Zeitschrift: Schweizer Ingenieur und Architekt
Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 102 (1984)

Heft: 39

Artikel: Optimierung des Mastabstandes bei Freileitungen
Autor: Amport, Erwin / Ambort, Peter

DOl: https://doi.org/10.5169/seals-75534

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-75534
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Datenverarbeitung / Mathematik/Energieversorgung

Schweizer Ingenieur und Architekt  39/84

Arbeitsblattprogramm. In beliebigen
Zeitabstinden, z.B. wochentlich, wer-
den Daten ergénzt, gedndert oder neu
eingefiigt. Die weitere Rechenarbeit
ibernimmt der PC. Auf Knopfdruck
verfliigt der Baumanager somit iiber
einen Gesamtiiberblick der Kosten mit
simtlichen Zwischensummen, Quer-
rechnungen, Vergleichen, Uber- und
Unterschreitungen.

Als besonders vorteilhaft hat sich der
Farbmonitor herausgestellt, welcher
Eingabedaten weiss auf einem wahlba-
ren Farbhintergrund darstellt und z.B.
Zwischensummen gelb und negative
Werte wie Kosteniiberschreitungen rot.
So kénnen kritische Werte nicht iiber-
sehen werden, und sdamtliche Daten
sind 4usserst Ubersichtlich am Bild-

Selbstverstdndlich ist es zweckmaéssig,
dem eigentlichen Rechner samt Bild-
schirm auch einen Drucker anzuhin-
gen, um die Informationen nicht nur
am Bildschirm, sondern auch im Aus-
druck ablesen zu konnen.

Mit diesen Instrumenten - Bildschirm
und Ausdruck - ist fiir den Baumana-
ger das schwierige Thema der Bauko-
stenliberwachung leicht zu beherrschen
und durchzufiihren.

Schlussbemerkung

Die beschriebene Arbeitsmethode stellt
nicht nur ein theoretisches Modell dar,
sondern wird derzeit fiir das Grossbau-

Biiro-, Wohn- und Garagenobjektes mit
einem Kostenrahmen von rund 6S 300
Mio. angewendet.

Wir stehen heute mitten in der Baupha-
se und sind aufgrund der beschriebenen
Baukostenkontrolle in der Lage, vom
Beginn des Projektes bis zur Fertigstel-
lung dem Bauherrn jede Information
iiber den jeweils aktuellen Kostenstand
zu geben. Es kann zu jedem Zeitpunkt
noch rechtzeitig eine Steuerung der Ko-
sten vorgenommen werden, und wir
sind zuversichtlich, dieses Projekt im
vorgesehenen Kostenrahmen erfolg-
reich abschliessen zu kénnen.

Adressen der Verfasser: Architekt Dipl.-Ing. Wer-

schirm ablesbar. vorhaben eines

Optimierung des Mast-
abstandes bei Freileitungen

Von Erwin Amport und Peter Amport, Luzern

Der Mastabstand von Freileitungen wurde bisher mit aufwendigen
Methoden (Verfahren) optimiert. Die beiden Autoren haben eine Lo-
sung auf analytischem Weg gefunden. Er fiihrt zu verbliiffend einfa-
chen Formeln, die sich auf dem Taschenrechner programmieren las-
sen. Wir publizierem die Problemlosung, da sie bisher nur im Jahres-
bericht 1981/82 des Zentralschweizerischen Technikums Luzern be-
kanntgemacht worden ist.

