Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 102 (1984)

Heft: 3

Artikel: Ein Verfahren zur Berechnung der Entgleisungssicherheit von

Schienenfahrzeugen

Autor: Pribnow, Hans-Hermann

DOI: https://doi.org/10.5169/seals-75398

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ein Verfahren zur Berechnung der Entgleisungssicherheit von Schienenfahrzeugen

Von Hans-Hermann Pribnow, Nussbaumen (AG)

Die rechnerische Ermittlung der Entgleisungssicherheit von Schienenfahrzeugen: Alle Gegebenheiten, die die Entgleisungssicherheit beeinflussen, werden einzeln erläutert und, auf die Radlasten bezogen, in Gleichungen dargestellt. Daraus ergibt sich ein übersichtliches, mit einfachen Mitteln anwendbares Berechnungsverfahren.

Im ersten Teil der Arbeit werden die allgemeinen Voraussetzungen, Daten und Definitionen erläutert; im zweiten Teil folgen die Einflüsse der äusseren Kräfte, der dritte Teil behandelt die Vorgänge an den Schienen und Zahnstangen, und der vierte Teil zeigt die Anwendung des Verfahrens an einem

Die vorliegende Arbeit ist Bestandteil der Unterlagen zur neuen Eisenbahnverordnung des Bundesamts für Verkehr vom 1. 1. 1984 auf Basis des Eisenbahngesetzes vom 20. 12. 1957 (Art. 17, Abs. 2). Die Arbeit wird in drei Teilen publiziert.

Vorwort

Im Jahre 1972 wurde in der schweizerischen Bauzeitung [1] ein Verfahren zur Berechnung der Entgleisungssicherheit von Schienenfahrzeugen

Seither wurden nach diesem Verfahren zahlreiche Berechnungen durchgeführt. Dabei erwies sich in manchen Fällen ein anderer Ablauf der Berechnungen als günstiger, und dass für einige nur mit Hinweisen aufgeführte Einflüsse eine formelmässige Darstellung Vorteile bringt, sowie dass einige Zusammenhänge näherer Erläuterung bedürfen. In den letzten Jahren sind neue Erkenntnisse zur Spurführung gewonnen worden, welche in die Berechnung mit einbezogen werden sollen. Mit den inzwischen gesetzlich eingeführten SI-Einheiten sind die in der früheren Arbeit angegebenen, auf die damals üblichen Einheiten bezogenen Gleichungen nicht mehr direkt anwendbar. Zudem wurde der Sicherheitsfaktor für die Entgleisungssicherheit von der Aufsichtsbehörde neu defi-

Dies alles gab Anlass zur vorliegenden Neufassung der Arbeit. Sie ist in sich abgeschlossen und ohne Zuhilfenahme der früheren Fassung anwendbar. Daher wurden mehrere Abschnitte aus der früheren Arbeit unverändert übernommen. Die Bezeichnungen einzelner Grössen wurden angepasst, wo sie nicht mehr mit den heute üblichen Bezeichnungen übereinstimmen.

In vielen Fällen wird der Nachweis der Entgleisungssicherheit nach dem international eingeführten Kriterium j = Y/Q (Führungskraft/Radlast) verlangt; daher wurde auch die Ermittlung dieses Ausdruckes neu in das Berechnungsverfahren aufgenommen.

In der vorliegenden Arbeit werden nur noch vierachsige Drehgestellfahrzeuge behandelt. Zweiachsige Fahrzeuge können als alleinlaufende Drehgestelle aufgefasst und nach den gegebenen Gleichungen berechnet werden. Die Anpassung der einzelnen Gleichungen zur Anwendung auf zweiachsige Fahrzeuge bereitet keine Schwierigkeiten.

Allgemeines

1.1 Einleitung

Die Entgleisungssicherheit ergibt sich aus dem Kräftespiel zwischen Rad und Schiene; sie unterliegt einer grossen Zahl von Einflüssen, von denen hier nur die Geometrie des Gleises und der Zahnstange, der konstruktive Aufbau der Fahrzeuge, der Bewegungszustand (Geschwindigkeit, Beschleunigung, Verzögerung), die inneren Kupplungskräfte im Zugverband und die Reibungsverhältnisse genannt werden sollen. Viele dieser Einflüsse stehen zudem untereinander in teilweise komplizierten Zusammenhängen. Es gibt Veröffentlichungen, z.B. [2], die das Problem der Entgleisungssicherheit eingehend behandeln und es ermöglichen, mit Hilfe eines Computers die Entgleisungssicherheit unter Berücksichtigung aller Einflüsse und Zusammenhänge zu berechnen.

Die vorliegende Arbeit soll dem projektierenden, konstruierenden oder prüfenden Ingenieur ein vereinfachtes Verfahren zur Berechnung und Beurteilung der Entgleisungssicherheit in die Hand geben. Entsprechend den Anforderungen der Praxis ist das Verfahren überschaubar und mit einfachen Rechenhilfsmitteln anwendbar.

Zwischen Adhäsions- und Zahnradfahrzeugen wird nicht unterschieden. Das Verfahren erfasst bei Weglassen der Zahnradeinflüsse die Vorgänge an einem Adhäsionsfahrzeug vollständig.

1.2 Aufbau des Berechnungsverfahrens

Der erste Teil der Arbeit enthält die allgemeinen Voraussetzungen der Berechnung, die Definitionen sowie die auftretenden Bewegungszustände und äusseren Kräfte. Im zweiten Teil werden die Einflüsse der äusseren Kräfte auf die vertikalen und horizontalen Belastungen der einzelnen Räder untersucht. Die Vorgänge an den Zahnrädern, die Ermittlung der Richtkräfte und die Sicherheitskoeffizienten sind im dritten Teil behandelt. Die praktische Durchführung der Berechnung wird im vierten Teil an einem Beispiel gezeigt.

Die einzelnen Einflüsse auf die Entgleisungssicherheit werden beschrieben und soweit als möglich in Gleichungen dargestellt; sie können durch die gesamte Berechnung leicht verfolgt und einzeln variiert werden. Als Ergebnis der Berechnung erscheint für jedes Rad der Sicherheitskoeffizient

$$S = 1 + \frac{\text{effektive Radlast}}{\text{statische Radlast in der Horizontalen}}$$

Der Koeffizient S muss grösser als 1 sein; der zulässige minimale Wert wird durch die Vorschriften der Aufsichtsbehörde festgelegt.

Gezeigt wird auch die Berechnung des Wertes

$$j = Y/Q = \frac{\text{Effektive Führungskraft}}{\text{effektive Radlast}}$$

als international eingeführtes Kriterium für die Entgleisungssicherheit. Die zulässigen Grenzwerte sind in den entsprechenden Abschnitten be-

Während die Einflüsse der einzelnen Abmessungen, Abstände, Gewichte und Kräfte am Fahrzeug und der theoretischen Gegebenheiten des Gleiskörpers bekannt und in einfachen Gleichungen erfassbar sind, wird für einige Daten und Zusammenhänge angesichts der Vielzahl von konstruktiven Ausführungsmöglichkeiten auf eine allgemein gültige formelmässige Darstellung verzichtet. Statt dessen werden für diese Zusammenhänge an den entsprechenden Stellen Hinweise und einfache Beispiele gegeben, die es dem Anwender ermöglichen, die benötigten Daten getrennt zu bestimmen. So ist u. a. der Einfluss der Getriebeanordnung auf die einzelnen Radlasten behandelt.

Daneben üben andere, schwer erfassbare Gegebenheiten einen Einfluss auf die Entgleisungssicherheit aus, hauptsächlich die Reibungsverhältnisse zwischen Rad und Schiene, die sehr einflussreich sind, aber nur mit einem empirischen Wert des Reibungskoeffizienten berücksichtigt werden können. Gegebenheiten wie Gleiszustand, Zusammenspiel von Federung und Dämpfung sowie Schwingungserscheinungen können die Entgleisungssicherheit ebenfalls berühren, sind aber der rechnerischen Erfassung in der Regel nur mit grossem Aufwand zugänglich. In der Praxis wird dies berücksichtigt, indem der zulässige minimale Sicherheitskoeffizient entsprechend hoch angesetzt wird.

