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Arbeitsblattprogramm. In beliebigen
Zeitabständen, z.B. wöchentl», werden

Daten ergänzt, geändert oder neu
eingefügt. Die weitere Rechenarbeit
übernimmt der PC. Auf Knopfdruck
verfügt der Baumanager somit über
einen Gesamtüberblick der Kosten mit
sämtlichen Zwischensummen,
Querrechnungen, Vergleichen, Über- und
Unterschreitungen.

Als besonders vorteilhaft hat sich der
Farbmonitor herausgestellt, welcher
Eingabedaten weiss auf einem wählbaren

Farbhintergrund darstellt und z.B.
Zwischensummen gelb und negative
Werte wie Kostenüberschreitungen rot.
So können kritische Werte nicht
übersehen werden, und sämtliche Daten
sind äusserst übersichtlich am
Bildschirm ablesbar.

Selbstverständlich ist es zweckmässig,
dem eigentlichen Rechner samt
Bildschirm auch einen Drucker anzuhängen,

um die Informationen nicht nur
am Bildschirm, sondern auch im
Ausdruck ablesen zu können.

Mit diesen Instrumenten - Bildschirm
und Ausdruck - ist für den Baumanager

das schwierige Thema der
Baukostenüberwachung leicht zu beherrschen
und durchzuführen.

Schlussbemerkung

Die beschriebene Arbeitsmethode stellt
nicht nur ein theoretisches Modell dar,
sondern wird derzeit für das Grossbauvorhaben

libes Bank-, Geschäfts-,

Büro-, Wohn- und Garagenobjektes mit
einem Kostenrahmen von rund öS 300
Mio. angewendet.

Wir stehen heute mitten in der Bauphase
und sind aufgrund der beschriebenen

Baukostenkontrolle in der Lage, vom
Beginn des Projektes bis zur Fertigstellung

dem Bauherrn jede Information
über den jeweils aktuellen Kostenstand
zu geben. Es kann zu jedem Zeitpunkt
noch rechtzeitig eine Steuerung der
Kosten vorgenommen werden, und wir
sind zuversichtlich, dieses Projekt im
vorgesehenen Kostenrahmen erfolgreich

abschliessen zu können.

Adressen der Verfasser: Architekt Dipl.-Ing. Werner

Thönig, Anton-Rauch-Strasse 13a, A-6020
Innsbruck; Ing. Dr. Gerhard Schwaiger, Birchfeld 8,

Optimierung des
Mastabstandes bei Freileitungen

Von Erwin Amport und Peter Amport, Luzern

Der Mastabstand von Freileitungen wurde bisher mit aufwendigen
Methoden (Verfahren) optimiert. Die beiden Autoren haben eine
Lösung auf analytischem Weg gefunden. Er führt zu verblüffend einfachen

Formeln, die sich auf dem Taschenrechner programmieren
lassen. Wir publizierem die Problemlösung, da sie bisher nur im Jahresbericht

1981/82 des Zentralschweizerischen Technikums Luzern
bekanntgemacht worden ist.

Einleitung

Bei der nun folgenden Optimierung werden die Materialkosten

K in Abhängigkeit des Horizontalzuges H dargestellt.
Das mag auf den ersten Blick überraschen, erwartet man
doch eher eine Darstellung von K in Abhängigkeit des
Mastabstandes oder der Masthöhe. Dies wurde zuerst auch
versucht, doch ohne Erfolg! Der mathematische Eliminations-
prozess hat uns, zusammen mit physikalischen Überlegungen,

den Horizontalzug H als freie Variable aufgezwungen.
Man kann natürlich K in Abhängigkeit von mehreren
Variablen darstellen. Dadurch wird die Bestimmung des
optimalen H-Wertes aber viel komplizierter und schwieriger, da
die Existenz eines Minimums für Knicht mehr durch blosses
Aufzeichnen der Kostenfunktion bewiesen werden kann. An
die Stelle der anschaulich graphischen Methode treten dann
Untersuchungen mit Hilfe der partiellen Ableitungen.
Die übrigen in der Kostenfunktion (7) auftretenden Parameter

gehen als Konstanten in die Rechnung ein. Dies betrifft
insbesondere auch die maximal zulässige Seilkraft S, die vom
Ingenieur durch die Wahl des Seiles bestimmt wird. Diese
maximale Seilkraft wird bei minimalem Durchhang des Seiles