Einleitung

Bei der nun folgenden Optimierung werden die Materialko-
sten K in Abhéngigkeit des Horizontalzuges H dargestellt.
Das mag auf den ersten Blick iiberraschen, erwartet man
doch eher eine Darstellung von K in Abhéngigkeit des Mast-
abstandes oder der Masthohe. Dies wurde zuerst auch ver-
sucht, doch ohne Erfolg! Der mathematische Eliminations-
prozess hat uns, zusammen mit physikalischen Uberlegun-
gen, den Horizontalzug H als freie Variable aufgezwungen.
Man kann natiirlich K in Abhdngigkeit von mehreren Va-
riablen darstellen. Dadurch wird die Bestimmung des opti-
malen H-Wertes aber viel komplizierter und schwieriger, da
die Existenz eines Minimums fiir K nicht mehr durch blosses
Aufzeichnen der Kostenfunktion bewiesen werden kann. An
die Stelle der anschaulich graphischen Methode treten dann
Untersuchungen mit Hilfe der partiellen Ableitungen.

Die iibrigen in der Kostenfunktion (7) auftretenden Parame-
ter gehen als Konstanten in die Rechnung ein. Dies betrifft
insbesondere auch die maximal zuléssige Seilkraft .S, die vom
Ingenieur durch die Wahl des Seiles bestimmt wird. Diese
maximale Seilkraft wird bei minimalem Durchhang des Sei-
les (im Winter) erreicht. Fiir die Konstante m muss daher der
grosstmogliche minimale Seilabstand von der Erde eingesetzt

Bank-,

ner Thonig, Anton-Rauch-Strasse 13a, A-6020 Inns-

Geschiéfts-,  bruck; Ing. Dr. Gerhard Schwaiger, Birchfeld 8,

werden. Man wird also zum gesetzlich vorgeschriebenen Mi-
nimalabstand m, einen Winterzuschlag addieren. Da dieser
Zuschlag das Ergebnis der Optimierung nicht stark beein-
flusst, diirfte er im allgemeinen als Erfahrungswert in die
Rechnung eingehen. Zur genaueren Bestimmung des Abstan-
des m kann man das folgende «Iterationsverfahren» verwen-
den:

Optimierung mit einem Erfahrungswert fiir m durchfiihren
— lund f. Aus /und fSeilldinge b zwischen zwei Aufhénge-
punkten bestimmen und daraus den kleinstmoglichen Ab-
stand m, (Sommerabstand) berechnen. Differenz m, — m, bil-
den und zu maddieren: m, = m + (my—m,). Optimierung mit
dem neuen Wert m, durchfiihren.

Ein anderes Beispiel zur Bestimmung von m wird in [1] be-
schrieben.

Bevor wir nun in den Eliminationsprozess einsteigen, noch
einige Worte zu zwei Konstanten und deren physikalischem
Inhalt: Bei Uberspannung einer bestimmten horizontalen
Distanz bleibt die Ldnge des Seiles, ungeachtet der Art und
Weise, wie die Masten gesetzt werden, praktisch konstant.
Dies ist eine Erfahrungstatsache, ldsst sich aber auch mathe-
matisch leicht nachpriifen. Wir haben deshalb die Seilkosten
(pro horizontale Léngeneinheit) als Konstante C, in die
Rechnung eingefiihrt.

Eine weitere Bemerkung betrifft das Mastgewicht. Unter der
Voraussetzung, dass fiir eine bestimmte Uberspannung Ma-
sten verschiedener Hohe geometrisch dhnlich sind, ist das
Verhiltnis vom «dusseren» Mastvolumen (Pyramide) zum
effektiven Mastvolumen konstant. Das Mastgewicht ist somit
dem Pyramidenvolumen direkt proportional, was mit der
Konstanten C; ausgedriickt wird.

Damit sollte der Weg zur Berechnung geebnet sein. Lassen
wir also die Mathematik sprechen.

