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Uber den Einfluss von Rissen beim Rammen
von Pfihlen

Von A.L. Bouma, Delft

Im Beitrag wird das dynamische Spannungs- und Verformungsverhalten von Stahlbetonpfih-
len beim Rammen unter besonderer Beriicksichtigung der Rissbildung untersucht. Zuerst
wird anhand eines Federmodells eine Analyse durchgefiihrt, wobei auch theoretische Grund-
lagen ausfiihrlich erliutert sind. Darauf folgen eine Diskussion der Ergebnisse dieser Ana-
lyse und die Erliduterung weiterer, bei der Idealisierung zuvor vernachlissigter Einflussfakto-
ren.

The article investigates the dynamic stress and deformation behavior of reinforced concrete
piles under the action of ramming with particular interest in the development of cracks.
Firstly, an analysis is carried out using a spring model, in which the basic theoretical aspects
are explained in detail. This is followed by a discussion of the results of this analysis and the
explanation of further influencing factors which in idealizing this problem have been neglect-

ed.

Einfiihrung

Die Kunst, Pfihle zu rammen, ist in Hol-
land schon sehralt. Insbesondere wichtig
ist sie fir die Griindung von Gebiduden
und Brlicken sowie von Wasserbauten
wie Schleusen, Wehre u.s.w.. Esist wohl
bekannt, dass die Stadt Amsterdam auf
Pfihlen gegriindet ist (Bild 1). Friiher,
und z.T. auch heute noch, verwendete
man holzerne Pfihle mit einer Tragfdhig-
keit von 10 Tonnen. In den letzten Jahr-
zehnten wurden jedoch immer mehr vor-
gefertigte Pfihle in bewehrtem oder
vorgespanntem Beton mit einer Trag-
fiahigkeit bis zu 200 Tonnen verwendet.

Ein sehr wichtiges Phdnomen ist das Ent-
stehen von Rissen wiahrend des Rammens.
Um dieses Phidnomen zu verstehen, mis-
sen wir die Fortpflanzung von Spannungs-
wellen in einem Pfahl analysieren. Hier-
zu betrachten wir Bild 2. Ein Stoss am
oberen Ende des Pfahls verursacht eine

Bild 1.

Rammen im 17. Jahrhundert

Druckwelle von einer gewissen Linge,
die mit einer Geschwindigkeit ¢ nach
unten lauft. In dieser Druckwelle istauch
die Geschwindigkeit v der materiellen
Punkte nach unten gerichtet. Nach eini-
ger Zeit wird die Welle am unteren Ende
des Pfahls reflektiert.

Wenn dieses Ende fest ist und somit
keine Verschiebung zuldsst (Bild 2), wird
die reflektierte Welle ebenfalls eine
Druckwelle sein. Dies bedeutet, dass sich
die Druckspannungen am Ende des Pfahls
wihrend einer kurzen Periode verdop-
peln und dass die Geschwindigkeit der
materiellen Punkte in der nach oben lau-
fende Druckwelle ebenfalls nach oben
gerichtet ist.

Wenn das Unterende des Pfahls frei ist
(Bild 3), konnen an diesem Ende auch
keine Spannungen auftreten. In diesem
Fall werden Verschiebung und Ge-
schwindigkeit verdoppelt. In der reflek-
tierten Welle ist die Geschwindigkeit der
materiellen Punkte deshalb nach unten

iy ﬂL TIEr
[ =

Reflexion einer Druckwelle an einem festen

Bild 2.
Ende

gerichtet und die reflektierte Welle ist
eine Zugwelle.

Dieses letzte Phidnomen kann wihrend
des Rammens auftreten, wenn der
Widerstand einer Bodenschicht plétzlich
nachlisst. Die Zugwellen kdnnen dann
leicht Risse im Beton verursachen, weil
dessen Zugfestigkeit nur ein Bruchteil
der Druckfestigkeit ist. Das Phianomen
kann sich mitjedem Schlag wiederholen,
was zu vielen tiber die Pfahllinge verteil-
ten Rissen fiihrt.

Man kann sich weiter fragen, ob nach
dem Entstehen eines Risses auch die
Bewehrung oder die Vorspannung bescha-
digt oder sogar gebrochen ist. Infolge des
Entstehens von Rissen konnen die Stahl-
spannungen sehr hoch werden. sodass
der erforderliche Bewehrungsquer-
schnitt tatsdchlich durch diese Span-
nungen bestimmt wird. Die Frage ist also
wichtig. In der Praxis ist man friiher
ofters tiberrascht worden durch eine
gebrochene Bewehrung, was zu mehr
oder weniger empirisch bestimmten
Regeln fiir die notwendige Bewehrung
gefiihrt hat.

