N2 hat. Der vollständige Ausbau in Sarnen erfolgt erst mit dem weiteren Ausbau der Brünigstrecke. Von der Kopfstation «Lopper Süd» kann der Loppertunnel wie von Stans aus bedient werden. Sämtliche Anlagen sind bei Störungen, Ausfall oder Unterhaltsarbeiten «vor Ort» notfallmässig bedienbar, damit der Betrieb aufrechterhalten werden kann.

Aufgabenstellung

Die prinzipiellen Aufgaben der Fernwirkanlage können wie folgt zusammengefasst werden:

- Erfassung, Übertragung und Verarbeitung von Daten der verkehrs- und betriebstechnischen Anlagen
- Präsentation der verarbeiteten Daten für die betriebsführenden Operatoren in den Kommandozentralen (Kopfstationen)
- Übernahme von Operatorbefehlen in den Kommandozentralen, Übertragung und Ausgabe der Befehle an die Stellglieder der Anlagen.

Die Signalisierung, Bedienung und Protokollierung soll möglichst ähnlich sein

wie beim Seelisbergtunnel, da beide Anlagen vom gleichen Personal bedient werden.

Im Hinblick auf spätere Ausbauten muss die Anlage modular aufgebaut sein, damit Erweiterungen ohne «verlorene Werte» möglich sind.

Anlagenkonzept

Die Anlage ist als Sternnetz aufgebaut. Stans dient als Kopfstation für die drei N2-Unterstationen Hergiswil, Acheregg und Beckenried, «Lopper Süd» als solche für die N8-Unterstationen TS2 und TS3. Sarnen ist als Kopfstation für die weiteren N8-Unterstationen Richtung Brünig vorgesehen. Der Netzaufbau ist im Bild 1 dargestellt.

Alle drei Kopfstationen sind mit Rückmeldetafeln und Bedienungspulten ausgerüstet. In Stans sind ein alphanumerisches Datensichtgerät und ein Drucker installiert. Sarnen wird erst beim weiteren Ausbau damit ausgerüstet. Die Konzeption mit drei Kopfstationen und den zugehörigen Unterstellen ermöglicht bei Bedarf den unabhängigen Betrieb dieser drei Teilnetze.

Die Kopfstation «Lopper Süd» verfügt über einen Zusatzspeicher, der bei Ausfall der Verbindung nach Stans bzw. Sarnen etwa 1000 Meldungen speichern kann. Nach Wiederherstellung der Verbindung erfolgt ein entsprechender Protokollausdruck.

Sämtliche Stationen sind über kantonseigene Nationalstrassen-Telefonkabel miteinander verbunden.

Gesamtinformationsumfang:

- 1000 Befehlseingänge (Befehlstastaturen in drei Kopfstationen),
- 550 Befehlsausgänge,
- 1150 Meldungseingänge,
- 2450 Meldungsausgänge (Meldebilder in drei Kopfstationen),
- 80 Messwerteingänge und
- 100 Messwertausgänge (Meldebilder in drei Kopfstationen)

Die Übertragungsgeschwindigkeit be-

- Kopfstation Kopfstation 600 Baud, vollduplex
- Kopfstation Unterstation 600 Baud, halbduplex.

Als Reaktionszeiten sind folgende Richtwerte zu erwarten:

- Befehle: etwa 1 Sekunde ab Tastendruck bis Befehlsausgabe
- Meldungen: etwa 1 Sekunde ab Si-