In der Berechnung werden folgende Abkiirzungen verwen-
det:

K = Materialkosten pro horizontale Lingeneinheit
(fiir Masten und Seil)

G = Gewicht eines Mastes

M = Maximal zuldssiges Biegemoment auf Mastbasis

W = Widerstandsmoment des Mastquerschnitts an der

Basis
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s Mastquerschnitt |
(Basis)

Q/2
4l == i
H

Mastabstand

Kleinstmoglicher maximaler Durchhang
des Seiles

Seillange zwischen zwei Aufhdngepunkten
Gesetzlich vorgeschriebener minimaler
Seilabstand von der Erde

Grosstmoglicher minimaler Seilabstand
von der Erde

(m= mg + Winterzuschlag)

Masthéhe

-
I

i 0 y
d 1/2

Maximal zuldssige Seilkraft
Horizontalzug

Gewicht des Seiles zwischen zwei Masten
Seitenlidnge des Mastquerschnittes (Basis)

Lo T
L T

Bild 1. Mastanordnung und Bezeichnung der Symbole

Maximal zuldssige Spannung im Mastquerschnitt
an der Basis

Eigengewicht des Seils pro Langeneinheit inklusive
Belastung durch Eis und Schnee

C,-G = Konstanten

C, = Mastenkosten pro N Gewicht

C; = Seilkosten pro N Gewicht

Bild 1 zeigt weitere Symbole und ihre Bedeutung.

Oum

Berechnungen
Kostenfunktion K
® k=¢-S+q.L-qg. Ssq
G=G-d-h
W = C4 ® d3
W = _AL = H-h
oM oM
>d>=Cs- HY3. h?3 >

(2) G=GCs- H23 . h5/3
Seilkurve
y=a-cosh%+ (8
mit a=—}£
q
x=0: m=a+C = C=m—a

X =

N | —

_ 2544 9l
3) h—a-cosh2a+m a

Berechnung von /

H*+ (%)2 = §2

0
2
/
——g (fw/ - dx= H . sinh Ba

736

(5) h= +m

(5)in (2):
(6) G= C¢-H>? (

o 5/3
s=,

S—H+ mq )5/3

+ Cz

(4)und (6)in(1): K= C; -

23, (
H S
7 arcosh H

(S— H+mg)>?
g3 HA.

Gekiirzt: K= C; - + G

arcosh %

Wir setzen % =Gund S+ mg=G

Damit erhilt man schliesslich:
(C9 —_— H) 5/3
H 173 ,

(7) K=C8' == Cz

arcosh H

Fiir welches H wird K minimal ?

Notwendige Bedingung: g—g =0

> - —(C9 H)¥3. H'”3 . arcosh %_ (Co— H)5/3 .

Ly-m
3H

arcosh —g—H“-‘- =0




Mathematik/Energieversorgung

Schweizer Ingenieur und Architekt 39/84

Weil H# 0und H < Cydiirfen wir durch
—1/3 H'3 . (Cy— H)?7dividieren:

5-arcosh%+((§;—H)~

L arcoshi—_L =0
H H H.vS?- H?
s G-H) _3S(G-H)
arcosh H' (5+ i )— HVS— H?
arcosh L 350 = 1)
H 4H+ G)VS?*—H?
> £=cosh 250G H)
H (4H+ G)VS?*— H?
3S (S+ mq— H) S
®)  cosh St mgvs— B

Aus Gleichung (8) folgt Hy.

Grenzwerte der Funktion K = K(H)

Grenzwert von K fiir H — 0: Mit Hilfe der Regel von Ber-
noullierhilt man zunéchst fiir den Grenzwert des Nenners:

S
] S . arcosh H
lim (H'Y3.arcosh—|= lim ———— =
H—0 H H—0 H-/3
=S
[t ,1
lim _lim 3S-H7 _
H-o _ 1 | -43 H—0 VS2-H?
3
Somit ergibt sich: lim K(H) = o
H—0
Ferner verifiziert man sofort,dass lim K(H) = o

H'==8

Durch physikalische Uberlegungen gelangt man iibrigens zu
den gleichen Grenzwerten.