Im folgenden wird versucht, eine mog-
lichst einfache Analyse des Spannungs-
problems zu geben, um einen Einblick in
das Phinomen zu vermitteln.

Bild 3. Reflexion einer Druckwelle an einem freien
Ende
Bild 4.  Ein homogener Stab. Bezeichnungen
XU,V
{ L/ N=H—N_ |
E ,A, P
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Theoretische Grundlagen

Unser Ausgangspunkt ist die bekannte
Gleichung fiir eine longitudinale Welle in
einem homogenen Stab (Bild 4):

(1) ﬁ — ﬁ =
57 57

Hierin ist:

u = Verschiebung in Richtung der x-

Koordinate

t =Zeit

¢ = Fortpflanzungsgeschwindigkeit

E = Elastizitdtsmodul

p = Dichte des Baustoffs

0...(1)mitc2=£
P

Die allgemeine Losung dieser Gleichung
lautet bekanntlich:

2) u=f(x=-ct)+f,(x+ct)

Hierin stellt die erste Funktion im rech-
ten Glied eine nach rechts - in der posi-
tiven x-Richtung - laufende Welle dar,
die zweite Funktion eine nach links - in
der negativen x-Richtung - laufende
Welle.

Fiir die Geschwindigkeit v der materiel-
len Punkte finden wir:

_ du ; ;
3) A =—cfi (x=c) + ¢ff (x + et)
Mit dem Strich wird hier die abgeleitete
Funktion angedeutet. Wie bekannt, gilt
fur die Dehnung ¢:

_du

Ox
Wird der Querschnitt mit A bezeichnet,
dann finden wir fir die Schnittkraft N:

W= Bde= BA-2E =

Ox

4)

)
= EAf' (x - cf) + EAfy (x + cf)

Eine Gegeniiberstellung der Gleichun-
gen (3) und (5) fithrt fiir die nach rechts
laufende Welle zu der Beziehung:

= =_2r oder:
EA @
(6) = -Zvmit Z = E~A

¢
und fiir die nach links laufende Welle zu:

(7) l=—loder:N=Zv
EA (4

Die Grosse Z wird Impedanz genannt.
Diese linearen Beziehungen zwischen
der Geschwindigkeit v und der Schnitt-
kraft N erlauben eine einfache Losung
unseres Problems. Die Gleichungen (6)
und (7) sind analog zu den Gleichungen
fiir einen viskosen Diampfer, fiir den
ebenfalls eine lineare Beziehung zwi-
schen der ausgeiibten Kraft und der
Geschwindigkeiit besteht.

Ein bewehrter Betonpfahlist zusammen-
gesetzt aus zwei Baustoffen: Stahl und
Beton. Werden die Fortpflanzungsge-
schwindigkeiten einander gleichgesetzt,
dann koénnen die Impedanzen des Stahl-
und Betonquerschnittes addiert werden.
Weil der Stahlquerschnitt klein ist im
Vergleich zum Betonquerschnitt (in der
Grossenordnung von 1%), ist dieses Ver-
fahren durchaus erlaubt.

Beieinem Riss tritt jedoch eine plérzliche
Anderung auf: der Betonquerschnitt wird
unterbrochen, nur die Stahlstibe gehen
weiter. Dies fithrt zu einer Anderung der
Impedanz, wodurch an der Bruchfldche
die Welle zum Teil reflektiert wird. Um
unser Problem zu analysieren, brauchen
wir deshalb die Gesetze fiir die Reflexion
und Refraktion von Wellen bei einem
plotzlichen Ubergang. Wir sehen uns
dazu Bild 5 an.

Zwei Betonstibe mit Impedanz Z, sind
verbunden durch einen Stahlstab mit Im-
pedanz Z,. Von links kommt eine Welle,
angedeutet mit u,. Beim Ubergang zwi-
schen Beton und Stahl wird eine Welle
reflektiert, angedeutet mit uz und eine
Welle durchgelassen, angedeutet mit u .
Beim Ubergang an der rechten Seite wird
wiederum eine Welle reflektiert, ange-
deutet mit u#p und eine Welle durchge-
lassen, angedeutet mit ug.