Somit erscheint es zulässig, wenn in der vorliegenden Arbeit verschiedene Zusammenhänge, die nur geringen Einfluss auf die Entgleisungssicherheit haben, aber einen grossen Rechenaufwand erfordern, nicht berücksichtigt oder durch vereinfachende Annahmen ersetzt werden. Diese Annahmen werden immer so getroffen, dass die Abweichungen vom exakten Zusammenhang im Sinne einer geringeren rechnerischen Sicherheit wirken. Die Aufteilung der horizontalen und vertikalen Pufferkräfte ist ein Beispiel hierfür.

Um gegebenenfalls einzelne Einflüsse genauer als in diesem Verfahren vorgesehen berechnen zu können, ist von Fall zu Fall auf die entsprechenden Veröffentlichungen im Literaturverzeichnis (Abschnitt 14) hingewiesen.

In der Arbeit wird die Entgleisungssicherheit von Fahrzeugen in der Steigung und in der Kurve behandelt, da hierbei die ungünstigsten Verhältnisse auftreten. Für Betrachtungen im geraden Gleis oder in der Ebene sind die aufgeführten Gleichungen ebenfalls anwendbar; durch Einsetzen der hierbei gültigen Daten ergeben sich die entsprechenden Vereinfachungen.

Die Arbeit bezieht sich auf zweiachsige Drehgestelle; für andere Achsanordnungen, die heute als Ausnahmen anzusehen sind, finden sich Hinweise zur Berechnung von Richtkräften, Achslastverteilungen usw. z. B. in [2].

In verschiedenen Skizzen sind die Lage der für die Berechnung wichtigen Abmessungen und die an den einzelnen Punkten angreifenden Kräfte dargestellt. Um die Übersichtlichkeit nicht zu beeinträchtigen, sind nicht alle Kräfte mit ihren zugehörigen Reaktionen eingetragen; die Skizzen enthalten also keine vollständigen Kräftepläne.

In den Skizzen sind die Abmessungen und Kräfte in der als positiv definierten Richtung eingetragen; in der Gegenrichtung eingetragene Grössen sind als negativ bezeichnet.

2 Daten und Definitionen für die Berechnung der Entgleisungssicherheit

2.1 Betrachteter Fall

Vor der Berechnung der Entgleisungssicherheit steht die Überlegung, für welchen Betriebsfall die Berechnung durchgeführt werden soll. Hier sind vor allem festzulegen

- Stelle im Gleis (Steigung, Gefällebruch, Kurvenradius, Überhöhung, Überhöhungsrampe),
- Zugkomposition,
- Stellung des betrachteten Fahrzeugs in der Zugkomposition, und
- Fahrzustand (Geschwindigkeit, beschleunigte oder gebremste Fahrt).
 Es ist zu beachten, dass jeweils nur ein Fahrzeug einer Zugkomposition betrachtet werden kann.

2.2 Daten der Stelle im Gleis

R	(m)	Kurvenradius des Gleises
α	(°)	Neigungswinkel des Gleises
β	(°)	Überhöhungswinkel des Gleises
β_1	(0/00)	Überhöhungsrampe, bezogen auf den Drehzapfenabstand e_z
β_2	(%)	Überhöhungsrampe, bezogen auf den Achsstand 2a im Drehgestell
Z	(mm)	Höhe der Zahnstangen-Teillinie über Schienen-Oberkante (SO)
O_Z	(°)	Eingriffswinkel an der Zahnstange
σ	(mm)	Gesamtes Spurspiel

2.3 Daten der Zugkomposition

Diese Daten sind gegebenenfalls durch getrennte Berechnungen zu ermitteln. Für die Vorzeichen ist Abschnitt 2.6 zu beachten.

B_g	(N)	Gesamte wirksame Bremskraft der Zugkomposition
B_{wt}	(N)	Gesamte wirksame Bremskraft der talseitig gekuppelten Fahrzeuge
B_{wb}	(N)	Gesamte wirksame Bremskraft der bergseitig gekup- pelten Fahrzeuge
G_g	(kg)	Gesamtgewicht der Zugkomposition
G_{wt}	(kg)	Gewicht der talseitig gekuppelten Fahrzeuge
G_{wb}	(kg)	Gewicht der bergseitig gekuppelten Fahrzeuge
V_{g}	(N)	Gesamte Vortriebskraft der Zugkomposition
$V_g \ V_{wt}$	(N)	Vortriebskraft der talseitig gekuppelten Fahrzeuge
V_{wb}	(N)	Vortriebskraft der bergseitig gekuppelten Fahrzeuge
m_{rg}	(kg)	Gesamte rotierende Masse der Zugkomposition, reduziert auf SO
m_{rt}	(kg)	Rotierende Masse der talseitig gekuppelten Fahr-

zeuge, reduziert auf SO

m_{rb}	(kg)	Rotierende Masse der bergseitig gekuppelten Fahr-
		zeuge, reduziert auf SO

v_F (m/s) Fahrgeschwindigkeit der Zugkomposition

Bei den Vortriebs- und Bremskräften sind auch die Anteile zu berücksichtigen, die zur Beschleunigung bzw. Verzögerung der rotierenden Massen in den die Kräfte erzeugenden Fahrzeugen dienen.

2.4 Daten des betrachteten Fahrzeuges

2.4.1 Vortriebs- und Bremskräfte

Diese Daten sind gegebenenfalls durch getrennte Berechnungen zu ermitteln. Für die Vorzeichen ist Abschnitt 2.6 zu beachten.

- B_a (N) Bremskraft, durch Adhäsionsräder übertragen
- B_F (N) Gesamte wirksame Bremskraft, bezogen auf die Adhäsionsräder bzw. Zahnräder
- V_a (N) Vortriebskraft, durch Adhäsionsräder übertragen
- V_F (N) Gesamte wirksame Vortriebskraft, bezogen auf die Adhäsionsräder bzw. Zahnräder
- B_b (N) Gesamte am bergseitigen Drehgestell wirksame Bremskraft
- B_t (N) Gesamte am talseitigen Drehgestell wirksame Bremskraft
- V_b (N) Gesamte am bergseitigen Drehgestell wirksame Vortriebskraft
- V_t (N) Gesamte am talseitigen Drehgestell wirksame Vortriebskraft
- B₁ (N) Bremskraft der Adhäsionsräder am talseitigen Radsatz des talseitigen Drehgestells
- B₂ (N) Bremskraft der Adhäsionsräder am bergseitigen Radsatz des talseitigen Drehgestells
- B₃ (N) Bremskraft der Adhäsionsräder am talseitigen Radsatz des bergseitigen Drehgestells
- B₄ (N) Bremskraft der Adhäsionsräder am bergseitigen Radsatz des bergseitigen Drehgestells
- V_1 (N) Vortriebskraft der Adhäsionsräder am talseitigen Radsatz des talseitigen Drehgestells
- V₂ (N) Vortriebskraft der Adhäsionsräder am bergseitigen Radsatz des talseitigen Drehgestells
- V₃ (N) Vortriebskraft der Adhäsionsräder am talseitigen Radsatz des bergseitigen Drehgestells
- V₄ (N) Vortriebskraft der Adhäsionsräder am bergseitigen Radsatz des bergseitigen Drehgestells

Bei den Vortriebs- und Bremskräften, die in Fahrzeuglängsrichtung wirkend angenommen werden, sind auch die Anteile zu berücksichtigen, die zur Beschleunigung bzw. Verzögerung der rotierenden Massen dienen.

2.4.2 Gewichte und Massen

(1--)

G_K	(kg)	Fahrzeugkastengewicht
G_D	(kg)	Gesamtes Drehgestellgewicht
m_r	(kg)	Rotierende Massen, reduziert auf SO
m_r'	(kg)	rotierende Massen, reduziert auf Zahnstangenteillinie
		(nur für Zahnradfahrzeuge)
m_{rz}	(kg)	Rotierende Massen, deren Einflüsse keine Reaktion in der Horizontalen erzeugen, reduziert auf SO
m'_{rz}	(kg)	Rotierende Massen, deren Einflüsse keine Reaktion in der Horizontalen erzeugen, reduziert auf Zahn- stangenteillinie (nur für Zahnradfahrzeuge)
		stangentellinie (nur für Zannradfahrzeuge)

To be a second of the

 $\operatorname{Mit} m_{rz}$ und m'_{rz} werden z. B. Motorenläufer berücksichtigt, die von einer Bandbremse direkt abgebremst werden, wobei die dazu nötige Bremskraft die Adhäsionsräder bzw. Zahnräder nicht berührt.

