Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 102 (1984)

Heft: 8

Artikel: Schallschutz bei Dächern

Autor: Braune, Bernard

DOI: https://doi.org/10.5169/seals-75413

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schallschutz bei Dächern

Von Bernard Braune, Binz

Aufgezeigt werden die physikalischen Anforderungen und die konstruktiven Massnahmen bei Steil- und Flachdächern. Der Autor unterscheidet dabei zwischen Luftschall- und Trittschallisolation. Er weist abschliessend auf die Konfliktpunkte zwischen Schall- und Wärmedämmung hin.

Einleitung

Vor 30 bis 40 Jahren waren Terrassenhäuser und Attikawohnungen im Stockwerkeigentum kaum bekannt. Auch die Benützung des Dachraums unter einem Steildach bei Doppel- oder Reiheneinfamilienhäusern als Wohnraum war überhaupt nicht üblich; er diente hauptsächlich als nicht Estrich oder Wäschetrocknungsraum. Seit einigen Jahren erfreut sich diese Architektur einer immer grösseren Beliebtheit, sind doch an Hängen mit schöner Aussicht auf See und Berge zahlreiche Terrassenhäuser und Attikawohnungen erbaut worden und an geeigneten Lagen viele Doppel- und Reiheneinfamilienhaussiedlungen entstan-

Mit diesen neuen Bauweisen haben die Fragen des Schallschutzes allgemein insbesondere aber diejenigen im Zusammenhang mit den Dachkonstruktionen - sowohl bei Steildächern wie bei Flachdächern immer mehr an Bedeutung gewonnen. Bei Flachdächern treten in erster Linie Trittschall- und Körperschallisolationsprobleme und bei Steildächern sind es hauptsächlich Luftschallisolationsprobleme. Als Ursache für Störungen kommen dabei sowohl Innenlärm- wie Aussenlärmquellen in Frage.

Begriffe und Anforderungen

Wichtigste Begriffe

Luftschall: in Luft sich ausbreitender Schall.

Körperschall: in festen Stoffen sich ausbreitender Schall.

Trittschall: Schall, der beim Begehen und ähnlicher Anregung einer Decke als Körperschall entsteht und teilweise als Luftschall abgestrahlt wird.

Luftschallisolation oder -dämmung: Herabsetzung des Luftschalldurchgangs durch ein Bauelement wie Wand, Decke, Türe, Fenster usw. Dabei werden die auf das entsprechende Bauelement auftreffenden Luftschallwellen durch Reflexion gedämmt.

Luftschalldämmass R: kennzeichnet die Luftschalldämmung eines Bauele-

$$R = L_1 - L_2 + 10 \log \frac{S}{A_2} [dB]$$

Luftschallisolationsindex I_a [in dB]: Mass für die Güte der Luftschallisolation eines Bauelementes in Form einer einzigen Zahl, die aus dem Verlauf des frequenzabhängigen Luftschalldämmmasses R mit Hilfe einer Normkurve ermittelt wird. Je grösser der Zahlenwert I_a ist, desto besser ist die Luftschallisolation des betrachteten Bauelemen-

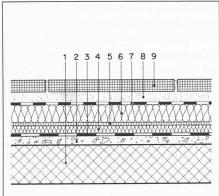
Körperschallisolation oder -dämmung: Herabsetzung der Übertragung von Schwingungen und Körperschall in festen Körpern wie Decken, Wänden, Leitungen von haustechnischen Installationen usw. durch den Einbau von elastischen Zwischenschichten, elastischen Befestigungen und Lagerungen. Dabei werden die Körperschallwellen beim Auftreffen auf das entsprechende federnde Element durch Reflexion gedämmt.

Trittschallisolation: Herabsetzung der Körperschallübertragung durch eine Decke, entweder durch einen auf einer elastischen Trennschicht schwimmenden Unterlagsboden oder durch einen weichfedernden Bodenbelag.

Normtrittschallpegel L_n: kennzeichnet die Trittschallisolation einer Deckenkonstruktion

$$L_n = \overline{L}_T - 10 \log \frac{A_0}{A_2} [dB]$$

Trittschallisolationsindex I_i [in dB]: Mass für die Güte der Trittschallisolation einer Deckenkonstruktion in Form einer einzigen Zahl, die aus dem frequenzabhängigen Verlauf des Normtrittschallpegels L_n mit Hilfe einer Normkurve ermittelt wird. Je kleiner der Zahlenwert I_i ist, desto besser ist die Trittschallisolation der betrachteten Deckenkonstruktion.


