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Retentionsvorgänge in Speicherseen

Von Richard Sinniger und Willi H. Hager, Musanne

Retentionserscheinungen in Speichern lassen sich durch plausible Vorgabe einer
Zuflussganglinie allgemein behandeln. Die Lösung der Retentionsgleichung wird im vorliegenden
Fall auf Speicher angewandt, die durch einen freien Überfall begrenzt sind. Die Ausflussganglinie

hängt lediglich von einem Retentionsparameter und einer Formgrösse der
Zuflussganglinie ab. Es wild zudem gezeigt, dass die Differenz zwischen der angenommenen und
tatsächlichen Zuflussganglinie keinen wesentlichen Einfluss auf den maximalen Speicheranstieg

und die Ausflussspitze ausübt. Das Berechnungsverfahren wird durch Beispiele
erläutert.

Les phenomenes de retention dans des retenues peuvent etre traites generalement si on admet
une forme plausible pour rtiydrogramme amont. La methode est appliquee pour des retenues
contrölees par des deversoirs rectangulaires et denoyes. L'hydrogramme aval ne depend que
d'un parametre de retention et d'un coefficient tenant compte de la forme de l'hydrogramme
amont. Les comparaisons avec des hydrogrammes reels n'indiquent que des deviations secon-
daires avec le modele simplifie. La methode est expliquee par application ä des cas pratiques.

Flood storage problems in artificial lakes are generally treated by assuming a plausible inflow
hydrograph. The present study considers lakes, which are controlled by a rectangular, free
overflowing spillway.lt is shown that the outflow hydrograph solely depends on a storage par-
ameter and a coefficient accounting for the shape of the inflow hydrograph. It is further de-
monstrated that actual events are realistically simulated. The procedure of computation is il-
lustrated by examples.

Einleitung

Unter Retention eines Speichers
versteht man das Vermögen, eine Veränderung

des Speicherzuflusses zu dämpfen.
Da die Fliessgeschwindigkeiten in Seen
sehr klein sind, lassen sich die allgemeinen

Gleichungen für instationäre
Fliessbewegungen vereinfachen. Es
lässt sich zeigen [1]. dass der
Bewegungsvorgang allein durch die
Kontinuitätsgleichung beschrieben wird;
danach entspricht der Speicherrückhalt
der Differenz zwischen Zufluss und
Ausfluss.
Die mathematische Beschreibung des

Retentionsvorgangs wird als bekannt
vorausgesetzt [4]. Die vorliegende
Untersuchung stellt eine Weiterführung
des Berechnungsverfahrens dar, indem
die allgemeine Lösung des Retentions-
problems für Spejjirier mit^eiiem Recht-
eck-Überfal 1 angegeben wird. Diese
erlaubt insbesondere die rasche Bemessung

des Überfalls ohne die zeitraubende

Integration der Retentionsgleichung.

Der zeitliche Verlauf des

Speicherzuflusses, die sogenannte Zu-
fluss-Ganglinie, wird durch einen
plausiblen, mathematischen Ansatz
erfasst, der eine allgemeine Lösung der
Retentionsgleichung gestattet.
Bekanntlich hängt die Zufluss-Ganglinie
von einer Vielzahl von Einflüssen im
Einzugsgebiet des Speichers ab. Neben
den geographischen und geologischen
Gegebenheiten spielen dabei insbesondere

auch die Frequenz des
Niederschlags-Ereignisses sowie die hydrologischen

und meteorologischen Bedingungen

eine wesentliche Rolle. Im allge¬

meinen lässt sich die Zufluss-Ganglinie
nicht illmelmässig beschreiben,
vielmehr sSlt sie das Resultat hydrologischer

Untersuchungen und unter
Umständen von durchgeführten
Abflussmessungen dar. Im Falle von extremen
hydrologischen Ereignissen, die für die
Sicherheit des Bauwerks und daher für
die Dimensioniejpng der Hochwasser-
Entlastung ausschlaggebend sind, ist
man in der Praxis in den weitaus meisten

Fällen auf Schätzungen der
massgebenden Zufluss-Ganglinie angewiesen.

Die im folgenden gewählte
Darstellung der Zufluss-Ganglinie trägt
diesem Umstand Rechnung.