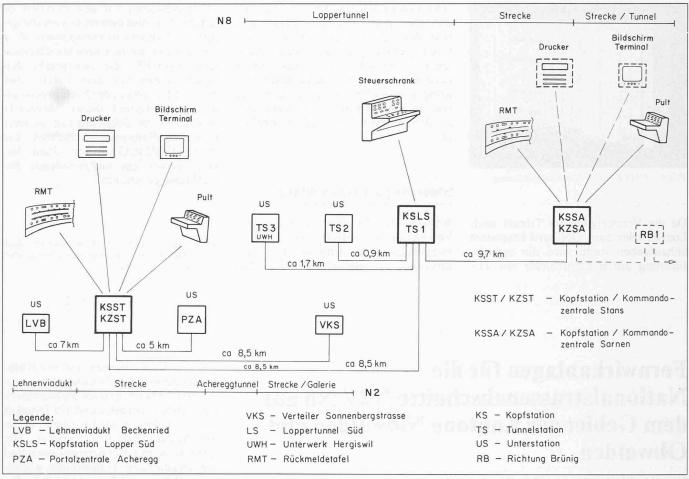


Bild 1. Fernwirkkonzept N2 / N8

gnalgabe in der Anlage bis zur Anzeige am Meldebild

 Messwerte: etwa 1,5 Sekunden ab Eingabe bis zur Anzeige am Instrument

Betriebsführung

Bedienung, Signalisation, Protokollierung

Sämtliche Anlagegruppen können in den Kopfstationen mit Tasten von den

Bedienungspulten aus gesteuert werden. Die Befehlsgabe erfolgt über eine Tastenanwahlsequenz: Ort, Abschnitt, Betriebsart, Funktion usw. Dabei wird der Operator optisch geführt, d.h. die Tasten der Anwahlmöglichkeiten des nächsten Bedienungsschrittes blinken. Bei einer Fehlbedienung erfolgt eine Fehlermeldung mit Löschanweisung.

Die richtige Befehlsausführung wird im Meldebild durch die entsprechende Rückmeldung angezeigt. Alarm-, Sicherungs- und Revisionsmeldungen werden akustisch und optisch blinkend gemeldet. Die Anzeige erfolgt in einer 3fach-Matrix mit Angabe

- des Meldeortes,
- der Meldeart und
- des gestörten Anlageteils.

Störungsmeldungen werden spontan protokolliert. Betriebsmeldungen können ab einem Zwischenspeicher (etwa 1000 Meldungen) bei Bedarf ausgedruckt werden. Jede Protokollseite beginnt mit dem Datum. Die Protokollierung von Meldungen erfolgt zeilenweise mit folgendem Inhalt:

Bild 2. Kopfstation Stans betriebstechnischer Teil

Bild 3. Kopfstation Stans verkehrstechnischer Teil

06.1	10.8	34	***	*KOPFSTATION	STANS***	LANDIS &	GYF		SEITE	2
11	^/	47	/22"	N2KSST	SOS TELEFON		e e	SAEULE 104.9	1.	NORMAL
			32"	N8KSLS	ENERGIE NIEDE	RSPG-ANLA	GE	LS TRAFO 1		STOERU
EL	10	14	152	N8KSLS	ZULUFTVENTILA	ATOR		STUFE 1	GREEN TO	AUS
L	11	15	23	NBKSLS	ALARM VERKEHR	STAU		HERGISWIL		AUS
1EL	12	10	111	N8TS2-1	BEL. TUNNEL MI	TTELZONE		STUFE 2		EIN
1EL	13	00	00	N8TS3	TV HERGISWIL			KAMERA 201		AUS

Bild. 4 Protokollbeispiel

- Meldeart - Zeit - Station - Anlageteil - Objekt - Status.

Die Messwerte werden in Tabellenform ausgegeben.

Die Rechneruhr wird mit einem Minutenimpuls ab Uhrennetz synchronisiert, damit Protokollierung und Tonbandaufzeichnung von Notrufen zeitlich übereinstimmen.

Das TELEGYR®-**Fernwirksystem**

Hardware

Die Kopfstationen sind mit Fernwirkzentralen vom Typ TELEGYR®709S ausgerüstet. Dieses softwaregesteuerte System ist für mittleren bis grossen Informationsumfang optimiert. Kern des TELEGYR®709S ist ein 16-Bit-Mikrorechner. Als Lademedium für das Programm und die Datenbank dient eine Floppy-Disk-Einheit.