Anforderungen gemäss Norm SIA 181

Die in der Norm SIA 181 «Schallschutz im Wohnungsbau» festgelegten Grenzwerte sind in der Tabelle 1 zusammengestellt. Was den Geltungsbereich dieser Grenzwerte anbelangt, so steht in der erwähnten Norm folgendes:

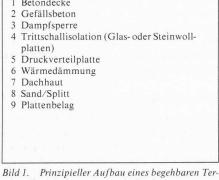
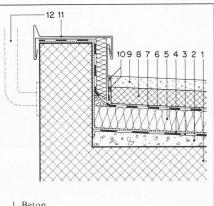
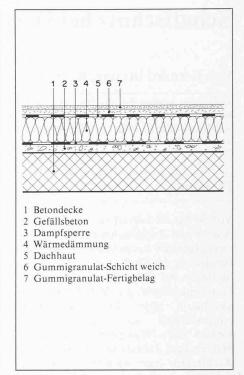

- Alle Wohnbauten haben die Mindestanforderungen zu erfüllen. Bei grundriss- und aufrissversetzten Geschossen (z. B. Terrassenhäusern sowie bei Reihenhäusern und Eigentumswohnungen) sind die erhöhten Anforderungen zu empfehlen.
- Die in der Tabelle 1 angegebenen erhöhten Anforderungen können als verbindlich erklärt werden durch öffentlich-rechtliche Vorschriften oder privatrechtliche Absprachen zwischen der Bauherrschaft und den Projektverfassern bzw. dem Ausführenden.

Tabelle 1. Grenzwerte für die Luftschall- und Trittschallisolation


Nr.	Objekt	Luftschall- isolationsindex I _a [dB]		Trittschall- isolationsindex I _i [dB]	
		Mindest- anforde- rungen	Erhöhte Anforde- rungen	Mindest- anforde- rungen	Erhöhte Anforde rungen
1.1	Wohnungstrennwände, an Wohn- und Schlafräume angrenzende Treppenhaus- wände	50	55		
	Wohnungstrenndecken in mehrgeschossigen Gebäuden	50	55	65	55
1.2	Übrige Treppenhauswände	45	50		-
2.1	Laubengänge	-		65	55
2.2	Begehbare Terrassen über Wohnungen	-		55	(55)
3.0	Trennwände und Decken zwischen Woh- nungen und Gewerbebetrieben, Restau- rants, Werkstätten usw.	60	65	50	45
4.0	Wohnungsabschlusstüren			1000	4 40 14
4.1	gegen Treppenhäuser	20	25	100	-
4.2	gegen aussen	25	25	-	
5.0	Fenster und Balkontüren	25	35	-	
6.0	Aussenwände ohne Fenster und Türen (Laborwerte)	35	45	ije, s	Listagis

Betondecke


rassenflachdaches mit Trittschallisolation

- 1 Beton
- 2 Gefällsbeton
- 3 Dampfsperre
- 4 Trittschallfilz 800 g/m² oder Trittschallbodenplatte 10 mm, hochgezogen
- 5 Wärmedämmung
- 6 Dachhaut
- Trennschicht
- 8 Schutzmörtel
- Fertigbelag 10 Kittfuge
- 11 Blechabdeckung
- 12 Geländerbefestigung

turnhalle mit Trittschallisolation

Bild 2. Befahrbares Flachdach auf Mehrzweck-

Begehbarer Flachdachaufbau mit Trittschallisolationsschicht über der Wasserisolation

Schallschutz bei Flachdächern

Luftschallisolation

Normalerweise stellen die Luftschallübertragungen bei Flachdächern in massiver Bauweise kein Problem dar.