2.4.3 Angriffswinkel der Kupplungskräfte (Kräfte an Zug- und Stossvorrichtungen)

Hierbei sind gegebenenfalls auch die Einflüsse aus Gefällebrüchen zu berücksichtigen.

a) Kupplungen am Fahrzeugkasten angelenkt (s. Bild 1)

γ_b	(°)	Winkel zwischen bergseitiger Kupplung und Fahr-
γ_t	(°)	zeuglängsachse in der Ebene parallel zum Gleis Winkel zwischen talseitiger Kupplung und Fahrzeug-
		längsachse in der Ebene parallel zum Gleis
ε_b	(°)	Winkel zwischen bergseitiger Kupplung und Fahr-
		zeuglängsachse in der Ebene vertikal zum Gleis
ε_t	(°)	Winkel zwischen talseitiger Kupplung und Fahr-
		zeuglängsachse in der Ebene vertikal zum Gleis

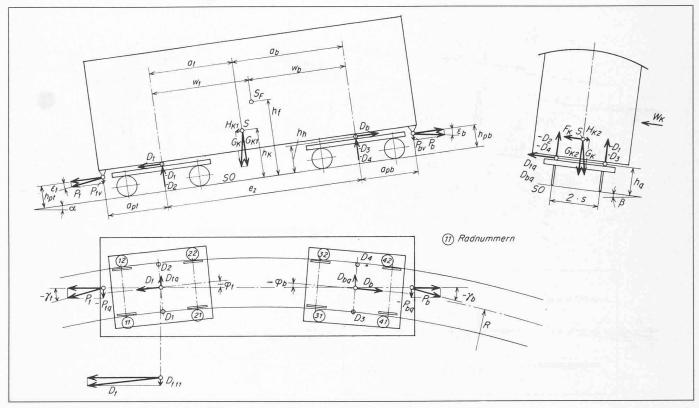
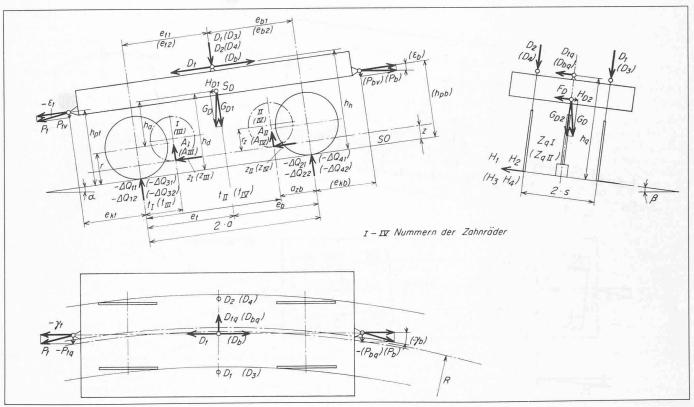



Bild 1. Abmessungen und Kräfte am Drehgestellfahrzeug

b) Kı	applungen	an den Drehgestellen angelenkt (s. Bild 2)	w_b	(mm)	Abstand zwischen Schwerpunkt S _F der Seitenwand-
γь	(°)	Winkel zwischen bergseitiger Kupplung und Längsachse des bergseitigen Drehgestells in der Ebene	w_t	(mm)	fläche und Auflage am bergseitigen Drehgestell Abstand zwischen Schwerpunkt S _F der Seitenwand-
		parallel zum Gleis	-	(2)	fläche und Auflage am talseitigen Drehgestell
γ_t	(°)	Winkel zwischen talseitiger Kupplung und Längs-	F_s	(m ²)	Seitenwandfläche des Fahrzeugkastens
		achse des talseitigen Drehgestells in der Ebene parallel zum Gleis	φ_b	(°)	Ausdrehwinkel des bergseitigen Drehgestells (s. auch Abschnitt 4.4.1)
ε_b	(°)	Winkel zwischen bergseitiger Kupplung und Längs- achse des bergseitigen Drehgestells in der Ebene	φ_t	(°)	Ausdrehwinkel des talseitigen Drehgestells (s. auch Abschnitt 4.4.1)
	(0)	vertikal zum Gleis	C_t	(N/mm)	Torsionselastizität des Fahrzeugkastens (s. Abschnitt 5.3.13.1)
\mathcal{E}_t	(°)	Winkel zwischen talseitiger Kupplung und Längs- achse des talseitigen Drehgestells in der Ebene	M_a	$(N \cdot mm)$	elastisches Ausdrehmoment am Drehgestell (s. Ab-
		vertikal zum Gleis	M_r	$(N \cdot mm)$	schnitt 4.4.1) reibendes Ausdrehmoment am Drehgestell (s. Ab-
Diese	Daten sin	d zeichnerisch oder analytisch zu bestimmen.	IVI _r	(14 11111)	schnitt 4.4.2)
2.4.4	Daten und	Abmessungen am Fahrzeugkasten (s. Bild 1)	2.4.5	Daten und	Abmessungen am Drehgestell (s. Bild 2)
a_b	(mm)	Abstand zwischen Kastenschwerpunkt S und Auflage	2 a	(mm)	Abstand der Radsätze (Achsstand)
a_t	(mm)	am bergseitigen Drehgestell Abstand zwischen Kastenschwerpunkt S und Auflage	e_b	(mm)	Abstand zwischen Drehgestellschwerpunkt S_D und bergseitigem Radsatz
		am talseitigen Drehgestell	e_t	(mm)	Abstand zwischen Drehgestellschwerpunkt S_D und
a_{pb}	(mm)	Abstand zwischen Anlenkpunkt der bergseitigen	-1	(11111)	talseitigem Radsatz
		Kupplung und Auflage am bergseitigen Drehgestell	e_{b1}	(mm)	Abstand zwischen Auflage des Fahrzeugkastens und
a_{pt}	(mm)	Abstand zwischen Anlenkpunkt der talseitigen	0.1		bergseitigem Radsatz
		Kupplung und Auflage am talseitigen Drehgestell	e_{t1}	(mm)	Abstand zwischen Auflage des Fahrzeugkastens und
e_z	(mm)	Abstand zwischen den Auflagen der Drehgestelle			talseitigem Radsatz
h_f	(mm)	Höhe des Schwerpunkts S_F der Seitenwandfläche über SO	e_{b2}	(mm)	Abstand zwischen Quermitnahme des Fahrzeug-
L	(mm)	Höhe der Längsmitnahme des Drehgestells über SO			kastens und bergseitigem Radsatz
h_h	(111111)	(Übertragung der Längskräfte auf den Fahrzeug-	e_{t2}	(mm)	Abstand zwischen Quermitnahme des Fahrzeug-
		kasten)			kastens und talseitigem Radsatz
h	(mm)	Höhe des Kastenschwerpunktes S über SO	e_{kb}	(mm)	Abstand zwischen Anlenkpunkt der bergseitigen
h_k	(mm)	Höhe der Quermitnahme des Drehgestells über SO			Kupplung und bergseitigem Radsatz (nur wenn Kupp-
h_q	(mm)	(Übertragung der Querkräfte auf den Fahrzeug-			lung am Drehgestell angelenkt)
		kasten)	e_{kt}	(mm)	Abstand zwischen Anlenkpunkt der talseitigen Kupp-
h	(mm)	Höhe der Anlenkung der bergseitigen Kupplung über			lung und talseitigem Radsatz (nur wenn Kupplung am
h_{pb}	(mm)	SO			Drehgestell angelenkt)
h	(mm)	Höhe der Anlenkung der talseitigen Kupplung über	h_d	(mm)	Höhe des Drehgestellschwerpunkts S_D über SO
h_{pt}	(11111)	SO	h_{pb}	(mm)	Höhe der Anlenkung der bergseitigen Kupplung über
h_p	(mm)	Mittlere Höhe der Anlenkung der Kupplungen	,		SO
ър	(IIIII)	$h_p = 1/2 \cdot (h_{pb} + h_{pt})$	h_{pt}	(mm)	Höhe der Anlenkung der talseitigen Kupplung über
		(*pb + (*pt)			SO

Abmessungen und Kräfte am Drehgestell für Zahnradbahnfahrzeuge (Werte in Klammern gelten für bergseitiges Drehgestell)