(im Winter) erreicht. Für die Konstante m muss daher der
grösstmögliche minimale Seilabstand von der Erde eingesetzt

werden. Man wird also zum gesetzlich vorgeschriebenen
Minimalabstand Wq einen Winterzuschlag addieren. Da dieser
Zuschlag das Ergebnis der Optimierung nicht stark beein-
flusst, dürfte er im allgemeinen als Erfahrungswert in die
Rechnung eingehen. Zur genaueren Bestimmung des Abstan-
des m kann man das folgende «Iterationsverfahren» verwenden:

Optimierung mit einem Erfahrungswert für m durchführen
m /und /. Aus / und /Seillänge b zwischen zwei Aufhängepunkten

bestimmen und daraus den kleinstmöglichen
Abstand Hl] (Sommerabstand) berechnen. Differenz m^ — mx
bilden und zu maddieren: m^ m + {rn^— m,). Optimierung mit
dem neuen Wert n\ durchführen.

Ein anderes Beispiel zur Bestimmung von m wird in [1]
beschrieben.

Bevor wir nun in den Eliminationsprozess einsteigen, noch
einige Worte zu zwei Konstanten und deren physikalischem
Inhalt: Bei Überspannung einer bestimmten horizontalen
Distanz bleibt die Länge des Seiles, ungeachtet der Art und
Weise, wie die Masten gesetzt werden, praktisch konstant.
Dies ist eine Erfahrungstatsache, lässt sich aber auch
mathematisch leicht nachprüfen. Wir haben deshalb die Seilkosten
(pro horizontale Längeneinheit) als Konstante Q in die
Rechnung eingeführt.
Eine weitere Bemerkimg betrifft das Mastgewicht Unter der
Voraussetzung, dass für eine bestimmte Überspannung
Masten verschiedener Höhe geometrisch ähnlich sind, ist das
Verhältnis vom «äusseren» Mastvolumen (Pyramide) zum
effektiven Mastvolumen konstant. Das Mastgewicht ist somit
dem Pyramidenvolumen direkt proportional, was mit der
Konstanten C3 ausgedrückt wird.

Damit sollte der Weg zur Berechnung geebnet sein. Lassen
wir also die Mathematik sprechen.

In der Berechnung werden folgende Abkürzungen verwendet:

K Materialkosten pro horizontale Längeneinheit
(für Masten und Seil)

G Gewicht eines Mastes
M — Maximal zulässiges Biegemoment auf Mastbasis
W " Widerstandsmoment des Mastquerschnitts an der

Basis
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^
Q/2

1/2

Mastquerschnitt
(Basis) f 1

1 J
J

/ - Mastabstand

/ Kleinstmöglicher maximaler Durchhang
des Seiles

b Seillänge zwischen zwei Aufhängepunkten
mo Gesetzlich vorgeschriebener minimaler

Seilabstand von der Erde
m Grösstmöglicher minimaler Seilabstand

von der Erde
(m= m0 + Winterzuschlag)

h Masthöhe
S ¦ Maximal zulässige Seilkraft
H Horizontalzug
Q Gewicht des Seiles zwischen zwei Masten
d — Seitenlänge des Mastquerschnittes (Basis)

Bild 1. Mastanordnung und Bezeichnung derSymbole

oM Maximal zulässige Spannung im Mastquerschnitt
an der Basis

q b Eigengewicht des Seils pro Längeneinheit inklusive
Belastimg durch Eis und Schnee

Q-Cg" Konstanten
Cj ja Mastenkosten pro N Gewicht
Q Seilkosten pro N Gewicht

Bild 1 zeigt weitere Symbole und ihre Bedeutung.

Berechnungen

Kostenfunktion K

(1) K= C, • -j+ C{ •
-9-

C, • !|f C2

G Q- d2-h
W= Ct-d?

w_ M H- h

* d2 Q ¦ H™ • h2/3 =¥¦

(2) G Q-H2/3.rI5/3

1 + sinn2 Ya
I

/ _>
ff2 • e*ph2 -=- S2 =» /= 2a • arcosh -79 =¥

2a H

(4) / • arcosh -77
q H

JÄpa (3): h= ü' -77 + m— a -77 + mii q ti q

(5) h= S~H + m

(5) in (2):