Bei Terrassenhäusern oder Attikawohnungen mit Terrassen im Freien besitzt die rohe Betonplatte, worauf der begehbare Flachdachaufbau aufgebracht wird, eine minimale Dicke von 15 cm, so dass ein Luftschallisolationsindex I_a von mindestens 52 dB erreicht wird. Sobald die rohe Betonplatte eine Dicke von 20 und mehr Zentimetern aufweist, wird die erhöhte Anforderung von I_a ≥ 55 dB erfüllt. Die Luftschallisolation des Terrassenbodens, die von vornherein im Normalfall ausreichend sein wird, verlangt also keine besondere Aufmerksamkeit. Auch in bezug auf Flugzeuglärm und Strassenverkehrslärm an lärmexponierten Lagen ist die Luftschallisolation von massiven Flachdächern vollständig ausreichend, sind doch die Fenster immer der schwächere Bauteil.

Flachdächer leichterer Konstruktion, welche möglicherweise eine zu schwache Luftschallisolation an lärmexponierten Orten aufweisen würden, kommen im Hochbau, ausser bei Industriebauten, praktisch nicht vor. Im letzteren Fall spielt die Luftschallisolation des Flachdaches normalerweise auch keine Rolle.

Spezialfälle, bei denen die Luftschallisolation des Flachdaches neben der Körperschallisolation, die weiter unten behandelt wird, auch von Bedeutung sein kann, stellen haustechnische Anlagen (Ventilationsanlagen, Luftwärmetauscher, Wärmepumpen usw.) dar, welche auf dem Flachdach mit oder ohne Lärmschutzkabine plaziert werden.

Wenn sich empfindliche Räume wie Wohn- und Schlafräume, Konferenzsäle usw. direkt darunter befinden, dann muss die Betondecke unter Berücksichtigung des erzeugten Geräuschspektrums genügend gut dimensioniert werden, damit die Luftschallübertragung nach unten auf das jeweils verlangte Mass herabgesetzt wird. Dabei ist auf Tieftonkomponenten im entstehenden Geräusch besonders zu achten.

Betondecken von 30 cm Dicke und mehr mit einem Luftschallisolationsindex $I_a \ge 58$ bis 60 dB können in solchen Fällen notwendig sein. Es ist auch möglich, dass nicht die ganze Decke verstärkt werden muss, sondern nur örtliche Massnahmen notwendig sind, wie z. B. ein Betonüberzug von 8 bis 10 cm über der Dachhaut oder eine Schallschutzkabine mit Spezialboden im Bereich der haustechnischen Anlagen.

Trittschallisolation

Bei Terrassenhäusern und -wohnungen ist die Trittschallisolation des Terrassenbodens von besonderer Wichtigkeit. In solchen Fällen sollte die erhöhte Anforderung an den Trittschallschutz mit einem Trittschallisolationsindex $I_i \leq 55$ dB jedenfalls erfüllt werden.

Nicht nur im Wohnungsbau, sondern auch bei Mehrzweckhallen (z. B. Turnhallen) mit begehbaren oder sogar befahrbaren Flachdächern, welche als Theater- oder Konzertsäle benützt werden, muss der Trittschallisolation die notwendige Beachtung geschenkt werden. Zur Lösung der Trittschallisolationsprobleme bei Flachdächern kommen im wesentlichen drei Möglichkeiten in Frage:

Trittschallisolationsschicht zwischen Dampfsperre und Wärmedämmung

Als Trittschallisolationsschicht unter der Wärmedämmung werden Glas- oder Steinwolleplatten, gewalkte Polystyrolplatten, Korkgranulatplatten, Trittschall-Polyäthylenschaumstoffdämmfilz, folien usw. verlegt. Eine Sandschicht allein genügt keineswegs als Trittschallisolation!

Bild 1 zeigt den prinzipiellen Aufbau eines begehbaren Terrassenflachdaches mit eingebauter Trittschallisolation von 10 bis 20 mm unter der Wärmedämmung. Die Güte der Trittschallisolation hängt von der Art und der Dicke der Trittschalldämmschicht ab. Mit einer richtig dimensionierten Trittschalldämmschicht kann die erhöhte Anforderung von $I_i \leq 55$ dB durchaus erfüllt werden.