2 s	(mm)	Querabstand der Radaufstandspunkte
t_I	(mm)	Abstand zwischen talseitigem Radsatz und talseitigem Zahnrad im talseitigen Drehgestell
t_{II}	(mm)	Abstand zwischen talseitigem Radsatz und bergseitigem Zahnrad im talseitigen Drehgestell
t_{III}	(mm)	Abstand zwischen talseitigem Radsatz und talseitigem Zahnrad im bergseitigen Drehgestell
t_{IV}	(mm)	Abstand zwischen talseitigem Radsatz und bergseitigem Zahnrad im bergseitigen Drehgestell
b_a	(mm)	Querabstand der reibenden Seitenstützen (s. Abschnitt 4.4.2)
G_H	(N)	Kräfte auf die Hilfsabstützungen am Drehgestell (s. Abschnitt 4.4.3)
μ_a	(-)	Reibungskoeffizient an den seitlichen Abstützungen bzw. Hilfsabstützungen (s. Abschnitte 4.4.2 und 4.4.3)
C_r	(N/mm)	Torsionselastizität des Drehgestellrahmens (s. Abschnitt 5.3.13.2)
δ	(°)	Spurkranzflankenwinkel (s. Bild 14)
n	(-)	Anzahl der Trieb- bzw. Bremszahnräder im Fahrzeug

Diese Bezeichnungen gelten, wenn beide Drehgestelle eines Fahrzeuges (gegebenenfalls bis auf die Anlenkung der Kupplungen) untereinander gleich sind. Ist dies nicht der Fall, so müssen für jedes Drehgestell die Daten getrennt eingesetzt und in den weiteren Berechnungen berücksichtigt werden.

Teilkreisradius der Trieb- bzw. Bremszahnräder

Radius der Adhäsionsräder

(mm)

(mm)

2.4.6	Daten der	Federung
b	(mm)	Querabstand der Wiegenfedern
ν	(mm)	Querabstand der Achsfedern
C_A	(N/mm)	Federkonstante der Achsfedern je Achslager
c_W	(N/mm)	Federkonstante der Wiegenfedern je Drehgestellseite
c_{q1}	(N/mm)	Querfederkonstante der Wiegenfedern in Fahrzeug- längsrichtung je Drehgestellseite
c_{q2}	(N/mm)	Querfederkonstante der Wiegenfedern in Fahrzeug- querrichtung je Drehgestellseite
C_S	(N/mm)	Konstante der Wankstütze (s. Abschnitt 5.3.13.1)
W_q	(mm)	Stützabstand der Wankstütze (s. Abschnitt 5.3.13.1)
h_w	(mm)	Höhe des Schwerpunkts S des Fahrzeugkastens über der Oberkante der Wiegenfedern

n_{ws}	(IIIIII)	Holle des Schweipunkts Sp der Schenwand doer der
		Oberkante der Wiegenfedern
h'_w	(mm)	Höhe des Schwerpunkts S des Fahrzeugkastens über
		dem Wankpol nach [4] (s. Abschnitt 5.3.13.5)
S	(-)	Neigungskoeffizient nach [4] (s. Abschnitt 5.3.13.5)

Höbe des Schwerpunkts S. der Seitenwand über der

2.5 Allgemeine Daten (m/c2)

g	(m/s^2)	Erdbeschleunigung ($g = 9.81 \text{ m/s}^2$)
v_w	(m/s)	Windgeschwindigkeit
w	(-)	spezifischer Rollwiderstand
μ_p	(-)	Reibungskoeffizient zwischen Puffertellern
μ_{s}	(-)	Reibungskoeffizient zwischen Rad und Schiene am Spurkranz
μ_z	(-)	Reibungskoeffizient zwischen Zahnrad und Zahnstange an der Zahnflanke
Q	(kg/m^3)	Dichte der Luft ($\varrho = 1,204 \text{ kg/m}^3 \text{ bei } 760 \text{ mm Hg}$

2.6 Allgemeine Definitionen zur Berechnung

2.6.1 Betrachtungsrichtung

Alle Vorgänge werden mit Blickrichtung bergwärts betrachtet; hierauf beziehen sich auch die Angaben «rechts» und «links». Befindet sich das betrachtete Fahrzeug in der Ebene, so kann die Blickrichtung beliebig bezeichnet werden.

2.6.2 Numerierung der Radsätze und Räder

Die Numerierung der Radsätze erfolgt mit 1 am talseitigen Radsatz beginnend. Die in Blickrichtung jeweils rechten Räder erhalten zusätzlich die Ziffer 1, die linken die Ziffer 2. So ist zum Beispiel Rad 32 das linke Rad des dritten Radsatzes (talseitiger Radsatz des bergseitigen Drehgestells).

2.6.3 Numerierung der Zahnräder

Die Numerierung der Zahnräder erfolgt mit römischen Zahlen I an der Talseite beginnend. Es werden immer vier Zahnräder am Drehgestellfahrzeug vorgesehen; besitzt das betrachtete Fahrzeug jedoch nur ein oder zwei Zahnräder, so werden diese je nach ihrer Lage im Fahrzeug bezeichnet. Ist zum Beispiel bei einem Drehgestellfahrzeug in jedem Drehgestell talseitig ein Zahnrad vorhanden, so erhalten diese die Nummern I und III.

2.6.4 Gleisbögen

Die Fahrzeuge werden als in einer Rechtskurve befindlich betrachtet, d.h. rechts ist bogeninnen.

2.6.5 Kräfte und Belastungen

Vertikale Kräfte und Belastungen werden positiv eingesetzt, wenn sie die Räder belasten, und negativ, wenn sie die Räder entlasten.

Horizontale Belastungen in Fahrzeugquerrichtung werden von bogeninnen nach bogenaussen positiv eingesetzt. Horizontale Belastungen in Fahrzeuglängsrichtung werden positiv eingesetzt, wenn sie am Fahrzeug ziehen, und negativ, wenn sie auf das Fahrzeug drücken. Horizontale Kräfte am Radaufstandspunkt werden positiv eingesetzt, wenn sie den Spurkranz an die Schiene drücken, und negativ, wenn sie ihn von der Schiene wegziehen.

2.6.6 Richtungsbezeichnungen

Die Bezeichnungen «horizontal» und «vertikal» beziehen sich auf die Gleisebene als Bezugsebene, bedeuten also parallel bzw. senkrecht zur Gleisebene. Der Ausdruck «in der Horizontalen» bezeichnet dagegen die Stellung im steigungslosen Gleis (bei $\alpha=0^{\circ}$).

2.6.7 Gleichungen

Die in der Berechnung vorkommenden Gleichungen sind numeriert. Zusammengehörige Gleichungen, zum Beispiel für die Ermittlung gleicher Grössen an verschiedenen Rädern, Drehgestellauflagen usw. sind durch eine Ordnungszahl gekennzeichnet z. B. (85.1). Gleichungen für Beziehungen, die nicht gleichzeitig an einem Fahrzeug auftreten können, sind mit kleinen Buchstaben unterschieden z. B. (17a). Treten solche Bezeichnungen auf, kann für jeden Fall nur eine der Gleichungen mit der gleichen Nummer zutreffend sein.

Nur als Beispiel aufgeführte Gleichungen ohne allgemeine Gültigkeit erhalten keine Nummer.

3 Bewegungszustände des Fahrzeuges

3.1 Bewegungszustände mit gleichbleibender Geschwindigkeit

Bleibt während der Bewegung des Fahrzeugs die Geschwindigkeit gleich, so entstehen keine länger anhaltenden und die Entgleisungssicherheit beeinflussenden dynamischen Kräfte mit Ausnahme der Fliehkräfte und der Windkräfte, die in den Abschnitten 3.3.4 und 3.5 behandelt sind.

3.2 Bewegungszustände mit veränderlicher Geschwindigkeit

3.2.1 Beschleunigte Fahrt

Das Fahrzeug bzw. der Zug wird durch die Vortriebskraft des Triebfahrzeugs (oder mehrerer Triebfahrzeuge) beschleunigt. Je nach Auslegung des Triebfahrzeugs und Bedingungen der Strecke ist die wirksam werdende Vortriebskraft V_g durch das maximale Antriebsdrehmoment der Fahrmotoren oder durch die Reibung zwischen Rad und Schiene begrenzt; die Vortriebskraft muss getrennt bestimmt werden.