(6) G=C6-H2/3 S-H + m

H2

(4)und(6)in(1): K- Q

S- H+ mq

H S
—• arcosh -77
q H

Gekürzt: K= Q • gl ^—=— + C2

q2/*. H1'3- arcosh-^

5/3

+ C2

Seilkurve

y— ü' cosh — + C
a

mit a:
H

x~0: m^a+C =* C"m—a

Wir setzen -^ Cs und S + mq C9

Damit erhält man schliesslich:

1 g-c. (^-^)5" +Q
Hl/3 • arcosh H

(3) h™ a• cosh-=—v m— a2a

Berechnung von /

/ß\2ff2*

(2

-s2

_f-«* J/TT/^dx-ff-sinhy-
0

736

Für welches H wird _KT minimal

Notwendige Bedingung: -777 ¦ 0

=*• - 4 (C9 - H)2/3 • ff1/3 • arcosh -§- (C9 - ff)5'3
j ri

-fff"2'3. arcosh -Tj-ff"3j ti 'I
-0



Mathematik/Energieversorgung Schweizer Ingenieur und Architekt 39/84

Weil ff# 0 und ff < Cg dürfen wir durch
-1/3 ff1/3 • (C9- ff)2/3dividieren:

5 • arcosh -77 + (Q — ff) •

ti
1 S 3S

0[ff —LH //WS2-ff2 j

S /_.G-ff\ 3S(C9-ff)
arcoshff-\5+ mm h-vs^w

S 3S(Q-H)dlU)Sh ff (4ff+C9)VS2-ff2
S 3S(Q-H)

1 ff W°L
(4ff+C9)VS2-ff2

35(S+mö-ff) - S nwc- (4H+5.+ mq)^s2-H2
Aus Gleichung (8) folgt ffu.

ff

Grenzwerte der Funktion K K(H)
Grenzwert von K für ff — 0: Mit Hilfe der Regel von Ber-
noullierhält man zunächst für den Grenzwert des Nenners:

^\ arcosh -77
im I H|/3 • arcosh-^^^im ——
tf-o \ ff/ .|$h-o ff-|/3

-5

lim
tf-0

S2

H7-\-H2
lim 3S- ff1

• ff -4/3

Somit ergibt sich:

"-° V52-ff2

ffl /.(ff) 00

H-0
Ferner verifiziert man sofort, dass lim K(H) °°

H-S

Durch physikalische Überlegungen gelangt man übrigens zu
den gleichen Grenzwerten.

Auf eine weitere mathematische Untersuchung der
Kostenfunktion (7) haben wir verzichtet. Um die Existenz eines
Minimums nachzuweisen, Hessen wir die Funktion für Q ¦ 0,
Q 1, S| 40 000 N im Intervall (35 000; S) durch den Computer

(Prime Grafic Software) aufzeichnen. Dies ergab für
die Parameterwerte

-^-103 - 5; 10; 15;20; 25 das DiagraniSin Bild 2.

160-, _
mq <

5. 10, 15; ZOt 25

- -

120- -

O
*
_:
1 80- '
O

__: ^\ ^s^

40-

350
i i i

360
1 1 1

370 380

Horizontalzug H * 102

1

390

1

400
S

Bild 2. Kostenfunküon K(H)

mq
~S~

4x+l+^-JVl
mi-+

Die graphische Darstellung der Kostenfunktion zeigt, dass

für die in der Praxis am häufigsten auftretenden Werte von
m, q und 5 der gesuchte Wert ffo sehr nahe bei S liegt. Wir
setzen deshalb H/S x 1 — e, wobei e « 1.

Mit der Näherung l/x 1/(1 — e) *«* 1+£ erhält man zunächst
für (8'):

i")
31-^+6

U-4e+m-\sir^:
ln[l + e+ V2e + e2]

und daraus mit den Näherungen

5-4e + -M.»5 -»«!
V2e±e2 «V2T
l + e + VTi" « 1+ -/2T(weile«V2T)
ln(l + STe) ~ y/Te

(8'")

mq + 6

5V2e
I2e »» e1 mq

Numerische Berechnung von Hq

Die Auflösung der Gleichung (8) nach ff erfolgt mit einem
Näherungsverfahren. Am einfachsten benutzt man dazu ein
Computerprogramm, wie sie im Software-Angebot vieler
Taschenrechner vorhanden sind.