Auf Bild 2 ist ein Beispiel eines begehbaren und befahrbaren Flachdaches, wie es über einer Mehrzweckturnhalle ausgeführt wurde, zu sehen. In diesem Fall darf wegen der erhöhten Belastbarkeit des Flachdaches nur eine dünne

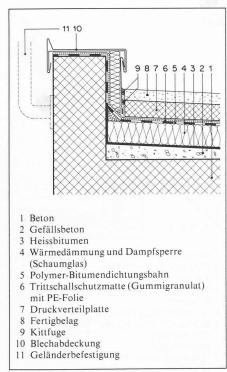


Bild 4. Befahrbares Kompaktdach mit Trittschallschutzmatte über der Wasserisolation

Betondecke Gefällsbeton Dampfsperre 4 Wärmedämmung Dachhaut 6 Schutz-/Trennschicht Kautschuk-Terrassenlager 8 Plattenbelag Bild 5. Begehbares Flachdach mit Dachplatten

Bild 4 stellt ein Beispiel eines befahrba-Trittschalldämmschicht von 3 bis maximal 10 mm mit kleiner Einfederung eingebaut werden, da sonst zu grosse und schädliche Verformungen der In beiden Fällen ist es wichtig, dass bei den Anschlüssen am Dachrand und bei

Dachplatten auf Terrassenlagern

Dachplatten können auch auf Terrassenlagern aus Gummi (keine Kunststofflager!) verlegt werden, die auf der Schutzschicht über der Dachhaut plaziert werden. Je nach Gummiqualität und Form des Terrassenlagers kann die erhöhte Anforderung von $I_i \le 55 \text{ dB}$ erfüllt werden. Bild 5 zeigt den prinzipiellen Aufbau dieser Lösung.

Schwingungs- und Körperschallisolation

Werden haustechnische Anlagen auf dem Flachdach aufgestellt, dann ist neben der erwähnten Luftschallisolation die Schwingungs- und Körperschallisolation dieser Anlagen, je nach Art der sich darunter befindlichen Räume, mit mehr oder weniger grossem Aufwand auszuführen. Das Prinzip von schwingungs- und körperschallisolierten haustechnischen Anlagen auf dem Flachdach ist auf dem Bild 6 dargestellt.

Körperschallübertragungs- und Abstrahlungsprobleme können je nach Fall bei Dachwasserablaufrohren auf-

10 Betondecke Gefällsbeton Dampfsperre Wärmedämmung 5 Dachhaut Trennschicht Druckverteilplatte Federelemente (Gummi, Stahl usw.) 10 Maschine (Ventilator, Wärmepumpe usw.)

Bild 6. Prinzip der Ausführung einer Schwingungsisolation von technischen Anlagen auf einem Flachdach

treten, speziell, wenn diese scharfe Bö-

gen aufweisen. Je nach Situation und

gestellten Anforderungen kann eine ge-

eignete Verschalung solcher Ablaufroh-

Schallschutz bei Steildächern

Trittschalldämmschicht über der Dachhaut

entsprechenden Randanschluss.

Dachaufbauten die Trittschallisolation

durch Einlegen von Stellstreifen auch

gewährleistet wird. Bild 2 zeigt einen

Dachhaut auftreten würden.

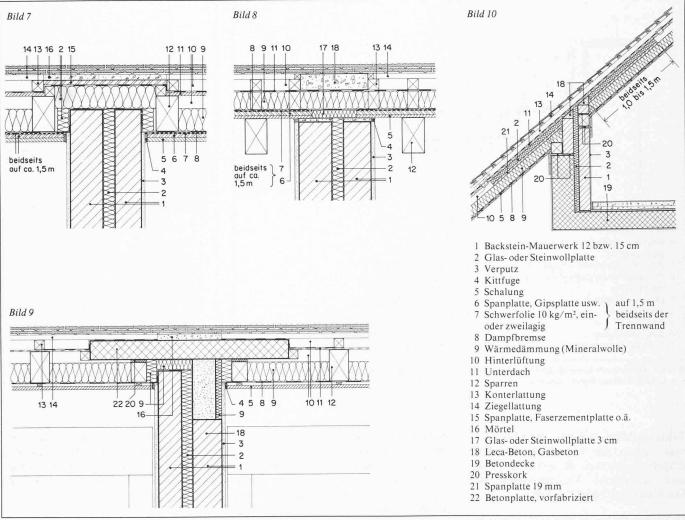
Beim Einbau einer Trittschalldämmschicht über der Dachhaut soll die Dachhaut nicht aus Bitumendichtungsbahnen (die unter Gehbelägen zu weich werden), sondern aus Kunststoffdichtungsbahnen oder kunststoffmodifizierten Bitumendichtungsbahnen ausgeführt werden. Die Trittschalldämmschichten auf der Dachhaut müssen witterungsbeständig sein. Dabei handelt es sich um Gummigranulate feiner Körnung, die mit weiteren Granulaten oder mit Sand und Splitt zusammen gebunden werden. Die Elastizität der Dämmschicht hängt von der Gummiqualität und von den Mischungsverhältnissen ab.