Den Verschiebungen u entsprechen Ge-
schwindigkeiten v und Schnittkriifte N.
Zwischen diesen beiden bestehen die
Beziehungen:

Ny=-Zywy Ng=Zyg
8) Ne=-Zwc
Np= Zyp Ng=-Zyvg

Aus der Kompatibilitdt geht hervor, dass:
Uy + ug = Uc

oder auch: '

Q) vyt+vg=vc

Aus dem Gleichgewicht beim Ubergang
folgt (Bild 5):

(10) N4+ Ng= N¢

Mit den Beziehungen aus (8) folgt aus

diesen beiden Gleichungen:

Zb - Z\‘
L) sy pm= —er—,
e oz,
32,
12 Moy = et "
U9 ve=z5z "
N[i = ZI.Y(Z[) = Z.\) V=
Iy

Zb Zs Zb
~— UA
~ UC
UB\/\ _— UE

UDV\

NA<—

NT—m—N

B
Bild 5. Schema von zwei Betonstdaben, verbunden

durch einen Stahlstab

(13) _
= _ Zb ZS N4
Zb+Zs )
New 22,2, _
Zp 7
(14) 27
3 Zb+Zs !

Die Phinomene der Reflexion an einem
fixierten Ende (Bild 2) und an einem
freien Ende (Bild 3) folgen aus diesen
Formeln, wenn Z, gleich Unendlich
beziehungsweise gleich Null gesetzt
wird.

Im folgenden interessiert uns besonders
die durchgelassene Schnittkraft No (14)

Am rechten Ubergang wird die Welle Uc
wieder teilweise reflektiert. Die Formeln
lassen sich gleich aufstellen wie friiher,
und hieraus geht insbesondere die an
dieser Seite reflektierte Kraft Np hervor:

Zb — Zs
Lt Zs

Diese Formel folgt auch aus (13) durch
Vertauschen von Z, mit Z,.

(15) Np= Ne

Wir konnen nun folgendes sagen: Wenn
eine Spannungswelle in einem Stahlstab
mit der Schnittkraft Ne auf einen Beton-
querschnitt stosst, gehort zur reflektier-
ten Spannungswelle die Schnittkraft:

(16) Np=r-Nc¢
Der Reflexionskoeffizient » ldsst sich

berechnen aus:

Zh — Z\

175 pm :
U = sz

Die Schnittkraft in der Bewehrung

Wenden wir uns jetzt unserem eigent-
lichen Problem zu (Bild 6). Eine plotz-
lich am rechten Ende angreifende axiale
Kraft F, einer bestimmten konstanten
Grosse und einer bestimmten Zeitdauer
(Bild 6b) verursacht in einem Pfahl eine
Druckwelle von einer bestimmten Linge
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d— =t

N= -R numuumlmuun

L ]

3)
F
A ﬁmmnmmmm
ot

fittem

b)

—_— T —
c) NA_ “:0‘
| 1
[—% L J
Bewehrung Z Beton
d) (Stahl)
Bild 6. Veranschaulichung des Problems

_— rN,
-— N
_— r*Ne
:
i

Bild 7. Analyse der Kraft Ns im Stahlstab

Bild 8. Das Anwachsen der Kraft Ng im Stahlstab
mit der Zeit

(Bild 6a), die sich mit einer Geschwin-
digkeit ¢ nach links fortpflanzt. Wenn das
linke Ende als frei betrachtet werden
kann, kehrt die Druckwelle als Zugwelle
zuriick (Bild 6¢). Die dazu gehorende
Schnittkraft N, ist gleich der absoluten
Grdsse von F,.

Die Druckwelle wird nicht beeinflusst
von eventuellen Rissen. Fiir die Zug-
welle gilt das jedoch nicht. Die Situation
fiir einen vollig gerissenen Querschnitt
A—A (Bild. 6¢) ist in Bild 6d wiederge-
geben.

Anhand von Bild 7 analysieren wir, was
im Stahlstab passiert. Dabei wird voraus-
gesetzt, dass der Stahlstab starr mit dem
Beton verbunden ist.

Die Zugwelle u,, die von links kommt,
fihrt im Stahlstab zu einer Zugwelle mit
der Schnittkraft (14)

Zy+ Z,

An der rechten Seite wird diese Welle
reflektiert. Es entsteht eine nach links
zuriicklaufende Zugwelle mit der
Schnittkraft rN.. Diese wird wieder an
derlinken Seite reflektiert, was eine nach
rechts laufende Zugwelle mit Schnitt-
kraft N zur Folge hat. Das geht so
immer weiter. Und bei einer unbegrenzt
grossen Wellenldnge wird die Schnitt-
kraft im Stahlstab schliesslich gleich der
Summe S der unendlichen Reihe.