Auf eine weitere mathematische Untersuchung der Kosten-
funktion (7) haben wir verzichtet. Um die Existenz eines Mi-
nimums nachzuweisen, liessen wir die Funktion fiir C, = 0,
Cy=1,5=40000 N im Intervall (35000; S) durch den Com-
puter (Prime Grafic Software) aufzeichnen. Dies ergab fiir
die Parameterwerte

% 10* = 5;10;15;20; 25 das Diagramm in Bild 2.

Numerische Berechnung von H,
Die Auflosung der Gleichung (8) nach H erfolgt mit einem
Néherungsverfahren. Am einfachsten benutzt man dazu ein

Computerprogramm, wie sie im Software-Angebot vieler Ta-
schenrechner vorhanden sind.

Um zu einer brauchbaren Néherungsformel zu gelangen,
kiirzen wir in Gleichung (8) das Argument von cosh mit S*
und setzen H/S = x.
3 (1 + e )
S

cosh = L\ >
(4.\—+ I+ %)\ -x2

Dies ergibt:

160 - r
"‘—sq 103 =5, 10, 15, 20; 25

120 H =

i
/
/

S [

D
o
1

/

3

(8]

0 360 370 380

Horizontalzug H % 10° 2

Bild2. Kostenfunktion K(H)

mq _
+ =1 -
3(1 S \) 1 =
=In =2 =] =i
mq 5 ln(x (\) )
4_\'+l+T l—x*

Die graphische Darstellung der Kostenfunktion zeigt, dass
fiir die in der Praxis am hédufigsten auftretenden Werte von
m, gund Sder gesuchte Wert Hysehr nahe bei Sliegt. Wir set-
zendeshalb H/S=x=1—¢, wobeig << 1.

(8"

Mit der Ndherung 1/x= 1/(1— €) ~ 1 +¢ erhilt man zundchst
fir (8'):
3 (ma
%5+

= In[1+e+V2e+¢?]
5—4e+ —mq) 2g—¢g?

(8")

S

—

und daraus mit den Ndherungen

S—4g+ ™M ~ 5 i e
TS (s
V2¢e = g? ~+\2¢

l+e+V2e ~1++/2¢ (weile <<V2¢)
In(1++2¢) ~2¢

3(ﬂ+e
(8111) S i 28 > g= i.ﬂ
5V2e I e

In H/S =1 —¢ eingesetzt, erhilt man schliesslich die fiir den
Anwender sehr handliche und ausserdem erstaunlich gute
Néherungsformel:

Hy~ S - imq

©) :

Niihrungsformeln fiir den Seildurchhang fund die Mast-
héhe h

Unter Berticksichtigung von Gleichung (5) erhilt man sofort
(10) f=h—-m= M
Setzt man fiir H, die soeben gefundene Niaherung (9) ein, so
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ergibt sich fiir den Seildurchhang f die erstaunlich einfache
Niherung.

10 f= =3m

An dieser Stelle wollen wir noch einmal deutlich darauf hin-
weisen, dass fder kleinstmdgliche maximale Seildurchhang
ist, der bei minimalem Durchhang des Seiles im Winter er-
reicht wird und somit den Voraussetzungen unserer Optimie-
rung entspricht.

Fiir die Masthdhe h erhidlt man nun sofort die ebenso einfa-
che Naherung

(5) h=m+f= Tm

Wir fassen zusammen:
Seildurchhang: (10°) f=3m

(5') h= ITOm

Masthéhe:
Es mag auf den ersten Blick erstaunen, dass der maximale
Seildurchhang f nur gerade vom minimalen Seilabstand m
abhingen soll. Bei einer Parallelverschiebung der Seilkurve
nach oben oder unten bleibt f ja konstant, wahrend m der
Verschiebung entsprechend zu- oder abnimmt. Diese letzte
Folgerung ist aber falsch. Bei verdndertem m resultiert ndm-
lich aus unserer Optimierung ein anderes H, und somit auch
eine andere Gestalt der Seilkurve.