Bild 3 zeigt ein Ausführungsbeispiel eines begehbaren Flachdachaufbaus mit der Trittschallisolation über der Dachhaut. Zur Erfüllung der erhöhten Anforderungen sind Schichtdicken von 25 bis 30 mm notwendig.

ren Kompaktdaches mit Schaumglas als Wärmedämmung und lose verlegter Trittschallschutzmatte zwischen Dachhaut und Druckverteilplatte dar. Die Randanschlüsse sind in diesem Fall auch mit Stellstreifen aus einer weichen Polystyrolplatte auszuführen und entsprechend mit einem elasto-plastischen Kitt abzudichten.

re notwendig sein.

Reiheneinfamilienhäusern, Luftschallübertragungsprobleme


Die Zwischenwände werden heutzutage meistens in zweischaliger Bauweise ausgeführt und besitzen bei richtiger Dimensionierung und korrekter Ausführung einen Luftschallisolationsindex I. ≥ 55 dB, d. h. sie genügen den erhöhten Anforderungen.

Die Schwachstellen liegen im Bereich des Daches. Zur Erhöhung der Luftschallisolation im Dachbereich kommen folgende Massnahmen in Frage:

- Trennen von Pfetten und Sparren im Bereich der gemeinsamen Trennwand, um eine Luftschallübertra-

Luftschallisolation

bei Eigentums- und Mietwohnungen, die unter einem gemeinsamen Steildach angeordnet sind und in welchen die Dachräume ausgebaut sind, müssen die Dachbereich zwischen benachbarten Wohnungen möglichst gut gelöst werden. Diese Probleme sind von besonderer Wichtigkeit im Fall von Reiheneinfamilienhäusern und Eigentumswohnungen, wo der Schallschutz den erhöhten Anforderungen zu genügen hat.

Bilder 7 bis 10. Beispiele von Steildach-Ausführungen zwischen Reihenhäusern mit erhöhter Luftschallisolation

gung auf dem Körperschallweg zu unterbinden.

- Verstärkung der raumseitigen Schalung auf beiden Seiten der Trennwand mit Spanplatten, Eterplacplatten, Duripanel usw., die mit einer oder zwei Lagen Schwerfolie beschwert und bedämpft werden. Diese Verstärkung ist beidseits der gemeinsamen Trennwand auf einer Breite von etwa 1,5 m auf der untersten Schalung anzubringen.
- Die beschriebene Verstärkung der Schalung ist nicht notwendig, wenn auf der gemeinsamen Trennwand eine Brandmauerabdeckplatte von 10 cm Beton angebracht werden muss.
- Sorgfältiges Abdichten der Anschlüsse zwischen Trennwand und Dachschalung zur Erreichung einer guten Dichtigkeit.

Ausführungsbeispiele für Neubauten sind auf den Bildern 7 bis 10 dargestellt.

Bild 11 zeigt ein Beispiel eines Verbesserungsvorschlages, ausgehend von einer unbefriedigenden Situation, welche die erhöhten Anforderungen nicht erfüllte. Zur Erreichung eines Luftschallisolationsindex I_a über 55 dB wurschallisolationsindex I_a über 55 dB wurschallisolationsindex I_a

den in diesem Fall folgende Massnahmen empfohlen:

- Vorsatzschale in 60 mm Abstand von der bestehenden einschaligen Backsteinwand von 18 cm Dicke über einem weichfedernd montierten Lattenrost mit möglichst wenig Befestigungspunkten.
- Schwerfolie einlagig zur Beschwerung und Bedämpfung der Vorsatzschale.
- Verstärkung der unteren Dachschalung wie oben beschrieben auf 1,5 m auf beiden Seiten der Trennwand.