Sind die Vortriebskraft V_g , das Gesamtgewicht G und die gesamte rotierende Masse m_{rg} (s. auch Abschnitt 2.3) bekannt, so ist die erreichte mittlere Beschleunigung

bei beschleunigter Fahrt bergwärts bei beschleunigter Fahrt talwärts

(1a)
$$b_{Ab} = \frac{V_g - G_g g (\sin \alpha + w)}{G_g + m_{rg}}$$
 (1b) $b_{At} = \frac{V_g + G_g g (\sin \alpha - w)}{G_g + m_{rg}}$

Ist die aufgebrachte Vortriebskraft V_g nicht über den ganzen Beschleunigungsvorgang konstant, so empfiehlt es sich, diesen in einzelne Abschnitte zu unterteilen und für jeden Abschnitt die mittlere Beschleunigung zu bestimmen. Im weiteren Ablauf der Berechnung ergibt dann normalerweise die grösste Beschleunigung die ungünstigsten Werte für die Entgleisungssicherheit. Eine Kontrollrechnung mit einer kleineren Beschleunigung ist jedoch ratsam.

In gleicher Weise ist vorzugehen, wenn im Verlauf des Beschleunigungsvorganges die Streckenneigung oder der Rollwiderstand merklich ändern (Gefällebruch oder Kurveneinlauf).

3.2.2 Gebremste (verzögerte) Fahrt

Die Bestimmung der Verzögerung bei gebremster Fahrt geschieht in glei-

cher Weise. Die wirksam werdenden Bremskräfte müssen getrennt bestimmt werden. Sind die Bremskraft B_g , das Gesamtgewicht G_g und die gesamte rotierende Masse m_{rg} (s. auch Abschnitt 2.3) bekannt, so ist die erreichte mittlere Bremsverzögerung

bei gebremster Fahrt talwärts

bei gebremster Fahrt bergwärts

(1c)
$$b_{Bt} = \frac{B_g - G_g g (\sin \alpha - w)}{G_g + m_{rg}}$$
 (1d) $b_{Bb} = \frac{B_g + G_g g (\sin \alpha + w)}{G_g + m_{rg}}$

Ist die wirksame Bremskraft nicht über den ganzen Bremsvorgang konstant (z.B. bei Klotzbremsen infolge der bekannten Abhängigkeit des Reibungskoeffizienten zwischen Klotz und Rad von der Umfangsgeschwindigkeit des gebremsten Rades), so empfiehlt es sich, sinngemäss so vorzugehen, wie es Abschnitt 3.2.1 darstellt.

3.2.3 Gemischte Zustände

Treten in einem betrachteten Fall Vortriebs- und Bremskräfte gleichzeitig auf (zum Beispiel bei Anfahrten mit gebremsten Wagen), so ist die Differenz zwischen den wirksamen Vortriebs- und Bremskräften zu bilden. Je nach Grösse der Kräfte ergibt sich für die Zugkomposition eine Vortriebs- oder eine Bremskraft, die in die Gleichungen (1 a) und (1 b) bzw. (1 c) und (1 d) einzusetzen ist.

3.3 Äussere Kräfte auf das Fahrzeug

3.3.1 Aus der Neigung in Längsrichtung

Durch die Neigung der Strecke um den Winkel α ergibt sich eine im Schwerpunkt von Fahrzeugkasten bzw. Drehgestell angreifende talwärts gerichtete Kraft, die Hangabtrieb genannt wird. Diese ist

für den Fahrzeugkasten

für das Drehgestell
(3) $H_{D1} = G_D g \sin \alpha$

(2) $H_{K1} = G_K g \sin \alpha$

Gleichzeitig wird die senkrecht zum Gleis wirksame Gewichtskomponente

für den Fahrzeugkasten

für das Drehgestell (5) $G_{D1} = G_D g \cos \alpha$

$(4) \quad G_{K1} = G_K g \cos \alpha$

Für die Neigung des Fahrzeuges in Gleisquerrichtung um den Winkel β (zum Beispiel im überhöhten Gleisbogen) gelten analoge Beziehungen.

Läuft das Fahrzeug in dem in Abschnitt 5.3.13 näher beschriebenen Fall durch eine Überhöhungsrampe mit der Neigung β_1 , so ist die wirksame Überhöhung

(6)
$$\ddot{u}_m = 2 s \sin \beta - \frac{1}{2} \cdot (e_z \beta_1)$$

3.2.2 Aus der Neigung in Querrichtung

Der zugehörige Überhöhungswinkel ist dann aus

(7)
$$\sin \beta' = \ddot{u}_m/2 s$$

zu bestimmen und in die Gleichungen (8) bis (13) einzusetzen. Die quer zum Gleis wirkende Kraft (seitlicher Hangabtrieb) ist

für den Fahrzeugkasten

für das Drehgestell

(8) $H_{K2} = G_K g \sin \beta$

(9) $H_{D2} = G_D g \sin \beta$

Die senkrecht zum Gleis wirkende Gewichtskomponente ist

für den Fahrzeugkasten

für das Drehgestell

 $(10) \quad G_{K2} = G_K g \cos \beta$

 $(11) \quad G_{D2} = G_D \ g \cos \beta$

3.3.3 Aus der Neigung in Längs- und Querrichtung

Ist das Gleis in Längs- und Querrichtung geneigt, zum Beispiel in einem überhöhten Gleisbogen in einer Steigungsstrecke, so ist die senkrecht zum Gleis wirksame Gewichtskomponente

für den Fahrzeugkasten

für das Drehgestell

(12) $G_{K3} = G_K g \cos \alpha \cos \beta$

(13) $G_{D3} = G_D g \cos \alpha \cos \beta$

Sind die Drehgestelle des betrachteten Fahrzeuges nicht untereinander gleich, so sind für jedes die Werte von $H_{D\,1},H_{D\,2},G_{D\,1},G_{D\,2}$ und $G_{D\,3}$ getrennt zu berechnen und in den nachfolgenden Berechnungen zu berücksichtigen.

3.3.4 Fliehkräfte

Bei der Fahrt durch einen Gleisbogen wirken Fliehkräfte auf das Fahrzeug. Diese sind bei der Fahrt mit gleichbleibender Geschwindigkeit v_F (in m/s)

für den Fahrzeugkasten

für das Drehgestell

(14) $F_K = G_K v_F^2 / R$

(15) $F_D = G_D v_F^2 / R$

Bei beschleunigtem oder verzögertem Fahrzustand ist für v_F die höchste bei der Fahrt durch die Gleisbogen auftretende Geschwindigkeit einzusetzen. Sind die Drehgestelle des betrachteten Fahrzeuges untereinander nicht gleich, so ist für jedes die Fliehkraft getrennt zu berechnen und in den nachfolgenden Berechnungen zu berücksichtigen.

3.4 Kupplungskräfte

Läuft das betrachtete Fahrzeug im Zugverband, so treten an seinen Zugund Stossvorrichtungen Kupplungskräfte auf.

3.4.1 Talseitige Kupplungskräfte

Die talseitig am betrachteten Fahrzeug angreifenden Kupplungskräfte

bei Fahrt bergwärts mit gleichbleibender Geschwindigkeit

 $(16a) P_t = G_{wt} g (\sin \alpha + w) - V_{wt} + B_{wt}$

bei Fahrt talwärts mit gleichbleibender Geschwindigkeit

(16b) $P_t = G_{wt} g \left(\sin \alpha - w \right) + V_{wt} - B_{wt}$

bei beschleunigter Fahrt bergwärts

(16c)
$$P_t = G_{wt} g \left(\sin \alpha + w \right) + b_{Ab} \left(G_{wt} + m_{rt} \right) - V_{wt} + B_{wt}$$

bei beschleunigter Fahrt talwärts

(16d)
$$P_t = G_{wt} g (\sin \alpha - w) - b_{At} (G_{wt} + m_{rt}) + V_{wt} - B_{wt}$$

bei verzögerter Fahrt bergwärts

(16e)
$$P_t = G_{wt} g \left(\sin \alpha + w \right) - b_{Bb} \left(G_{wt} + m_{rt} \right) - V_{wt} + B_{wt}$$

bei verzögerter Fahrt talwärts

(16f)
$$P_t = G_{wt} g (\sin \alpha - w) + b_{Bt} (G_{wt} + m_{rt}) + V_{wt} - B_{wt}$$

Werte für b_{Ab} bis b_{Bt} aus Gleichungen (1 a) bis (1 d).