Kürzlich sind die wesentlichen
Berechnungsschritte und die mathematischen
Ableitungen im Detail erklärt worden
[2]. In der vorliegenden Untersuchung
werden deshalb lediglich die wichtigsten

Ergebnisse bekanntgegeben, um
damit Platz für praxisbezogene Beispiele

zu schaffen.

Voraussetzungen der Berechnung

Der Retentionsvorgang in Speichern
gehorcht der Beziehung

0) dt Vil

mit V als Speichervolumen, t als Zeit,
Q- und Q als Speicher-Zuf 1 uss und
Ausfluss. Gleichung (1) besagt, dass die
zeitliche Volumenänderung gleich der
Differenz zwischen Zu- und Ausfluss
entspricht. Sie stellt eine Massenbilanz
dar und ist mathematisch eine gewöhnliche

Differentialgleichung erster Ord-

Verzeichnis der Abkürzungen

a (m3-6) Volumenkonstante
b (-) Formgrösse
e (-) EulerscheZahl, e 2,718...
g (m/s2) Erdbeschleunigung

g= 9,81 m/s2
n (-) Formgrösse des Zuflusshydro¬

graphen
a (-) dimensionsloser Aus¬

fluss, q Q/Q*
<lz (-) dimensionsloser Zu¬

fluss, q.= Qz/Q*
t (s) Zeit
A (m3/sl+n) Zuflusskonstante
B (l/s) Formgrösse des Zuflusses
C (m3/2/s) Überfall-Charakteristik
Q (-) Überfall-Koeffizient
h (m2) Speicheroberfläche für ff= 0

H (m) Überfallhöhe
Ho (m) Tiefe des Speichers

m r(m) maximale Überfallhöhe
0, (m3/s) Speicherzufluss
Q (m3/s) Speicherausfluss
Q* (m3/s) Zuflussspitze
Qma r (mVs) Ausflussspitze
R (-) Retentionskonstante nach (10)
T (-) dimensionslose Zeit T= t/t*
W (m3) gesamtes Abflussvolumen
W (-) dimensionsloses Abfluss¬

volumen W= W/(Q*t*)
z (-) dimensionslose Überfall-

höheZ= H/(Q*/Qm
z„«„ (-) maximale, dimensionslose

Überfallhöhe, Z„„= Hmax/
(ÖVC)273.

^7>

3ildl. Längsschnitt des Speichers mit der Tiefe
Ha im Ruhezustand und ff als Übelfallhöhe, Q. als
Zußuss und Q als Ausßuss über den freien
Rechteck-Überfall

nung. Ihre Lösung lässt sich nach Angabe

der einzelnen Tenne sowie der
Anfangsbedingung berechnen.

Die Speichergeometrie

Wie Kühne zeigt [3], genügt eine Vielzahl

der Schweizer Speicher der
Volumen-Höhen-Beziehung

(2) F(H)-a(fl>+H)*

mit a [mi~b] und b [-] als Kenngrössen
der Speicherdimension und der
Speicherform und Ha [m] als Speichertiefe,
vgl. Bild 1. Bei gegebener Speichertopographie

lassen sich a und b aus einer
doppelt-logarithmischen Auftragung V
(H + H0) einfach ermitteln [3].

Kühne fand für die schweizerischen
Speicherseen 1,4 ^ b £ 3,5 und weist auf
eine analoge Untersuchung im süddeutschen

Räume hin, die denselben
Variationsbereich von b gefunden hat. Die
beiden Studien erhalten als Mittelwert
für b =2.3 mit einer Streuung von
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Bild 2. Typische Zufluss-Ganglinie Q~ (t)flir einen
Speicher mit ausgeprägtem Spitzenabfluss Q * und
zugehöriger Zeit t*, die vom Beginn des Ereignisses
bis zum Erreichen von Q* verstreicht
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Bild 3. Speicws&Zuflussganglinie qz (T) in
dimensionsloser Darstellung für verschiedene Formgrössen

n

±0,5, was einen Anhaltspunkt für
Abschätzungen ergibt.

Gleichung (2) lässt sich für die vorliegende

Studie vereinfachen, wenn man
bedeniRlasslfi'/ H0\ « 1. Sie lässt sich
im Punkt (V0,H0) genügend genau
durch eine Gerade ersetzen, falls Index
«0» den bis zur Überfallkrone gefüllten
Zustand bezeichnet. Anstelle von (2)
gilt folglich

(3) V(H)= V0 + {abH^)H
und somit für dV/dt (aof/£_l)
(dH/dT). Der Ausdruck (abH^1) F0

entspricht dabei der Seeoberfläche auf
der Höhe H=0.