Zwei Beispiele

Der Anwender wird sich jetzt vermutlich die Frage stellen, ob die
neugewonnene Theorie wirklich den Anforderungen der Praxis ge-
niigt. Um dies zu testen, berechnen wir damit zwei ausgefiihrte und
bewihrte Freileitungen und vergleichen unsere Ergebnisse mit de-
nen der bestehenden Anlagen. Dazu stellen wir die wichtigsten For-
meln noch einmal kurz zusammen:

3 ; 10
©)  Hy=5-3mg (5)

h= —m

(09)
@ = z'qHO-arcoshFS” 10"y f=

7
‘l m

7
Die beiden Beispiele sind dem Buch von M. Vidmar [1] entnommen
und wurden dort mit einer vollig anderen Methode ebenfalls berech-
net.

Beim ersten Beispiel betrachten wir die grosse Freileitung, die die
Wasserkrifte Boulder-Dam am Colorado mit dem fast 500 km ent-
fernten Konsumzentrum Los Angeles verbindet (Ubertragungsspan-
nung 287 kV). Die benétigten Werte betragen dort: my = 14m, g =
29,67 N/m, S = 43 180 N. Als Leitermaterial wurde Kupfer verwen-
det (Wirmedehnungszahlg, = 1,7 - 10-5 fiir 1 °C).

Um den fiir die Optimierung benétigten Wert mzu erhalten, verwen-
den wir das in der Einleitung beschriebene Iterationsverfahren: Wir
steigen mit dem Schatzwert m = 17 m in die Optimierung ein und er-
halten mit den Gleichungen (I) die ersten Ndherungswerte H, =
42963,83 N, I =290,40m, = 7,29 m, h = 24,29 m. Weil f << [, be-
riicksichtigen wir in der Reihenentwicklung der Bogenlinge b (Seil-
linge zwischen zwei Aufhidngepunkten) nur die ersten zwei Glieder.
Dies ergibt fiir die minimale Seillinge (bei —5°C und Zusatzlast)
nach [2]:

37
boin = 1+ _83fT = 290,88 m

Bei 40 °C betrigt dann die Seillinge
buae = by (1 +1,7-107%+ 45) =291,11 m

738

und der zugehorige Seildurchhang

fum\'= V (blrxu,\'8"1)3l =8,79m

Daraus erhélt man fiir den kleinstmdoglichen Seilabstand
m = h=f,.,=1549m

und somit fiir den gesuchten Wert
my=m+ (my-m)=17m+ (14m-1549m) = 15,51 m

Fiihrt man den Iterationsschritt nochmals mit dem neuen Wert
m, = 15,51 m durch, so ergibt sich m; = 15,50 m.

Die im letzten Iterationsschritt erzielte Verbesserung um 1 cm ist so
gering, dass man die Optimierung bereits mit dem Wert m, durchfiih-
ren konnte. Eine weitere Verbesserung von m wire auf jeden Fall
sinnlos. Der soeben durchgespielte Iterationsschritt ldsst sich iibri-
gens sehr einfach programmieren, was die numerische Berechnung
von mwesentlich erleichtert.

Mit dem Wert m = 15,50 m erhilt man schliesslich aus den Glei-
chungen (I) die gesuchten Naherungswerte:

H,= 4298291 N
| =27736m
h = 22,14m

f = 6,64m

Um diese Niherungen auf ihre Genauigkeit zu priifen, haben wir
mit dem Computer die exakten Werte berechnet. Aus den Gleichun-
gen (8), (4), (5) und (10) erhélt man

H,= 42982,69 N

I = 277,51m
h =22,15m
f =665m

Die Niherungsformeln (I) liefern also in diesem Fall erstaunlich
exakte Werte, was sich iibrigens in vielen anderen durchgerechneten
Beispielen bestatigt hat.