3.4.2 Bergseitige Kupplungskräfte

Die bergseitig am betrachteten Fahrzeug angreifenden Kupplungskräfte

bei Fahrt bergwärts mit gleichbleibender Geschwindigkeit

(17a)
$$P_b = -G_{wb} g (\sin \alpha + w) + V_{wb} - B_{wb}$$

bei Fahrt talwärts mit gleichbleibender Geschwindigkeit

(17b)
$$P_b = -G_{wb} g (\sin \alpha - w) - V_{wb} + B_{wb}$$

bei beschleunigter Fahrt bergwärts

(17c)
$$P_b = -G_{wb} g (\sin \alpha + w) - b_{Ab} (G_{wb} + m_{rb}) + V_{wb} - B_{wb}$$

bei beschleunigter Fahrt talwärts

(17d)
$$P_b = -G_{wb} g (\sin \alpha - w) + b_{At} (G_{wb} + m_{rb}) - V_{wb} + B_{wb}$$

bei verzögerter Fahrt bergwärts

(17e)
$$P_b = -G_{wb} g (\sin \alpha + w) + b_{Bb} (G_{wb} + m_{rb}) + V_{wb} - B_{wb}$$

bei verzögerter Fahrt talwärts

(17f)
$$P_b = -G_{wb} g (\sin \alpha - w) - b_{Bt} (G_{wb} + m_{rb}) - V_{wb} + B_{wb}$$

Werte für b_{Ab} bis b_{Bt} aus Gleichungen (1 a) bis (1 d).

3.4.3 Zur Berechnung der Kupplungskräfte

Die Grössen B_{wb} , B_{wt} , G_{wb} , G_{wt} , V_{wb} , V_{wt} , m_{rb} und m_{rt} beziehen sich auf die mit dem betrachteten Fahrzeug bergseitig bzw. talseitig gekuppelten Fahrzeuge. Gewicht, Vortriebs- und Bremskräfte sowie rotierende Massen des betrachteten Fahrzeuges selbst sind nicht einzusetzen. Es wird vorausgesetzt, dass die Vortriebskräfte in der angegebenen Fahrtrichtung, die Bremskräfte dagegen wirken. Entsprechend sind die Vorzeichen in den Gleichungen (16) und (17) gewählt.

3.4.4 Horizontalkomponenten der Kupplungskräfte infolge horizontaler Auslenkung der Kupplungen

Befindet sich das betrachtete Fahrzeug in einem Gleisbogen, so greifen die Kupplungskräfte bergseitig unter dem Winkel γ_b und talseitig unter dem Winkel y, an (vgl. Bilder 1 und 2).

Die Komponenten in Fahrzeuglängsrichtung werden gleich der Kupplungskraft gesetzt. Die Komponenten in Fahrzeugquerrichtung sind

an der talseitigen Kupplung (18) $P_{tq} = P_t \sin \gamma_t$

an der bergseitigen Kupplung $(19) \quad P_{bq} = P_b \sin \gamma_b$

Werte für P_b und P_t aus Gleichungen (16a) bis (17f).

Diese Gleichungen gelten auch, wenn die Kupplungen an den Drehgestellen angelenkt sind.

Anmerkung: Gemäss den Definitionen in Abschnitt 2.6.5 sind sin γ_b bzw. sin γ_t negativ, wenn die entsprechende Kupplung zur Bogeninnenseite ausgelenkt ist (vgl. Bilder 1 und 2).

3.4.5 Vertikalkomponenten der Kupplungskräfte infolge vertikaler Auslenkung der Kupplungen

Befindet sich das betrachtete Fahrzeug im Gefällebruch oder sind infolge unterschiedlicher Beladung oder anderer Zustände der gekuppelten Fahrzeuge Höhendifferenzen zwischen den Anlenkpunkten der Kupplungen vorhanden, so greifen die Kupplungskräfte bergseitig unter dem Winkel ε_h und talseitig unter dem Winkel ε_t an (vgl. Bilder 1 und 2).

Die Komponenten in Fahrzeuglängsrichtung werden gleich der Kupplungskraft gesetzt. Die Komponenten in Vertikalrichtung sind

an der talseitigen Kupplung

an der bergseitigen Kupplung

(20) $P_{tv} = P_t \sin \varepsilon_b$

(21) $P_{bv} = P_b \sin \varepsilon_b$

Werte für P_b und P_t aus Gleichungen (16a) bis (17f).

Diese Gleichungen gelten auch, wenn die Kupplungen an den Drehgestellen angelenkt sind.

3.4.6 Sonderfall

Besitzt das betrachtete Fahrzeug starr angebaute Hülsenpuffer und werden diese durch Kupplungskräfte (Druckkräfte) belastet, so können Querkräfte und vertikale Kräfte nur bis zur Grösse von P_b µ_p bzw. P_t μ_p übertragen werden. Es besteht die Beziehung

für die talseitige Kupplung

für die bergseitige Kupplung (23) $P_{bq}^2 + P_{bv}^2 \le (P_b \mu_p)^2$

(22) $P_{tq}^2 + P_{tv}^2 \le (P_t \mu_p)^2$

Gegebenenfalls sind noch Einflüsse von sphärischen Berührungsflächen zwischen den Puffertellern zu berücksichtigen. Sind die Bedingungen nach (22) und (23) nicht erfüllt, so ist die übertragbare Kraft P_b μ_b bzw. $P_t \mu_p$ entsprechend den vorliegenden Verhältnissen in die Komponenten P_{bq} und P_{bv} bzw. P_{tq} und P_{tv} aufzuteilen.

3.5 Windkraft

Gelegentlich verlaufen Streckenabschnitte durch Zonen, in denen starker Seitenwind einen Einfluss auf das betrachtete Fahrzeug haben kann. Die auf den Kasten des Fahrzeuges wirkende seitliche Windkraft ist

(24a)
$$W_K = F_s \varrho v_w^2/2$$
.

Ist ein bestimmter Staudruck q (in N/m²) für die Berechnung vorgeschrieben, so wird

(24b)
$$W_K = F_s q$$
.

Die Windkraft wird senkrecht auf die Seitenwandfläche des Fahrzeuges wirkend angenommen; sie wird positiv eingesetzt, wenn sie von bogeninnen nach bogenaussen, und negativ, wenn sie von bogenaussen nach bogeninnen wirkt. Die Windkraft auf die Drehgestelle und die Windkraft in Fahrzeuglängsrichtung werden nicht berücksichtigt.

4 Horizontale Belastungen der Radsätze

4.1 Horizontale Belastung der Drehgestellauflagen in Fahrzeuglängsrichtung

Unter Drehgestellauflage werden alle Teile verstanden, über die Kräfte und Belastungen vom Fahrzeugkasten auf das Drehgestell übergehen. Die konstruktive Ausbildung der Drehgestellauflage ist für die Berechnung der Entgleisungssicherheit unerheblich.

4.1.1 Horizontale Belastung durch Hangabtrieb und Rollwiderstand des Drehgestells

Bei Fahrt bergwärts

(25a)
$$D_{b1} = -G_D g (\sin \alpha + w)$$
 (26a) $D_{t1} = +G_D g (\sin \alpha + w)$

bei Fahrt talwärts

(25b)
$$D_{b1} = -G_D g (\sin \alpha - w)$$
 (26b) $D_{t1} = +G_D g (\sin \alpha - w)$

4.1.2 Horizontale Belastung durch Trägheitskräfte infolge Beschleunigung oder Verzögerung der Drehgestelle

(27)
$$D_{b2} = G_D b$$

(28) $D_{t2} = G_D b$

Beschleunigungen und Vorzeichen

Fahrtrichtung	b nach Gl.	D_{b2}	D_{t2}
bergwärts beschleunigt	b_{Ab} (1a)	-	+
bergwärts verzögert	$b_{Bb} \ (1 d)$	+	_
talwärts beschleunigt	b_{At} (1b)	+	-
talwärts verzögert	b_{Bt} (1c)	_	+

4.1.3 Horizontale Belastung aus Vortriebs- und Bremskräften

Diese Gleichungen gelten nur, wenn die Kupplungen am Fahrzeugkasten angelenkt sind.