Der Speicherzuf luss

Die Speicherzufluss-Ganglinie ist
zeitabhängig, Qz Qz(t). Wie bereits
erwähnt, lassen sich keine mathematischen

Beziehungen für diese Ganglinie
angeben, die der Vielzahl der Einflüsse
Rechnung trägt. Meistens kennt man
die massgebende Zufluss-Ganglinie nur
grössenmäsijg, entweder durch
Abschätzung anhand von hydrologischen
Unterlagen oder durch Extrapolation
vorhandener Messungen. In erster
Linie liegen dann Werte für den massgebenden

Maximalzufluss Q* sowie die
zugehörige Zeit t* vor (Bild 2).

Unter Umständen sind zudem Angaben

über die Form der Zufluss-Ganglinie
vorhanden, womit sich der zu

erwartende, massgebende Verlauf vereinfacht

darstellen lässt.

Bekanntlich erreicht der Zufluss relativ
rasch den Spitzenabfluss Q*, um
anschliessend eher langsam auf den
Ausgangswert zurückzufallen. Als massgebendes

Ereignis kann dasjenige
betrachtet werden, das von ursprünglich
nahezu Null auf das Maximum
ansteigt. Dieser Fall entspricht der
Abflusserscheinung nach längeren Trok-
kenperioden in Form eines
Starkniederschlages. Ein mathematischer
Ansatz, der diese Tendenzen wiedergibt,

lässt sich durch

(4) QzU) s At"e~B'

erfassen, wobei A und B zwei Konstanten

darstellen, die den Forderungen Q:
(t t*) Q* zu genügen haben. Wie
sich einfach zeigen lässt, findet man für
A Q* und B n/t*. Durch Einführung

der dimensionslosen Kenngrössen

(5) T= t/t*, qz Qz/Q*, q Q/Q*
ergibt sich anstelle von (4) für

(6) qz(T)=T"e"V-T>.

Diese Beziehung, die sich auf den
Maximalzufluss und die Zeit t* bezieht, ist
in Bild 3 für n 2,5 und 10 graphisch
dargestellt. Alle Kurven beginnen im
Ursprung, steigen je nach Grösse des

Formparameters n flacher oder steiler
auf das gemeinsame Maximum im
Punkt (1,1), um dann je nach n wieder
auf qz 0 zurückzufallen. Alle
dargestellten Ganglinien besiteeen im
Ursprung eine horizontale Tangente, was
bei wirklichen Ganglinien häufig zu
beachten ist. Durch angepasste Wahl
der Formgrösse n lassen sich die meisten

extremen Hochwasserabflüsse
genügend genau nachbilden. Entsprechende

Beispiele werden unten eingehend

erläutert.

Der Vorteil der gewählten mathematischen

Darstellung der Ersatz-GangMrjK:
besteht in der einfachen mathematischen

Handhabung. Andere Ansätze
wie Ganglinien mit Rechteck-, Trapezoder

Dreieck-Form sind nicht stetig, die
Berechnung des Speicherausflusses
muss somit in einzelne Abschnitte zerlegt

werden.

Der Speicherausfluss

Eine der vielen an ein Stauwerk gestellte

Sicherheitsanforderung verlangt ein
schadloses Ableiten jedes möglichen
Hochwassers in den vollen Speicher.
Um unabhängig von jeder menschlichen

und/oder mechanischen Einfluss-
nahme zu bleiben, wird deshalb, wenn
immer möglich, eine Hochwasserentlastung

in Form eines freien Rechteck-
Überfalls angeordnet. Diese beiden
Bedingungen, voller Speicher {H — 0) und
freier Überfall, sollen deshalb im fol¬

genden vorausgesetzt werden. Die zu
betrachtende Situation ist vereinfacht
aus Bild 1 ersichtlich.