Neben der Übertragung von Innenlärm von einer Wohneinheit zur anderen im Bereich des Daches stellt sich in lärmexponierten Zonen um Flugplätze oder an stark befahrenen Strassen auch das Problem der Übertragung von Aussenlärm durch die Dachfläche. In solchen Fällen kommt als wirksame Massnahme nur die Verstärkung der ganzen raumseitigen Dachschalung in Frage, wie sie zur Erhöhung der Luftschallisolation gegen Innenlärm empfohlen wurde. Dabei müssen auch die verglasten Dachflächen eine entsprechend gute Luftschallisolation besitzen (Einbau von speziellen Schallschutzgläsern).

Körperschall- und Trittschallisolation

Bei Steildächern treten normalerweise weder Körperschall- noch Trittschallisolationsprobleme auf. Einzig Tropfgeräusche auf Blechen oder Geräusche bei Dachwasserabläufen können eventuell bei Regenwetter störend sein. Wenn überhaupt möglich, so kann die Behebung von solchen Störgeräuschen eventuell durch Dämpfung oder Formänderung von gewissen Blechen erfolgen.

Schallschutz der Glasflächen in Flach- oder Steildächern

Luftschallisolation

Verglaste Flächen im Dach sind normalerweise Schwachstellen bezüglich der Luftschallisolation. Je nach den gestellten Anforderungen können spezielle Verglasungen mit einer erhöhten Luftschallisolationswirkung notwendig sein. Auf dem Markt sind verschiedene Fabrikate erhältlich, die einen Luftschallisolationsindex I_a bis etwa 45 dB erbringen können. Eine unsymmetrische Doppelisolierverglasung mit Gläsern von 10 und 6 mm und einem Schei-

benabstand von 15 mm besitzt z. B. einen I_a -Wert von 37 bis 38 dB.

Handelt es sich um Dachfenster zum Öffnen, so muss auf eine sehr gute Fugendichtigkeit geachtet werden, will man die von der Verglasung erbrachte Luftschalldämmung auch wirklich erreichen.

Bild 12 gibt Beispiele von Verglasungen mit den entsprechenden Luftschallisolationen an.

Körperschallisolation

Bei Verglasungen im Dach kann auch die *Luftschallabstrahlung der Scheiben* infolge Körperschallanregung der Gläser durch Regen zu erheblichen Störungen führen. Solche Probleme können in Kirchen, Mehrzwecksälen und Konferenzräumen, bei denen Oberlichter oder Lichtkuppeln in der Dachfläche eingebaut sind, auftreten.

Eine beträchtliche Herabsetzung der Abstrahlung von Regengeräuschen nach innen kann durch eine zweischalige Konstruktion der verglasten Flächen erzielt werden:

- Äussere Isolierverglasung mit $I_a \ge 30$ dB
- Luftraum von 8 bis 10 cm
- Innere Einfachverglasung von 8 bis 10 mm aus Drahtglas oder sekurisiertem Glas, die von der äusseren Verglasung durch eine elastische Trennung (Gummieinlage) körperschallmässig entkoppelt ist.

Konfliktpunkte Akustik-Wärmedämmung

Zum Abschluss sei noch ein Problemkreis erwähnt, dem nicht immer genügend Beachtung geschenkt wird. Es handelt sich um die Konfliktsituation, die entstehen kann, wenn unter einem isolierten Steil- oder Flachdach eine schallabsorbierende Verkleidung angebracht werden muss: z. B. in Mehrzweckhallen, Turnhallen, Schwimmhallen usw. Dabei wird oft vergessen, dass diese schallabsorbierende Verkleidung auch thermisch isolierend wirkt. Wenn immer möglich, sollte in solchen Fällen ein vom Innenraum her belüfteter Hohlraum zwischen schallabsorbierender Verkleidung und unterer Dachschalung vorgesehen werden. Ein Beispiel einer solchen Ausführung für die Decke eines Schwimmbades ist auf Bild 13 ersichtlich.