Fahrzeug angetrieben

(29a)
$$D_{b3} = V_b - m_r b/2$$

(30a)
$$D_{t3} = V_t - m_r b/2$$

Fahrzeug gebremst

(29b)
$$D_{b3} = B_b - m_r b/2$$

(30b)
$$D_{t3} = B_t - m_r b/2$$

Beschleunigungen und Vorzeichen

Fahrt	b nach Gl.	D_{b3}	D_{t3}	
bergwärts angetrieben	$b_{Ab} (1a)$	+		
bergwärts gebremst	$b_{Bb} \ (1 d)$	_	+	
talwärts angetrieben	b_{At} (1b)	-	+	
talwärts gebremst	b_{Bt} (1c)	+	-	

Bei Zahnradfahrzeugen tritt m_r' an Stelle von m_r .

Wird das betrachtete Fahrzeug nicht selbst angetrieben oder gebremst, so sind D_{b3} und D_{t3} gleich Null zu setzen.

4.1.4 Horizontale Belastung aus Vortriebs- und Bremskräften

Diese Gleichungen gelten nur, wenn die Kupplungen am Drehgestell angelenkt sind.

Fahrzeug angetrieben

(31a)
$$D_{b4} = V_b - P_b - m_r b/2$$

(32a)
$$D_{t4} = V_t - P_t - m_r b/2$$

Fahrzeug gebremst

(31b)
$$D_{b4} = B_b - P_b - m_r b/2$$

(32b)
$$D_{t4} = B_t - P_t - m_r b/2$$

Für Beschleunigungen und Vorzeichen gilt die Tabelle in Abschnitt 4.1.3; ebenso sind die dort gegebenen Anmerkungen auch hier zutreffend.

4.1.5 Gesamte horizontale Belastung der Drehgestellauflagen in Fahrzeuglängsrichtung

(33.1)
$$D_b = D_{b1} + \dots + D_{b4}$$
 (33.2) $D_t = D_{t1} + \dots + D_{t4}$

Für die Berechnungen in den Abschnitten 4.1.1 und 4.1.2 ist vorausgesetzt, dass die Drehgestelle untereinander gleich sind. Ist dies nicht der Fall, so müssen in den Gleichungen (25) bis (28) für G_D die entsprechenden Werte eingesetzt werden.

4.2 Horizontale Belastungen der Drehgestellauflagen in Fahrzeugquerrichtung

4.2.1 Horizontale Belastung durch die horizontale Belastung der Drehgestellauflagen in Fahrzeuglängsrichtung

Durch die Ausdrehung der Drehgestelle um die Winkel φ_b und φ_t gegenüber der Fahrzeuglängsachse ergibt sich eine Komponente quer zur Fahrzeuglängsachse. Vereinfachend wird angenommen, dass die entsprechende Komponente quer zur Drehgestell-Längsachse gleich ist.

Die Komponenten in Fahrzeug- und Drehgestell-Längsachse werden gleich den Werten D_b und D_t angenommen (s. Abschnitt 4.1.5).

(34)
$$D_{b11} = D_b \sin \varphi_b$$

$$(35) \quad D_{t11} = D_t \sin \varphi_t$$

Werte für D_b und D_t aus Gleichungen (33.1) und (33.2).

Vorzeichen

Fahrt	D_{b11}	D_{t11}	
bergwärts angetrieben	1 -0	+	
bergwärts gebremst	+	_	
talwärts angetrieben	+	- 11	
talwärts gebremst		+	

4.2.2 Horizontale Belastung durch Kupplungskräfte

Diese Gleichungen gelten nur, wenn die Kupplungen am Fahrzeugkasten angelenkt sind.

talseitige Kupplungskraft

(36)
$$D_{b12} = -P_{tq} a_{pt} / e_z$$

(37)
$$D_{t12} = + P_{tq} (a_{pt} + e_z) / e_z$$

bergseitige Kupplungskraft

(38)
$$D_{b13} = + P_{bq} (a_{pb} + e_z)/e_z$$
 (39) $D_{t13} = - P_{bq} a_{pb} / e_z$

Werte für P_{tq} und P_{bq} aus Gleichungen (18) und (19).

4.2.3 Horizontale Belastung durch Kupplungskräfte

Diese Gleichungen gelten nur, wenn die Kupplungen an den Drehgestellen angelenkt sind.

(40)
$$D_{b14} = -P_b \sin \varphi_b$$

$$(41) \quad D_{t14} = -P_t \sin \varphi_t$$

Werte für P_b und P_t aus Gleichungen (16a) bis (17f).

4.2.4 Horizontale Belastung durch Windkraft

(42)
$$D_{b15} = W_K w_t/e_z$$

(43)
$$D_{t15} = W_K w_b/e_z$$

Wert für W_K aus Gleichung (24a) bzw. (24b).

4.2.5 Horizontale Belastung durch Fliehkraft des Fahrzeugkastens

(44)
$$D_{b16} = F_K a_t / e_z$$

(45)
$$D_{t16} = F_K a_b / e_z$$

Wert für F_K aus Gleichung (14).

4.2.6 Horizontale Belastung durch seitlichen Hangabtrieb des Fahrzeugkastens infolge Gleisüberhöhung

$$(46) \quad D_{b\,17} = -\,H_{K\,2}\,\,a_t\,/\,\,e_z$$

(47)
$$D_{t17} = -H_{K2} a_b / e_z$$

Wert für H_{K2} aus Gleichung (8).

Diese Gleichungen gelten nur bei gleichmässiger Gewichtsverteilung im Fahrzeugkasten bezüglich seiner Längsachse. Ist dies nicht der Fall, so müssen D_{b17} und D_{t17} getrennt berechnet werden.

4.2.7 Gesamte horizontale Belastung der Drehgestellauflagen in Fahrzeugquerrichtung

(48.1)
$$D_{bq} = D_{b11} + \dots + D_{b17}$$
 (48.2) $D_{tq} = D_{t11} + \dots + D_{t17}$

4.3 Horizontale Belastung der einzelnen Radsätze

Dieser Abschnitt behandelt die horizontalen Belastungen durch die äusseren Querkräfte.

In den nachfolgenden Berechnungen wird vorausgesetzt, dass die Drehgestelle des betrachteten Fahrzeuges (bis auf die Anlenkung der Kupplungen) untereinander gleich sind. Ist dies nicht der Fall, so müssen die entsprechenden Werte für jedes Drehgestell eingesetzt werden.

4.3.1 Horizontale Belastung durch die quer zur Fahrzeuglängsachse an der Drehgestellauflage wirkenden Kräfte

Hier werden die quer zur Drehgestell-Längsachse wirkenden Kräfte gleich den quer zur Fahrzeuglängsachse wirkenden angenommen.

$$(49.1) \quad H_{1.1} = D_{tq} \ e_{b2} / \ 2 \ a$$

(49.2)
$$H_{2.1} = D_{tq} e_{t2} / 2 a$$

$$(49.3)$$
 $H_{2.1} = D_{ba} e_{b2} / 2 a$

(49.3)
$$H_{3.1} = D_{bq} e_{b2} / 2 a$$
 (49.4) $H_{4.1} = D_{bq} e_{t2} / 2 a$

Werte für D_{tq} und D_{bq} aus Gleichungen (48.1) und (48.2).

4.3.2 Horizontale Belastung durch die Fliehkraft der Drehgestelle

(50.1)
$$H_{1.2} = H_{3.2} = F_D e_b / 2 a$$
 (50.2) $H_{2.2} = H_{4.2} = F_D e_t / 2 a$ Wert für F_D aus Gleichung (15).

4.3.3 Horizontale Belastung durch seitlichen Hangabtrieb der Drehgestelle infolge Gleisüberhöhung

(51.1)
$$H_{1.3} = H_{3.3} = -H_{D2} e_b/2 a$$
 (51.2) $H_{2.3} = H_{4.3} = -H_{D2} e_t/2 a$ Wert für H_{D2} aus Gleichung (9).

4.3.4 Horizontale Belastung durch die Kupplungskräfte

Diese Gleichungen gelten nur, wenn die Kupplungen an den Drehgestellen angelenkt sind.

(52.1)
$$H_{1.4} = + P_{tq} (e_{kt} + 2 a) / 2 a$$

(52.2)
$$H_{2.4} = -P_{ta} e_{kt} / 2 a$$

(52.3)
$$H_{3.4} = -P_{bq} e_{kb} / 2 a$$

(52.4)
$$H_{4.4} = + P_{bq} (e_{kb} + 2 a) / 2 a$$

Werte für P_{tq} und P_{bq} aus Gleichungen (18) und (19).