Als Zusammensetzung zwischen dem
Speicherausfluss Qrnid der Überfallhöhe

Hgilt

(7) ö i CH3n

mit C [m3/2/s] als Überfall-Beiwert. Er
setzt sich bei Rechteck-Überfällen
zusammen aus

(8) C=Cd^2g~Be

mit Qals Durchfluss-Beiwert, g 9,81

m/s2 als Erdbeschleunigung und Be als
effektiv wirksame Überfallbreite. Sie

ist meistens geringfügig kleiner als die
geometrische Überfallbreite (Summe
der lichten Breiten zwischen den
Pfeilern), lässt sich jedoch näherungsweise
damit ersetzen.
Der Durchfluss-Beiwert Cd hängt von
der Überfallgeometrie sowie von den
Oberwasser-Verhältnissen ab. Für grössere

Bauwerke wird die Überfallkrone
meistens nach Standardform ausgebildet,

der Durchfluss-Beiwert wird dann
noch lediglich vom Verhältnis H/Hd
beeinflusst. Hd stellt dabei die Dimen-
sionierungs-Überfallhöhe für die
Wehrkrone dar und ist zu unterscheiden

von der massgebenden Überfallhöhe

Hmax, die auf den Überfall bei
Maximalbelastung wirkt. Für H Hd
entspricht der Druck auf die Überfallkrone

dem Atmosphärendruck, für H< Hd
stellt sich durchwegs eine positive
Druckverteilung längs des Wehrbodens
ein, für H > Antreten jedoch lokale
Unterdruckgebiete auf. Diese werden bei
entsprechender Ausbildung der Sohle
für Spitzenabflüsse zugelassen. Für H

Hd beträgt Cd 0,494; dieser Wert
kann als Mittelwert eines Hochwasserabflusses

näherungsweise angenommen

werden. Für genauere Berechnungen

wird eine erste Schätzung anhand
des angegebenen Wertes durchgeführt,
um anschliessend in einer zweiten
Iteration den exakteren Wert zu
berücksichtigen. In der vorliegenden Untersuchung

werden sowohl Be als auch Cd

von der Überfallhöhe unbeeinflusst
vorausgesetzt.

Lösung der Retentionsgleichung

Mit Hilfe der Beziehungen (1), (3), (6)
und (7) lässt sich nach Vorgabe einer
Anfangsbedingung das Retentionspro-
blem lösen. Da die Zuflussganglinie
bekannt ist, bezieht man alle Grössen
vorteilhaft auf den Speicherausfluss q. Die
zugehörige Überfallhöh6 H lässt sich
unmittelbar aus Gleichung (7) ermitteln.

Mit
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Bild 4. Dimensionslose Darstellung der Lösung der Retentionsgleichung

fürSpeicher, die durch einen freien RecW^k-Überfall kontrolliert werden

(9) H=(Q/C)2/3

folgt für

2 dg(10) dH

Durch Einsetzen aller oben erwähnten
Beziehungen in Gleichung (1) findet
man in dimensionsloser Schreibweise
für

|i=yR?w(T"e»('-1-q)(11)

mit

(12) R
C2 I Q*\/if* 2/3n*i/3t*C^Q

F0

|a||j|imensionsloser Retentionsparame-
ter. D«ier fasst alle bekannten Aus-
gangsgrössen zusammen, insbesondere
wird der Einfluss der Speichercharakteristik

(für H H0 durch die
Speicheroberfläche F0 ausgedrückt), der Zuflussspitze

t*, Q* und das Überfalls erfasst.
Neben R hängt die gesuchte
Ausflussganglinie q (T) noch von der Formgrösse

nder Zuflussganglinie ab.

Die Lösung der Differentialgleichung
unter der Anfangsbedingung q(T 0)

0, die einen anfänglich vollen Speicher

als ungünstigste Ausgangslage
voraussetzt, stösst auf Schwierigkeiten. Die
numerische Integration lässt sich nicht
initialisieren; aus diesem Grund ist die
analytische Lösung für extrem kurze
Zeit ITI «1 errechnet worden. Als
Resultat ergibt sich für n> 1, [2]

(13) q(T)<
Re"Tn+l

M + l T—0,

womit sich Gleichung (11) numerisch
lösen lässt. Bild 4 zeigt das Resultat für

n 2,5 und 10; für R sind die Werte R
0,5; 1; 2 und 5 angenommen worden.

Offensichtlich entsteht für R 0 die
triviale Lösung q 0 und, wie sich
einfach zeigen lässt, für R — °° das Resultat

q= qz. Somit lassen sich die Lösungen

für beliebige positive Werte von R
durch Interpolation aus den Diagrammen

ermitteln.
Normalerweise wird man sich auf einen
der untersuchten Werte von n einigen
(vgl. die untenstehenden Beispiele), womit

Bild 4 der allgemeinen Lösung des
vorgegebenen Retentionsproblems
entspricht. Konkrete Berechnungen lassen
sich bei bekannten Ausgangswerten
allein durch Kenntnis des Retentionspa-
rameters R durchführen.