Um zu einer brauchbaren Näherungsformel zu gelangen,
kürzen wir in Gleichung (8) das Argument von cosh mit S2

und setzen H/S «¦ x

Dies ergibt:

cosh

3 1 + mq

4x+ 1 + tk1^
- — =*

x

In H/S ="1—6 eingesetzt, erhält man schliesslich die für den
Anwender sehr handliche und ausserdem erstaunlich gute
Näherungsformel:

(9) H0~S- ymq

Nährungsformeln für den Seildurchhang /und die Masthöhe

h

Unter Berücksichtigung von Gleichung (5) erhält man sofort

(10) f-h-m- S~H°
q

Setzt man für ff0 die soeben gefundene Näherung (9) ein, so
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ergibt sich für den Seildurchhang /die erstaunlich einfache

Näherung.

und der zugehörige Seildurchhang

S- \S-
[io') m

mq

-=- m

An dieser Stelle wollen wir noch einmal deutlich darauf
hinweisen, dass /der kleinstmögliche maximale Seildurchhang
ist, der bei minimalem Durchhang des Seiles im Winter
erreicht wird und somit den Voraussetzungen unserer Optimierung

entspricht.

Für die Masthöhe h erhält man nun sofort die ebenso einfache

Näherung

(5') h= m + /= ~^-m

Wir fassen zusammen:

Seildurchhang: (10') /=-=-m

Masthöhe: ü u 10
(5') h= yffl

Es mag auf den ersten Blick erstaunen, dass der maximale
Seildurchhang / nur gerade vom minimalen Seilabstand m
abhängen soll. Bei einer Parallelverschiebung der Seilkurve
nach oben oder unten bleibt /ja konstant, während m der
Verschiebung entsprechend zu- oder abnimmt. Diese letzte
Folgerung ist aber falsch. Bei verändertem m resultiert nämlich

aus unserer Optimierung ein anderes ff0 und somit auch
eine andere Gestalt der Seilkurve.

Zwei Beispiele

Der Anwender wird sich jetzt vermutlich die Frage stellen, ob die

neugewonnene Theorie wirklich den Anforderungen der Praxis
genügt. Um dies zu testen, berechnen wir damit zwei ausgeführte und
bewährte Freileitungen und vergleichen unsere Ergebnisse mit
denen der bestehenden Anlagen. Dazu stellen wir die wichtigsten
Formeln noch einmal kurz zusammen:

(9) H,= S-\mq (5') h

(I)

10

7

(4)
2-Hq

• arcosh
Ho

(10') /-
Die beiden Beispiele sind dem Buch von M. Vldmar [1] entnommen
und wurden dort mit einer völlig anderen Methode ebenfalls berechnet.

Beim ersten Beispiel betrachten wir die grosse Freileitung, die die
Wasserkräfte Boulder-Dam am Colorado mit dem fast 500 km
entfernten Konsumzentrum Los Angeles verbindet (Übertragungsspannung

287 kV). Die benötigten Werte betragen dort: m0 — 14 m, q —

29,67 N/m, S — 43 180 N. Als Leitermaterial wurde Kupfer verwendet

(Wärmedehnungszahl e, - 1,7 • 10-s fur i -Q.
Um den für die Optimierung benötigten Wert mzu erhalten, verwenden

wir das in der Einleitung beschriebene Iterationsverfahren: Wir
steigen mit dem Schätzwert m— 17min die Optimierung ein und
erhalten mit den Gleichungen (I) die ersten Näherungswerte H„
42 963,83 N, / 290,40 m, / - 7,29 m, h 24,29 m. Weil /« 4

berücksichtigen wir in der Reihenentwicklung der Bogenlänge b

(Seillänge zwischen zwei Aufhängepunkten) nur die ersten zwei Glieder.
Dies ergibt für die minimale Seillänge (bei — 5 °C und Zusatzlast)
nach [2]:

-!_!-¦
3/bmi„-l + 290,88 m

Bei 40 °C beträgt dann die Seillänge

£»_„-fcv,- (1 + 1,7-lO"5- 45)-291,11m

gpj -2$_W_01_.

Daraus erhält man für den kleinstmöglichen Seilabstand

^J='i-/m_l= 15,49 m

und somit für den gesuchten Wert
m2= m + (m0- m,) 17 m + (14m- 15,49m)= 15,51m

Führt man den Iterationsschritt nochmals mit dem neuen Wert

m2 15,51 m durch, so ergibt sich m3 15,50 m.