Die Hauptfunktionen der TELE-GYR®709S-Zentralen sind:

- Ausgabe von Befehlen an die verschiedenen Anlagen
- Ansteuerung der Peripheriegeräte (Mensch-Maschinen-Interface)
- Datenverarbeitung (Grenzwertüberwachung, Ablaufsteuerung usw.)
- Datenaustausch mit den angeschlossenen Stationen über die Kommunikationsschnittstelle und die Tonfrequenzkanäle.

Angeschlossen an die Fernwirkzentralen ist das Mensch-Maschinen-Interface, d.h. die Peripheriegeräte der Kopfstationen wie Befehlstastaturen, Meldebilder, alphanumerische Datensichtgeräte und Drucker.

Die verschiedenen Unterstationen sind mit den Fernwirkunterstellen TELE-GYR®709 und TELEGYR®065 ausgerüstet.

Die Hauptfunktionen der TELEGYR®-Unterstellen sind:

- Erfassen der Messwerte und Meldungen über die Eingabe-Hardware
- Ausgabe der Befehle an die Anlagen
- Datenaustausch mit der Zentrale über die Kommunikationsschnittstelle und die Tonfrequenzkanäle.

Die TELEGYR®709-Unterstellen werden dort eingesetzt, wo grosse Datenmengen anfallen. Die TELEGYR®065-Terminals kommen dort zum Einsatz, wo nur relativ wenig Befehle, Meldungen und Messwerte verarbeitet werden müssen. Sie eignen sich dank ihrer kompakten Konstruktion vor allem auch zum Einbau in kleine Stationen.

Software

Die Software, d.h. die Gesamtheit der Programme, besteht aus zwei Hauptgruppen, der Grundsoftware und der Anwendersoftware.

Die Grundsoftware enthält alle Programmteile für den Betrieb des Rechners, der Peripherie und der Prozessinterfaces sowie für die Kommunikation mit den Unterstellen.

Die Anwendersoftware enthält alle Programmteile zur Lösung der eigentlichen Prozessaufgaben und der projektspezifischen Aufgaben. Dieser Teil der

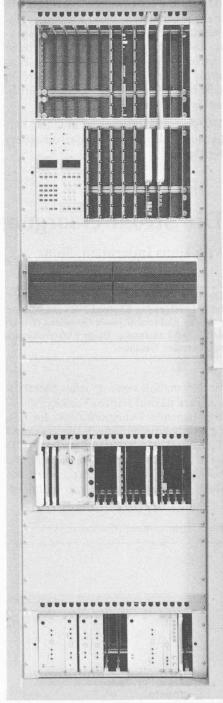
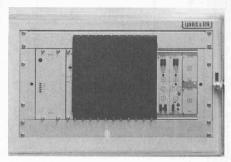


Bild 5. Fernwirkzentrale TELEGYR®709S

Bild 7. Software-Struktur

Anwender-Software

projektspezifische Software, z.B.


- Ablaufsteuerung
- Protokoll-Zwischenspeicherung
- Rechenfunktionen
- spezielle Alarmverarbeitung

Grund-Software

- Befehlsverarbeitung
- Meldungsverarbeitung
- Messwertverarbeitung
- Protokoll
- Datenbank usw.

Bild 6. Fernwirkunterstelle TELEGYR @065

Software nimmt Rücksicht auf die Bedürfnisse des Anwenders, in unserem Falle - wie bereits beim Projekt Seelisbergtunnel - auf die besonderen Aspekte und Sicherheitsanforderungen beim Betrieb von Nationalstrassen und Tunnels. Zudem musste beachtet werden, dass beide Anlagen vom gleichen Personal bedient werden.

Die gesamte Software ist modular aufgebaut und kann bei Bedarf erweitert werden.