Diskussion der Resultate

Im Zusammenhang mit Retentionspro-
blemen der Praxis interessiert vorwiegend

der Maximal-Speicherausfluss
Qmax und die zugehörige Überfallhöhe
H,„ax. Wie sich einfach zeigen lässt [4],
stellen sich die beiden Extremwerte
bei Identität von Zu- und Ausfluss ein,
qz q. Die Schnittpunkte einer Aus-
fluss-Ganglinie q(T) mit der
Zuflussganglinie qz(T) ergeben somit die
gesuchten Extremwerte in Abhängigkeit
von R und n. Bild 5 zeigt die graphische
Auswertung als qmax Qmax/Q* in
Abhängigkeit des logarithmisch aufgetragenen

Retentionsparameters R und der
Formgrösse n der Zufluss-Ganglinie.
Daraus geht hervor, dass die maximalen

Spitzenausfluss-Schwankungen für
die angenommenen Formgrössen n
höchstens ±15% betragen. Beachtet

1

1

0,75

05

Q25

0

q
ln

m^P5-"

11
A§ma

w\V||1

0, 0.203 Q5 1 2 3 5 10 R

Bild 5. Dimensionslose Darstellung des maximalen

Speicherausflusses q„m, in Abhängigkeit von R
undn.

man den unterschiedlichen Verlauf der
in Bild 3 dargestellten Zufluss-Gangli-
nien, so lässt sich ein lediglich
untergeordneter Einfluss der Formgrösse n
auf den maximalen Speicherausfluss
qmax folgern. Diese Feststellung
rechtfertigt somit ebenfalls den gewählten
mathematischen Ansatz für die
Zufluss-Ganglinie; wesentlich bei deren
Vorgabe sind die beiden Werte Q* und
t*. Der erste bestimmt bei bekanntem
Wert qmax den maximalen Speicherausfluss,

während t* proportional zur Re-
tentionskonstanten R in der Rechnung
erscheint.

Neben dem maximalen Speicherausfluss

interessiert insbesondere der
maximale Speicherstand Hmax, der sich
direkt durch (9) zu

(14) ffm«x-((WC)2/3

angeben lässt.

Um den Einfluss der Form der Zufluss-
Ganglinie auf Hmax zu ermitteln,
betrachte man die neue, dimensionslose
Variable

«P Z- H/(Q*/Q2
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Bild 6. Dimensionsloser, maximaler Speicher- BildT. Dimensionsloses, gesamtes Abflussvolu-
zustand Zmax H,„a/ (Q*/Q 2/} in Abhängigkeit menW W/(Q*t*) in Abhängigkeit des Formpara-
von R und n meters n. Punkte nach (18) und Linie nach (19)

Q(m3/s
1500

1000

i*=2.1d

500

1.6

td

Bild8. Wmiische Zufluss-Ganglinie und Anpassung

der Modell-Ganglinie durch Wahl von nundt*

die nach Beziehung (7) durch

(16) Z=q™

mit dem Speicherausfluss verknüpft ist.
Bild 6 zeigt die mit Hilfe von Bild 5

ermittelte Abhängigkeit zwischen Zmax
und R, n. Diese Darstellung veimopllE
noch klarer die nur geringe Abhängigkeit

des maximalen Speicherspiegels
Zmax vom Formparameter n der
Zufluss-Ganglinie. alte maximal zu
erwartenden Abweichungen können mit
±10% angegeben werden und sind für
Retentionsparameter im Bereich 0,5 ^
R S 2 zu erwarten. Sie sind jedoch
gegenüber den anderen, das Freibord des

Speichers mitbestimmenden Faktoren
von untergeordneter Bedeutung.

Die graphischen Darstellungen in Bild
5 und 6 erlauben insbesondere eine
rasche und sichere Abschätzung der zu
erwartenden Retentionsvorgänge für
die Praxis. Die Aussagekraft der beiden
Diagramme eignet sich vorzüglich für
Variantenstudien sowie zur Bemessung
der Überfallbreite.

Abflussvolumen

Neben der Kenntnis der Speicheraus-
fluss-Ganglinie Qft) interessiert man
sich hie und da auch für die Grössen-

1500.