Mit der in der Freileitungstheorie bekannten Formel zur Berech-
nung des Durchhanges erhilt man, in vélliger Ubereinstimmung mit
unserem Ergebnis,

f= ’—817‘1 =6,64m

Um die soeben berechneten Niherungswerte L hund feiner Kon-
trolle zu unterziehen, berechnen wir daraus den kleinstmdglichen
Abstand m des Seiles vom Erdboden. Dieser Abstand miisste ndm-
lich mit dem gegebenen, gesetzlich vorgeschriebenen Minimalab-

stand m; = 14 m iibereinstimmen!

Fiir die minimale Seillinge erhdlt man zunéchst

by =1+ —8fT = 277,78 m und daraus

bmu\ = bmm (1 + 1,7 + 105 - 45) = 278,00 m

mit dem Durchhang

_ﬁl’(l\ = ~ (b”'u.\8_ I) 31 = 87 1 4 m

Somit: mg = h-f,,,.= 14,00 m.
In Wirklichkeit betrigt der Mastabstand dieser Freileitung /= 300 m.

Vidmar errechnet in [1] mit wesentlich komplizierteren Formeln
einen Mastabstand von I = 328 m. Unser Niherungswert fiir / weicht
um 7,5% vom wirklichen Wert ab; bei Vidmar betréigt diese Abwei-
chung 9,3%.

Beim zweiten Beispiel handelt es sich um eine mittlere Hochspan-
nungsleitung (132 kV) in England mit den gegebenen Werten m, =
6,72 m (22 Fuss), ¢= 15,95 N/m, S = 38730,81 N. Der Ubertragungs-
leiter besteht hier aus Aluminium, versehen mit einer Stahlseele.
Der Seilquerschnitt zerfillt in 37 Teilquerschnitte, die alle kreisfor-
mig sind und den gleichen Durchmesser von 2,8 mm aufweisen. Auf
das Aluminium entfallen 30, auf den Stahl 7 Adern. Die Wiarmedeh-
nungszahl dieses Seils betriigt nach [2], Zahlentafel 2 (St: Al = 1:4,3)
g,=1,76-10-5fir 1 °C.




Mathematik/Energieversorgung

Schweizer Ingenieur und Architekt 39/84

Fiihrt man die Optimierung mit dem Schitzwert m = 8 m durch
so erhilt man mit (I) die Ndherungswerte [ = 257,86 m, f = 3,43 m,
h= 11,43 m und daraus mit der Iteration (vgl. Beispiel 1) den verbes-
serten Wert m, = 8,91 m.

2. Iterationsschritt: m; = 8,95 m
3. Iterationsschritt: m, = 8,95 m

Mit m = 8,95 m erhilt man aus (I) die gesuchten Werte /= 272,72 m,
h = 1279m, f = 3,84 m. Exakter Wert fiir die Spannweite: | =
272,77 m. Die wirkliche Spannweite dieser Freileitung betrigt
274,50 m (900 Fuss). Unsere Theorie liefert also eine Spannweite, die
um 0,6% vom wirklichen Wert abweicht. Dabei wurde ein Ubertra-
gungsleiter von recht kompliziertem Aufbau berechnet. Vidmar er-
hilt in [1] eine Spannweite von 295 m, was einer Abweichung von
7,5% vom wirklichen Wert entspricht.

Nach diesen Beispielen wollen wir die fiir den Anwender
wichtigsten Formeln noch einmal kurz zusammenstellen:

Horizontalzug:

g2
Hoy=S 5 mq

Mastabstand.:
I= 2 Hy
q

S
. arcosh Fo

Masthohe:
_ 10
h= 7 m
Seildurchhang:
-3
f_ 7 m

Seilldnge:

8 2

b=1+
31

Diese Gleichungen beziehen sich natiirlich auf eine beziig-
lich Kosten optimierte Freileitung. Die daraus resultierenden
Werte fiir Hy, fund b werden somit bei —5 °C plus Zusatzlast
(Schnee und Eis) erreicht.