Die im letzten Iterationsschritt erzielte Verbesserung um 1 cm ist so

gering, dass man die Optimierung bereits mit dem Wert rrti durchführen

könnte. Eine weitere Verbesserung von m wäre auf jeden Fall
sinnlos. Der soeben durchgespielte Iterationsschritt lässt sich übrigens

sehr einfach programmieren, was die numerische Berechnung
von m wesentlich erleichtert.

Mit dem Wert m 15,50 m erhält man schliesslich aus den

Gleichungen (I) die gesuchten Näherungswerte:

H0= 42 982,91 N
/ 277,36 m
h 22,14m

/ 6,64m

Um diese Näherungen auf ihre Genauigkeit zu prüfen, haben wir
mit dem Computer die exakten Werte berechnet Aus den Gleichungen

(8), (4), (5) und (10) erhält man

H0= 42 982,69 N
/ 277,51 m
h 22,15 m

/ 6,65 m

Die Näherungsformeln (I) liefern also in diesem Fall erstaunlich
exakte Werte, was sich übrigens in vielen anderen durchgerechneten
Beispielen bestätigt hat

Mit der in der Freileitungstheorie bekannten Formel zur Berechnung

des Durchhanges erhält man, in völliger Übereinstimmung mit
unserem Ergebnis,

f-
l2

___iff 6,64 m

Um die soeben berechneten Näherungswerte 4 h und /einer
Kontrolle zu unterziehen, berechnen wir daraus den kleinstmöglichen
Abstand m'„ des Seiles vom Erdboden. Dieser Abstand musste nämlich

mit dem gegebenen, gesetzlich vorgeschriebenen Minimalabstand

m0 -> 14 m übereinstimmen!

Für die minimale Seillänge erhält man zunächst

8 f*
''min — /+ — 277,,78 m und daraus

*W- Ki, (1 + 1.7 • lO"5 • 45) 278,00 m

mit dem Durchhang

|Hrnh"4B
Somit: mo - &-/¦«¦ 14,00 m.

In Wirklichkeit beträgt der Mastabstand dieser Freileitu ng / 300 m.

Vidmar errechnet in [1] mit wesentlich komplizierteren Formeln
einen Mastabstand von / 3 28 m. Unser Näherungswert für /weicht
um 7,5% vom wirklichen Wert ab; bei Vidmar beträgt diese Abweichung

9,3%.

Beim zweiten Beispiel handelt es sich um eine mittlere
Hochspannungsleitung (132 kV) in England mit den gegebenen Werten mo —

6,72 m (22 Fuss), q - 15,95 N/m, S= 38 730,81 N. Der Übertragungsleiter

besteht hier aus Aluminium, versehen mit einer Stahlseele.

Der Seilquerschnitt zerfällt in 37 Teilquerschnitte, die alle kreisförmig

sind und den gleichen Durchmesser von 2,8 mm aufweisen. Auf
das Aluminium entfallen 30, auf den Stahl 7 Adern. Die Wärmedehnungszahl

dieses Seils beträgt nach [2], Zahlentafel 2 (St: AI 1:4,3)

e,-l,76- 10-5 für 1°C.
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Führt man die Optimierung mit dem Schätzwert m 8 m durch
so erhält man mit (I) die Näherungswerte / 257,86 m, /= 3,43 m,
h 11,43 m und daraus mit der Iteration (vgl. Beispiel 1) den verbesserten

Wert «2 "* 8,91 m.

2. Iterationsschritt: mj 8,95 m
3. Iterationsschritt: »14 8,95 m

Mit m 8,95 m erhält man aus (I) die gesuchten Werte / 272,72 m,
h 12,79 m, / 3,84 m. Exakter Wert für die Spannweite: /
272,77 m. Die wirkliche Spannweite dieser Freileitung beträgt
274,50 m (900 Fuss). Unsere Theorie liefert also eine Spannweite, die
um 0,6% vom wirklichen Wert abweicht. Dabei wurde ein
Übertragungsleiter von recht kompliziertem Aufbau berechnet. Vidmar
erhält in [1] eine Spannweite von 295 m, was einer Abweichung von
7,5% vom wirklichen Wert entspricht.