1000-

500

0

GKrrP/s)

I

t(d)

\*< 1

V5
/

x;¦-..

0 1 2 3 4 5 6

Bild 9. Vergleich der exakten Lösung (Punkte) mit
der Lösung nach Bild 4 (dünne Linie): «*1 vorgegebene

Zufluss-Ganglinie ist als dicke Linie dargestellt

Ordnung des Abflussvolüijfens. Dieses
bestimmt sich durch

(17) Wz= W-- w (t)dt

mit Wz als Zuflussvolumen, das nach
genügend langer Zeit identisch dem
Ausflussvolumen WWi. Durch Einführung

der dimensionslosen Zufluss-
Ganglinie qz nach (6) ergibt sich anstelle

von (17)

(18) W= Q*t* \ T^'^-^dT.
o

iÄlles bestimmte Integral hat trotz
einer unendlichen Grenze einen endlichen

Wjeft, nämlich

(19) W-Q*t*e"' r(»+o n> -1

mit r als Gammafunktion. Betrachtet
man für n lediglich ganze, positive Zahlen,

n ¦¦ 0,1,2,..., so lässt sich (19) ver-
einfachen auf

(20) W" W/(Q* t*) - r^P
mit W als dimensionslosem Airaussvolumen.

Beziehung (20) ist in Bild 7 in
doppelt-logarithmischem Massstab
dargestellt (Punkte); da die Punkte nahezu
auf einer Geraden liegen, lässt sich der
umständlich zu handhabende Aus-

(21) W-- -0,54

Für die Spezialfälle n 2, 5, 10 findet
man für W 1,87; 1,14; 0,78; die_ge-
nauere Beziehung (19) ergibt für W
1,85; 1,14; 0,80, die Abweichungen der
beiden Beziehungen sind somit gering.

W 1 entspricht einem Abflussvolumen,

das ein konstanter Maximal-Zu-
fluss Q * während der Zeit t * ergäbe. Je

grösser also n, um so kleiner wird W.

s^^pschlägig hängt W von der
umgekehrten Quadratwurzel von n ab. Er-
wartungsgemäss besteht eine enge
Abhängigkeit zwischen n und W. Dieser
Zusammenhang darf jedoch nicht dazu
benutzt werden, die anfangs unbekannte

Formgrösse n durch das Abflussvolumen

W der tatsächlichen Ganglinie zu
berechnen. Das Resultat würde nur
zufällig einer Ganglinie nach Beziehung
(6) entsprechen, die sich im abfallenden
Bereich mit der effektiven deckt.

Beispiel 1

Ein Speicher genügt der Volumen-Höhen-
Beziehung V= 500 (tf0 + fl)3; das Stauziel
H0 105 m wird durch einen 30 m breiten,
freien Rechteck-Überfall mit dem in einer
ersten Iteration festgelegten Durchflussbei-
wert Q 0,47 erreicht. Der massgebende
Höchst-Hochwasserabfluss zeichnet sich
durch eine Abflussspitze von Q* 2500
mVs aus, er wird innerhalb von t* 11 h
erreicht. Die Form der Zufluss-Ganglinie lässt
sich gut durch den Formparameter n 2
beschreiben. Ermittle die wichtigsten Reten-
tionsgrössen!

Mit C 0,47 V19.62 • 30 62,5 m3/2/s ergibt
sich für den Retentionsparameter R

ö^3 25001 Ml- 3600/(500 • 3 • 1052)
0,51, womit der Maximal-Speicherausfluss
nach Bild 5 qmax 0,4, entsprechend Qmax —

ImcxQ* 0,4 • 2500 1000 mVs wird. Als
maximaler Überstau folgt HlmLX — (Qmttv/
CP3 6,35 m, womit die vereinfachte Beziehung

(3) angewendet werden darf. Nach BUd
4 tritt der Maximal-Ausfluss zur Zeit Tm„ •»

2,25, entsprechend <„,„ T„laxt* •» 2,25 • 11

— 24,75 h auf. Das gesamte Abflussvolumen
lässt sich anhand von Bild 7 zu W= 1,85,
entsprechend W= 1,85 • 2500 -11- 3600 183

Mio m-' abschätzen.