Schlussbemerkungen

Obwohl wir mit unserer neuen Theorie in vielen konkreten
Beispielen eine erstaunliche Ubereinstimmung mit der Wirk-
lichkeit erzielten, wollen wir zum Schluss auf einige Diffe-
renzen zwischen Modell und Wirklichkeit hinweisen.

Ein erster Punkt betrifft die Isolatoren und Armaturen, deren
Kosten in [2] mit 12% der Gesamtkosten veranschlagt wer-
den. Diese Kosten kommen zwar in unserer Optimierung
nicht explizit zum Ausdruck, kdnnen aber zu einem schonen
Teil durch die Mastenkosten aufgefangen werden. Trotzdem
bleibt eine Differenz, die sich vor allem bei kleinem Mastab-
stand in Richtung grosserer Mastabstdnde auswirkt. Durch
Addition eines Terms c¢/I> zur Kostenfunktion (1) kann die-

ser Mangel behoben werden; der Preis dafiir besteht aber im
Verlust der einfachen und trotzdem erstaunlich exakten
Néiherungsformeln.

Natiirlich greift auch der Winddruck ins Optimierungspro-
blem ein. Obwohl von uns nirgends erwahnt, kann er zu
einem grossen Teil einerseits durch das Widerstandsmoment
W des Mastquerschnitts, anderseits durch die Zusatzbela-
stung des Seils iber die Konstante g in die Rechnung ge-
bracht werden. Aber auch hier bleibt eine Differenz zur
Wirklichkeit. Wir haben den Winddruck versuchsweise in
die Kostenfunktion eingebaut. Das Ergebnis waren zu kom-
plizierte Formeln, die vom Anwender kaum beachtet wiir-
den. Die vollstindige Beriicksichtigung des Winddrucks hat
iibrigens etwas kleinere Mastabstande zur Folge. Dies wird
aber durch die obenerwihnten, grosseren Mastabstédnde (Iso-
latoren) zum Teil wieder ausgeglichen.

Schliesslich erwdhnen wir noch die Montagekosten, die nach
[2] immerhin 27% der Gesamtkosten betragen. Auch diese
Kosten kénnen natiirlich weitgehend zu den Mastenkosten
und Seilkosten geschlagen werden.

Eine letzte Bemerkung betrifft das Seil und dessen Aufhénge-
punkte. Wir haben nur mit einem Seil gerechnet, das zudem
an den Mastspitzen befestigt ist. In der Praxis verwendet man
natiirlich mehrere Seile, die auf verschiedenen Hohen an
Auslegern befestigt werden. Aber auch diesen Punkt kann
man in unserer Optimierung voll beriicksichtigen. An Stelle
der Masthohe h wahlt man den Abstand des Schwerpunktes
aller am Masten angreifenden Seilkrédfte vom Erdboden; die
Grossen S und g werden mit der Anzahl der vorhandenen
Seile multipliziert. Man rechnet also, wie wenn alle Seile in
einem einzigen fiktiven Seil vereinigt wiren. Dies entspricht
aber wieder dem Vorgehen in unserer Optimierung.

Sicher wiren noch viele Einfliisse zu beriicksichtigen, die wir
als Mathematiker gar nicht kennen. Zudem spielen im Frei-
leitungsbau Imponderabilien mit, die sich einer exakten ma-
thematischen Behandlung entziehen. Denken wir nur etwa
an die immer lauter werdenden Forderungen des Umwelt-
schutzes oder an die Topographie einer unwegsamen Land-
schaft. Vergleicht man aber die neue Theorie mit anderen
Optimierungsmethoden, so darf man wohl sagen, dass sich
unsere Arbeit gelohnt hat.

*
Herrn Prof. E. Kamberdanken wir fiir die grossziigige Bereitstellung

von Fachliteratur, Herrn Prof. W. Kissel fiir die wertvollen Diskus-
sionen und die Durchsicht des Manuskriptes.
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