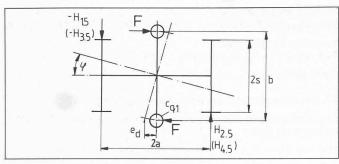


Bild 3. Zum Ausdrehwiderstand (Grundriss)

4.4 Horizontale Belastung durch Ausdrehwiderstand

Anmerkung: Bewirken reibende Teile den Ausdrehwiderstand, so können die horizontalen Belastungen erst nach Ermittlung der Kräfte an den Drehgestellauflagen nach Gleichungen (83.1) bis (83.4) bestimmt werden; bei einer praktischen Berechnung sind erst die Gleichungen (63) bis (83.4) zu behandeln.

Je nach konstruktiver Ausbildung der Verbindung zwischen Drehgestellen und Fahrzeugkasten kann ein elastischer Ausdrehwiderstand (z.B. mit Flexicoilfedern) oder ein Reibungswiderstand (z.B. bei seitlichen gleitenden Abstützungen) auftreten. Ist eine zentrale Kugeldrehpfanne (z.B. bei Güterwagen) vorhanden, so liegt der Fahrzeugkasten bei Einwirkung von seitlichen Kräften auf einer Hilfsstütze auf, was ebenfalls einen Reibungswiderstand ergibt.

Besitzt das Fahrzeug eine Drehhemmung oder eine Schlingerdämpfung, so ist je nach deren Auslegung ein elastischer oder ein reibender Ausdrehwiderstand vorhanden, der entsprechend berücksichtigt werden muss.

4.4.1 Elastischer Ausdrehwiderstand

Die Flexicoilwirkung von Wiegenfedern setzt dem Ausdrehen des Drehgestells unter dem Fahrzeugkasten einen Widerstand entgegen, der sich mit einem von dem Ausdrehwinkel abhängigen Moment äussert (Bild 3).

Der Ausdrehwinkel des Drehgestells ist bei der Fahrt durch einen Gleisbogen mit dem Radius ${\cal R}$

(53)
$$\sin \varphi = e_z / 2 R$$

Die Wiegenfedern werden damit ausgelenkt um

$$(54) \quad e_d = \frac{b}{2}\sin\varphi$$

und entwickeln dabei eine Rückstellkraft von

$$(55) \quad F = e_d \cdot c_{q\,1}$$

je Drehgestellseite. Das daraus entstehende Moment

$$(56) \quad M_a = 2 \cdot F \cdot \frac{b}{2} = F \cdot b$$

wird durch ein horizontales Kräftepaar an den Radsätzen aufgenommen; die Kräfte sind je Radsatz

(57.1)
$$H_{1.5} = + F b / 2 a = + M_a / 2 a$$

(57.2)
$$H_{2.5} = -Fb/2a = -M_a/2a$$

(57.3)
$$H_{3.5} = -Fb/2a = -M_a/2a$$

(57.4)
$$H_{4.5} = + F b / 2 a = + M_a / 2 a$$

Der elastische Ausdrehwiderstand von zentralen Drehpfannen mit Gummiblockbüchse kann in der Regel vernachlässigt werden. In besonderen Fällen kann das Moment M_a getrennt berechnet und in die Gleichungen (57.1) bis (57.4) eingesetzt werden.

4.4.2 Reibender Ausdrehwiderstand

Liegt der Fahrzeugkasten über seitliche gleitende Abstützungen auf den Drehgestellen auf, so entsteht beim Ausdrehen ein Reibungsmoment M_r am Drehgestell. Bei Fahrt im Gleisbogen wirkt kein Rückstellmoment, bei Ausfahrt aus dem Gleisbogen tritt ein Reibungsmoment auf, das der Rückdrehung des Drehgestells entgegenwirkt. Bei der Einfahrt in den Gleisbogen wirkt das Reibungsmoment M_r dem Ausdrehen entgegen.

Dieses Moment ergibt horizontale Belastungen auf die Radsätze von

(58.1a)
$$H_{1.6} = (D_1 + D_2) \mu_a b_a / 4 a = M_r / 2 a$$

(58.2a)
$$H_{2.6} = (D_1 + D_2) \mu_a b_a / 4 a = M_r / 2 a$$

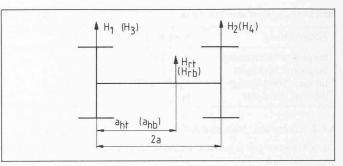


Bild 4. Zur äquivalenten Querkraft (Grundriss)

(58.3a)
$$H_{3.6} = (D_3 + D_4) \mu_a b_a / 4 a = M_r / 2 a$$

(58.4a)
$$H_{4.6} = (D_3 + D_4) \mu_a b_a / 4a = M_r / 2a$$

Vorzeichen

Fahrt	$H_{1,6}$	$H_{2.6}$	$H_{3.6}$	$H_{4.6}$
bergwärts Bogeneinlauf	_	+		+
bergwärts Bogenauslauf	+		+	
talwärts Bogeneinlauf	+	. –	+	10 To
talwärts Bogenauslauf	-	+	-	+

Werte für D_1 bis D_4 aus Gleichungen (83.1) bis (83.4).

Sind an den Drehgestellen die Reibungsmomente M_r verschieden, so sind sie mit M_{rb} und M_{rt} zu bezeichnen und in die Gleichungen (58.1a) bis (58.4a) einzusetzen.

4.4.3 Ausdrehwiderstand von Hilfsabstützungen

In Drehgestellen mit zentraler Drehpfanne dienen feste oder mit Federn vorgespannte Hilfsabstützungen zur Stabilisierung des Fahrzeugkastens auf den Drehgestellen. Die Hilfsabstützungen übernehmen je nach konstruktiver Ausbildung und Fahrzustand einen Anteil G_H der vertikalen Kräfte. Das entstehende Ausdrehmoment ist

(59)
$$M_r = G_H \mu_a b_a / 2$$

und bewirkt an den Radsätzen die horizontalen Querkräfte

(58.1b)
$$H_{1.6} = G_H \mu_a b_a / 4 a = M_r / 2 a$$

(58.2b)
$$H_{2.6} = G_H \mu_a b_a / 4 a = M_r / 2 a$$

(58.3b)
$$H_{3.6} = G_H \mu_a b_a / 4 a = M_r / 2 a$$

(58.4b)
$$H_{4.6} = G_H \mu_a b_a / 4 a = M_r / 2 a$$

Für die Vorzeichen gilt die Tabelle nach den Gleichungen (58.1a) bis (58.4a).

In den Gleichungen (58.1b) bis (58.4b) und (59) ist G_H die Summe der Belastungen auf beiden Hilfsabstützungen des Drehgestells. Die Anmerkung nach den Gleichungen (58.1a) bis (58.4a) gilt auch für die Gleichungen (58.1b) bis (58.4b).

4.5 Gesamte horizontale Belastung an den Radsätzen

(60.1)
$$H_1 = H_{1,1} + \ldots + H_{1,6}$$

(60.2)
$$H_2 = H_{2.1} + \dots + H_{2.6}$$

(60.3)
$$H_3 = H_{3.1} + \ldots + H_{3.6}$$

(60.4)
$$H_4 = H_{4.1} + \ldots + H_{4.6}$$

4.6 Äquivalente Querkraft

Aus den horizontalen Belastungen der Radsätze lässt sich eine resultierende äquivalente Querkraft H_{rt} bzw. H_{rb} bilden, die am Drehgestell im Abstand a_{ht} bzw. a_{hb} angreift (Bild 4).

talseitiges Drehgestell

$$(61.1) H_{rt} = H_1 + H_2$$

(62.1)
$$a_{ht} = 2 a H_2 / H_{rt}$$

bergseitiges Drehgestell

(61.2)
$$H_{rb} = H_3 + H_4$$

(62.2)
$$a_{hb} = 2 a H_4 / H_{rb}$$

Werte für H_1 bis H_4 aus Gleichungen (60.1) bis (60.4).

Negative Werte von H_{rt} und H_{rb} bedeuten nach Definitionen in Abschnitt 2.6.5, dass die Kräfte von bogenaussen nach bogeninnen wirken.

Fortsetzung folgt.