Beispiel 2

Man betrachte denselben Speicher, dem
jedoch nun das in Bild 8 dargestellte Hochwasser

mit Q* • 1500 mVs zufliesst. Es ist
ersichtlich, dass für reale Hochwasser kein
Nullpunkt definiert ist. Mit HUfe der beiden
noch freien Parameter n und f* muss
deshalb durch Anpassung die effektive Ganglinie

möglichst genau erfasst werden. Infolge
der relativ steilen Kurve wählt man vorerst
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für n 10. Weiter sind die beiden Kurven
mit t* 1,6 [d] und f* 2,1 [d] untersucht
worden; es fällt auf, dass die erste im
massgebenden, abfallenden Ganglinienbereich eine
bessere Übereinstimmung als die zweite
Kurve ergibt. Da uns hauptsächlich der Ma-
ximal-Speicherausfluss interessiert, wählen
wir die Kurve mit t* 1,6 [d], die zur Zeit t

0,5 [d] beginnt.

Wird dieselbe Speicher- und Überfall-Geometrie

wie im Beispiel 1 vorausgesetzt, so
findet man für R 62,52/3 1500"3 1,6 • 24 •

3600/(500 • 3 • 1052) 1,51; bei Annahme
von t* 2,1 [d] ergäbe sich für R 2.

Die zugehörigen Maximalausflüsse betragen
nach Bild 5 q^x 0,55, also QmaK 825 mVs
für t* 1,6 [d] und qmax 0,63, also Qmax

945 mVsfür t* 2,1 [d]. Eine Änderung von
30% bezüglich t* bewirkt somit im
vorliegenden Fall eine Verschiebung von Qmox um
15%; die entsprechenden, maximalen
Überfallhöhen betragen Hmax(t* 1,6 d) 5,6 m
und H,„„, («* 2,1 d) 6,1 m, die
Abweichungen betragen noch lediglich 8%.

Die vereinfachte Lösung nach Bild 4 ist zur
Kontrolle durch exakte Integration der
Retentionsgleichung ermittelt worden und in
Bild 9 dargestellt. Unter der Annahme eines
nahezu konstanten Zuflusses bei zur Zeit r
1 [d] findet man mit Integrationsschritten
von / 3 [h] die punktierte Linie; die
Zufluss-Ganglinie nach Bild 8' ist als dicke
Linie in dieselbe Figur eingetragen.

Nach Bild 8 verlaufen die vorgegebene und
die angepasste Ganglinie mit t* 1,6 [d] im
Bereich 1,5 £ t £ 3 d fast identisch. Wie aus
Bild 9 hervorgeht, sind in diesem Zeitabschnitt

lediglich geringe Abweichungen
zwischen den beiden Ganglinien zu verzeichnen.

Für die verbleibenden Zeitabschnitte
stellen sich jedoch namhafte Differenzen
ein, die sich durch die ungenaue Nachbildung

der vorgegebenen Zufluss-Ganglinie
ergeben.

Im Normalfall interessiert man sich
hauptsächlich um den Maximalausfluss, der sich

durch exakte Berechnung zu Q„ux 810
mVs ergibt; die Abweichungen zwischen
den beiden Spitzenabflüssen betragen demnach

weniger als 2% bezüglich des Effektiv-
wertes. Für den maximalen Speicherstand
erhält man H„mx (810/62,5)2/3 5,52 m,
was Abweichungen von weniger als 1%

bedingt. Diese hohe Genauigkeit genügt den

Ansprüchen der Praxis durchwegs; zieht
man zudem in Betracht, dass der Maximal-
Speicherzufluss höchstens mit einer
Genauigkeit von ±10% vorgegeben werden
kann, so treten die Differenzen zwischen
einer exakten Integration und den
vereinfachten Modellgleichungen vollends in den

Hintergrund.

Schlussfolgerungen

Die vorliegende Untersuchung erlaubt
die vereinfachte Behandlung von Re-
tentionsproblemen in Speichern, die
durch einen freien Rechtecküberfall
begrenzt sind. Unter Annahme einer
plausiblen Zufluss-Ganglinie, die der
effektiven Ganglinie durch einen
Formparameter angepasst werden
kann, lassen sich die Resultate für
beliebige Speicher- und Überfall-Geometrie

diagrammhaft angeben. Der Reten-
tionsvorgang wird dabei lediglich durch
den erwähnten Formparameter sowie
eine Retentionskonstante beeinflusst.
Die zweite Grösse berücksichtigt dabei
Einflüsse der Zufluss-Ganglinie, der
Speichergeometrie und der Ausbildung
des Überfalls; allein schon die Grösse
dieser dimensionslosen Kennzahl lässt
wichtige Folgerungen auf den zu
erwartenden Retentionsvorgang zu. Für R <
0,3 muss mit einschneidenden Reten-
tionserscheinungen gerechnet werden,
die Ausflusskurve ist dementsprechend

stark gedämpft. Für R > 5 hingegen
sind sich Zufluss und Ausfluss nahezu
identisch.