Nach diesen Beispielen wollen wir die für den Anwender
wichtigsten Formeln noch einmal kurz zusammenstellen:

Horizontalzug:
3

ffo S-y mq

Mastabstand:
2 ffo S

l r • arcosh ttq ffo

Masthöhe:

u
10

n= -7-"»

Seildurchhang:

t 3

Seillänge:

b=l +
<f2

3/

Diese Gleichungen beziehen sich natürlich auf eine bezüglich

Kosten optimierte Freileitung. Die daraus resultierenden
Werte für ff0, /und b werden somit bei — 5 °C plus Zusatzlast
(Schnee und Eis) erreicht.

Schlussbemerkungen

Obwohl wir mit unserer neuen Theorie in vielen konkreten
Beispielen eine erstaunliche Übereinstimmung mit der
Wirklichkeit erzielten, wollen wir zum Schluss auf einige
Differenzen zwischen Modell und Wirklichkeit hinweisen.

Ein erster Punkt betrifft die Isolatoren und Armaturen, deren
Kosten in [2] mit 12% der Gesamtkosten veranschlagt werden.

Diese Kosten kommen zwar in unserer Optimierung
nicht explizit zum Ausdruck, können aber zu einem schönen
Teil durch die Mastenkosten aufgefangen werden. Trotzdem
bleibt eine Differenz, die sich vor allem bei kleinem Mastabstand

in Richtung grösserer Mastabstände auswirkt. Durch
Addition eines Terms c/l2 zur Kostenfunktion (1) kann die¬

ser Mangel behoben werden; der Preis dafür besteht aber im
Verlust der einfachen und trotzdem erstaunlich exakten
Näherungsformeln.
Natürlich greift auch der Winddruck ins Optimierungsproblem

ein. Obwohl von uns nirgends erwähnt, kann er zu
einem grossen Teil einerseits durch das Widerstandsmoment
W des Mastquerschnitts, anderseits durch die Zusatzbelastung

des Seils über die Konstante q in die Rechnung
gebracht werden. Aber auch hier bleibt eine Differenz zur
Wirklichkeit. Wir haben den Winddruck versuchsweise in
die Kostenfunktion eingebaut. Das Ergebnis waren zu
komplizierte Formeln, die vom Anwender kaum beachtet würden.

Die vollständige Berücksichtigung des Winddrucks hat
übrigens etwas kleinere Mastabstände zur Folge. Dies wird
aber durch die obenerwähnten, grösseren Mastabstände
(Isolatoren) zum Teil wieder ausgeglichen.

Schliesslich erwähnen wir noch die Montagekosten, die nach
[2] immerhin 27% der Gesamtkosten betragen. Auch diese
Kosten können natürlich weitgehend zu den Mastenkosten
und Seilkosten geschlagen werden.

Eine letzte Bemerkung betrifft das Seil und dessen Aufhängepunkte.

Wir haben nur mit einem Seil gerechnet, das zudem
an den Mastspitzen befestigt ist. In der Praxis verwendet man
natürlich mehrere Seile, die auf verschiedenen Höhen an
Auslegern befestigt werden. Aber auch diesen Punkt kann
man in unserer Optimierung voll berücksichtigen. An Stelle
der Masthöhe h wählt man den Abstand des Schwerpunktes
aller am Masten angreifenden Seilkräfte vom Erdboden; die
Grössen _> und q werden mit der Anzahl der vorhandenen
Seile multipliziert. Man rechnet also, wie wenn alle Seile in
einem einzigen fiktiven Seil vereinigt wären. Dies entspricht
aber wieder dem Vorgehen in unserer Optimierung.
Sicher wären noch viele Einflüsse zu berücksichtigen, die wir
als Mathematiker gar nicht kennen. Zudem spielen im
Freileitungsbau Imponderabilien mit, die sich einer exakten
mathematischen Behandlung entziehen. Denken wir nur etwa
an die immer lauter werdenden Forderungen des Umweltschutzes

oder an die Topographie einer unwegsamen
Landschaft. Vergleicht man aber die neue Theorie mit anderen
Optimierungsmethoden, so darf man wohl sagen, dass sich
unsere Arbeit gelohnt hat.

Herrn Prof. E. Kamber danken wir für die grosszügige Bereitstellung
von Fachliteratur, Herrn Prof. W. Kissel für die wertvollen Diskussionen

und die Durchsicht des Manuskriptes.
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