Schlussbetrachtung

Die moderne Fernwirktechnik macht es möglich, aus allen Anlageteilen Befehle, Meldungen, Messwerte usw. sicher zu übertragen, die anfallende Datenmenge effizient zu verarbeiten, und sie erlaubt dem betriebsführenden Personal in den Kommandozentralen in Ausnahmesituationen rasch und gezielt einzugreifen.

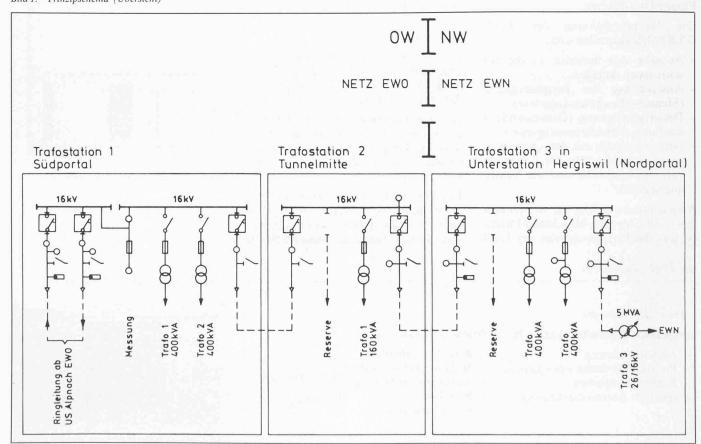
Alle zur Verfügung stehenden Informationen und Eingriffsmöglichkeiten helfen der Polizei und dem Unterhaltsdienst, dem Autobahn- und Tunnelbenützer auf diesem topographisch schwierigem Streckenabschnitt optimale Bedingungen und grösstmögliche Sicherheit zu bieten.

Adresse der Verfasser: H. Roth, Ing. HTL c/o Landis & Gyr Zug AG, Zug, und A. Heitzer Ing. HTL c/o Sauber & Gisin AG, Zürich.

Die Stromversorgung

Von Hans Inderbizin, Stans

Der Loppertunnel liegt zu zwei Dritteln auf Gebiet des Kantons Obwalden und zu einem Drittel auf Gebiet des Kantons Nidwalden. Damit sind für die Stromversorgung des Loppertunnels das Elektrizitätswerk Obwalden (EWO) sowie das Kantonale Elektrizitätswerk Nidwalden (EWN) zuständig. Beide Elektrizitätswerke sind selbständige Unternehmungen der entsprechenden Kantone.


Im Normalfall versorgt jedes Elektrizitätswerk das auf seinem Versorgungsgebiet liegende Tunnelteilstück. Im Störungsfall können jedoch die gesamten Tunnelanlagen vollständig vom EWO oder vom EWN gespiesen werden. Die beiden Elektrizitätswerke betreiben ihre Mittelspannungsnetze mit verschiedenen Spannungen. Sie betragen beim EWO 16 kV und beim EWN 26 kV, so dass für das Zusammenschalten der beiden Netze der Einbau eines Kuppeltransformators nötig wurde. Für die Stromversorgung wurde für den gesamten Tunnel eine Betriebsspannung von 16 kV gewählt.

Der elektrische Leistungsbedarf im gegenwärtigen Ausbau beträgt 1500 kW. Sollte in einem späteren Zeitpunkt der gesamte Tunnel zweiröhrig geführt werden, so würde der Leistungsbedarf auf etwa 3100 kW ansteigen.

Besondere Einzelheiten

Bild 1 zeigt das Prinzipschema der Hochspannungsversorgungseinrichtungen. Erstellt wurde je eine Transformatorenstation beim Südportal, in der Tunnelmitte und beim Nordportal. Diese drei Transformatorenstationen sind mit einem im Tunnel verlegten Hochspannungskabel 16 kV, 3×95 mm² Cu, verbunden. Die Einspeisung

Bild 1. Prinzipschema (Übersicht)