Mit Hilfe von drei zusätzlichen
Diagrammen lassen sich unmittelbar der
maximale Speicherausfluss, der
zugehörige maximale Speicherstand und das

totale Abflussvolumen in Abhängigkeit
des Formparameters und der Reten-
tionskOTStanten ermitteln. Diese wichtigen

Kenngrössen des Abflussvorgangs
erlauben insbesondere eine rasche

jB|||rteilung mit der zu rechnenden Si-
tuation. Beispielsweise lassen sich
Variantenstudien bezüglich der
Überfallgeometrie rasch und einfach durchführen.

In den Beispielen wird gezeigt, dass

die Abweichungen der exakten Lösung
der Retentionsgleichung vom
vereinfachten Vorgehen im Bereich des
Maximalzuflusses vernachlässigbar klein
sind.
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Japan auf dem Weg zum Technologiestaat

(mpg). Das Patentwesen, das in Japan im
Vergleich zu westlichen Industrieländern
viel stärker im Blickpunkt des öffentlichen
Interesses steht, gilt dort als ein wesentlicher
Faktor des Wirtschaftserfolges. Es hat nicht
nur die Einführung fortschrittlicher Technologie

aus dem Ausland begünstigt, sondern
sich darüber hinaus in den japanischen
Industriebetrieben als wirksames Instrument
zur Motivierung der Mitarbeiter zu kreativem
Denken und innovativem Wettbewerb erwiesen.

Die wachsende Bedeutung, die dem Patentwesen

beigemessen wird, entspricht einem
übergeordneten Ziel, das sich Japan für die
80er Jahre gesetzt hat: der Errichtung eines

Technologiestaates. Dieses Fazit zog Gun-
tram Rahn, Rechtsanwalt und wissenschaftlicher

Referent für Japan und Ostasien am
Max-Planck-Institut für ausländisches und

internationales Patent-, Urheber- und
Wettbewerbsrecht, München, auf einer
Vortragsveranstaltung in der Carl Friedrich von
Siemens-Stiftung in München. Japan ist heute,
so stellte der dort aufgewachsene und an der
Universität Tokio ausgebildete Rechtsforscher

dar, das Land mit den niedrigsten
Patentamtsgebühren und den meisten
Schutzrechtsanmeldungen. 1980 betrug beispielsweise

die Zahl der Patentanmeldungen in
Japan 191020, in den USA zum Vergleich
104 219, in der Bundesrepublik 51 345. Und
während die Patentanmeldungen in den
westlichen Industriestaaten eher rückläufig
sind, nehmen sie in Japan von Jahr zu Jahr
weiter zu, so zum Beispiel 1980 gegenüber
1979 um 9,5%. Allerdings sagt ein Vergleich
von Patent-Anmeldezahlen noch nichts über
die Qualität der Erfindungen, wie ein Blick
auf die japanische Patentpraxis zeigt.

Japanische Innovationsstrategie

In Japan hat sich eine regelrechte
Innovationsstrategie herausgebildet, die mehrere
Systeme miteinander kombiniert, um ein
Maximum an innovativer Leistung zu erzeugen.

Diese Strategie beginnt mit den
sogenannten Qualitätszirkeln, aus denen
Verbesserungsvorschläge hervorgehen, die auch
durch das betriebliche Vorschlagswesen
gefördert werden. Sie führen teilweise zu kleinen

Erfindungen, die in hohem Ansehen
stehen: «Kleine Erfindungen machen neugierig

auf den Stand der Technik, deshalb wird
Information gesammelt» {Rahn). Forschung
und Entwicklung werden eingesetzt, um den
Stand der Technik zu verbessern und um die
Konkurrenz hinter sich zu lassen. Schliesslich

werden, gewissermassen als Krönung,
Schutzrechtsanmeldungen beim Patentamt
eingereicht, mit denen man ausschliesslich
Rechte erwerben, aber auch die Überlegenheit

der eigenen Betriebsgruppe demonstrieren

will.
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