Wenn die schallabsorbierende Verkleidung ohne Zwischenraum direkt unter der Wärmedämmung angebracht werden soll, dann darf der Einbau einer Dampfsperre zwischen schallabsorbierender Verkleidung und Wärmedämmung nicht vergessen werden. Das Dik-

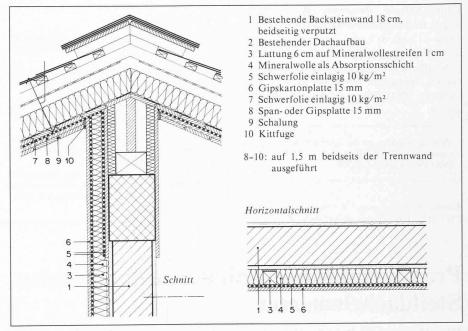


Bild 11. Vorschlag zur Verbesserung der Luftschallisolation bei Trennwand und Dach

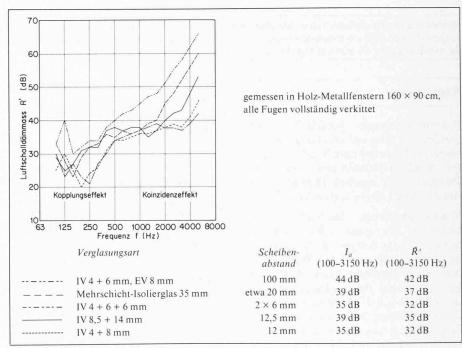
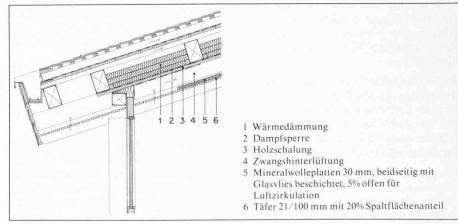



Bild 12. Luftschallisolationskurven von verschiedenen Verglasungsvarianten

Bild 13. Decke eines Schwimmbades mit absorbierender Behandlung und Hinterlüftung

kenverhältnis zwischen Wärmedämmung und schallabsorbierender Schicht muss 3:1 bis 4:1 sein. Der letztgenannte Aufbau ist aber in Räumen, in denen eine überdurchschnittliche Luftfeuchtigkeit herrschen wird, auf keinen Fall zulässig (Schwimmhallen, Eishallen usw.).

Vortrag, gehalten an der EMPA/SIA-Studientagung vom 9./10. März 1983 in Zürich, vgl. Dokumentation SIA Nr. 60.

Adresse des Verfassers: B. Braune, dipl. Phys. ETH/SIA, Hausacherstr. 42, 8122 Binz ZH.

Literaturhinweise

Furrer, W.; Lauber, A.: Raum- und Bauakustik, Lärmabwehr. Birkhäuser, Basel/Stuttgart, 1972

Braune, B.: «Raum- und Bauakustik». Dokumentation Holz, Kapitel IV, Bauphysikalische Grundlagen. Lignum, Zürich, 1973

Gösele, K.; Schüle, W.: Schall, Wärme, Feuchtigkeit. Bauverlag, Wiesbaden/Berlin, 7. Aufl., 1983

Fasold, W.; Sonntag, E.: Bauphysikalische Entwurfslehre, Band 4, Bauakustik. Verlag R. Müller, Köln-Braunsfeld, 1972

Bobran, H. W.: Handbuch der Bauphysik: Schallschutz, Raumakustik, Wärmeschutz, Feuchtigkeitsschutz. Verlag Vieweg & Sohn, Braunschweig, 1976 Lauber, A.: Lärmbekämpfung, Raumakustik, Schallisolation. ETH-Vorlesungen

Verband Schweiz. Ziegel- und Steinfabrikanten: «Schallschutz». Element 17, Zürich, 1969

Schweiz. Ingenieur- und Architektenverein: «Schallschutz im Wohnungsbau». Norm SIA 181, Zürich, 1977

Schweiz. Ingenieur- und Architektenverein: «Schalldämmung». Dokumentation 35, Zürich. 1979

Josse, R.: Notions d'acoustique. Editions Eyrolles, Paris, 1972

Meisser, M.: La pratique de l'acoustique dans le bâtiment. Société de diffusion des techniques du bâtiment. Paris

Praxiserfahrungen mit wärmedämmenden Steildachelementen

Von Hansruedi Preisig, Zürich, Karl Menti, Luzern, Paul Roos, Zürich, und Ruedi Wagner, Wettingen

Wärmedämmende Steildachelemente sind anlässlich der EMPA/SIA-Studientagung Dächer vorgestellt und kritisch beurteilt worden [1]. Diese Ausführungen werden durch die vorliegende Arbeit ergänzt, die sich auf Praxisuntersuchungen an bestehenden Objekten abstützt.

Einleitung

Wärmedämmende Steildachelemente werden seit etwa der zweiten Hälfte der siebziger Jahre auf dem Markte angeboten. Solche Elemente sind also neuere Produkte und ergeben Dachkonstruktionen ohne Langzeiterfahrungen.

Wärmedämmende Steildachelemente bestehen aus einer oder mehreren Schichten, die zumindest die Funktion des Unterdaches und der Wärmedämmung übernehmen müssen. Auffallend ist, dass dabei der traditionelle Steildachaufbau stark abgeändert und einzelne Schichten sogar eliminiert werden, wie z. B. der Verzicht auf den belüfteten Raum zwischen Wärmedämmung und Unterdach.

Die Praxisuntersuchungen wurden durch eine Steildachkommission [2] durchgeführt. Die Untersuchungen begannen 1982 und werden ständig nachgeführt. Sie umfassen Objekte im schweizerischen Mittelland sowie im Alpengebiet.

Die vorliegende Veröffentlichung ist ein Auszug aus den Ergebnissen der bisherigen Untersuchungen und bezieht sich auf zwei- bis dreischichtige Steildachelemente. Sie wurde unterstützt durch Beiträge folgender Verbände:

- Lignum, Schweizerische Arbeitsgemeinschaft für das Holz, Zürich
- SZV, Schweizerischer Zimmermeisterverband, Zürich

- SDV, Schweizerischer Dachdeckermeister-Verband, Uzwil
- SIA, Schweizerischer Ingenieur- und Architekten-Verein, Zürich

Untersuchungen

Die untersuchten zwei- und dreischichtigen, wärmedämmenden Steildachelemente sind wie folgt aufgebaut:

Zweischichtelement, bestehend aus

- Mineralwolleplatten als Wärmedämmung und
- oberseitiger Hartfaserplatte als Abdecklage/Unterdach, verlegt auf eine
- separate Bitumendichtungsbahn als Dampfsperre/Luftdichtung, aufliegend auf einer
- Holzschalung über den Sparren

Dreischichtelement, bestehend aus

- Mineralwolleplatten als Wärmedämmung und
- oberseitiger Hartfaserplatte als Abdecklage/Unterdach sowie
- unterseitig aufkaschierter Alu-Folie als Dampfsperre, direkt verlegt auf eine
- Holzschalung über den Sparren und
- auf die Sparren selbst

Von den einzelnen Schichten untersucht wurde der allgemeine Zustand vor allem hinsichtlich Feuchtigkeitsgehalt und Pilzbefall, aber auch ein allfälliges «Abrutschen» infolge ungenügender Befestigung. Die Untersuchungen

erfolgten jeweils im Frühling, d. h. am Ende der kritischen Winterperiode.

Die untersuchten Objekte sowie die Untersuchungsergebnisse werden zusammenfassend durch vier Dachkonstruktionen mit unterschiedlichem Aufbau dargestellt. Die entsprechenden Angaben sind aus der tabellarischen Zusammenstellung der Aufbauten 1 bis 4 ersichtlich.

Beurteilung

Die Untersuchungsergebnisse zeigen, dass unter bestimmten Voraussetzungen die folgenden wärmedämmenden Steildachelemente funktionieren können:

Zweischichtelement über bewohnten Räumen,

bestehend aus:

- Mineralwolleplatten und
- Hartfaserplatten, verlegt auf
- separate Dampfsperre/Luftdichtung mit verklebten Stössen und Anschlüssen

Dreischichtelement über Estrichräumen mit geringer raumklimatischer Beanspruchung, bestehend aus:

- Mineralwolleplatten und
- oberseitigen Hartfaserplatten sowie unterseitig aufkaschierter Alu-Folie mit nicht verklebten Stössen parallel zur Traufe, direkt verlegt auf
- Holzsparren

Nicht funktionstüchtig waren die folgenden wärmedämmenden Steildachelemente:

Dreischichtelement über bewohnten Räumen,

bestehend aus:

- Mineralwolleplatten und
- oberseitigen Hartfaserplatten sowie
- unterseitig aufkaschierter Alu-Folie mit lediglich gestossenen Elementfugen, direkt verlegt auf
- Holzschalung