(14) N¢ = Ny

(18a) S=Ne[l+r+rP+....... Ik

Wie bekannt, ist diese Summe:
1

(18b) S = N

Substition von Ausdruck (14) fir N-und
Ausdruck (17) fur r fiihrt zum Resultat:

(19) §=N,

Die Schnittkraft N, im Stahlstab nidhert
sich allméhlich dem Wert der Schnitt-
kraft N der einfallenden Zugwelle. Der
Vorgang ist in Bild 8 abgebildet und man
sieht hieraus, dass sich der Srahistab
verhdlt wie eine Feder.

Idealisierung durch ein
Federmodell

N,

128

Aufgrund des vorherigen Ergebnisses
betrachten wir jetzt ein System, das aus
zwei Betonstiben mit der Impedanz Z,
besteht, die durch eine Feder mit der
Federkonstanten k& verbunden sind
(Bild 9a). Aufdie Grosse von k wird spi-
ter eingegangen.

Wiederum kommt von links eine Zug-
welle u,. Beim Ubergang auf die Feder

wird eine Welle ugreflektiert. Im rechten
Betonstab entsteht eine nach rechts lau-
fende Welle ug.

Diesen Verschiebungen u entsprechen
wiederum Geschwindigkeiten v und
Schnittkrifte N und wir kénnen die fol-
genden Beziehungen aufstellen:

Q0) Ny=~-Z:V4 Ng=Z-vpg,

NE =-Z- VE
Wir kénnen jetzt den Index b weglassen.
Die Befestigungspunkte der Feder wer-
den mit 1 bzw. mit 2 angedeutet. Die
Verschiebungen dieser Punkte sind also
u; und u,, und die Geschwindigkeiten
sind v; = &, und v, = i,. Mit einem Punkt
tiber den Buchstaben wird die Ableitung
nach ¢ angedeutet.

Wir schreiben jetzt die beiden Gleich-
gewichtsgleichungen hin (Bild 9c¢):

(21) Punkt 1: Ny + Ng = N,
(22) Punkt 2: N, = Ng

und die beiden Kompatibilitdtsgleichun-
gen (Bild 9d):

(23) Punktl:v,+vg=v, =iy
(24) Punkt 2: V) = Uy = V.

Wir fiigen noch die konstitutive Glei-
chung der Feder (Bild 9b) hinzu:

(25) N, = k(uy — uy)
Mit Hilfe der Ausdriicke (20) ldsst sich

vg aus den Gleichungen (21) und (23)
eliminieren. Gefunden wird:

(26) Zuy — Ny =2Zv, = —2N,
Mit Hilfe von (20) folgt aus (22) und (24):
(27) Zuy + Ng=0

Aus diesen beiden letzten Gleichungen
folgt:

(28) Z(iy — iy) + 2N, = 2N,,.
Andererseits fiihrt Gleichung (25) zu:
(29) k(i — i) — N, = 0.

Elimination von (i, — ) aus diesen bei-

den Gleichungen fiihrt zur Differential-
gleichung fiir die Federkraft N,:
T
300 — N, + N, =N
(30) TR ¢ A

Die Losung dieser Differentialgleichung
mit der Anfangsbedingung N, = 0 fiir
t = 0 lautet:

(B1) Ny = Ny [l — exp(-2 % ]
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‘Der Verlauf der Federkraft &, mit der
Zeit ist in Bild 10a wiedergegeben. Die
Figur zeigt dasselbe Bild wie Bild 8, nur
kontinuierlich statt diskontinuierlich.
Die Federkraft nihert sich asymptotisch
dem Wert N,.

Wir geben noch die folgenden Ergeb-
nisse:

Aus (26) folgt:

. 1
(32) i = - [N, = 2N,] =

k
= vy [1 +exp (—2;0].

Die Funktion ist in Bild 10b wiedergege-
ben. Die Geschwindigkeit #; fangt an mit
einem Wert, der doppelt so gross ist wie
v4. Das Ende des linken Betonstabes ver-
hiilt sich in diesem Augenblick wie ein
freies Ende. Allméihlich wird jedoch die
Feder zusammengedriickt und dies fiihrt
zu einer anwachsenden Kraft auf das
Stabende, sodass die Geschwindigkeit i
allméhlich abnimmt und sich asympto-
tisch dem Wert v, nidhert.

Aus (27) folgt:

" 1
33) ip=- ;

k
= vy [l —exp (—ZEI)]

N, =

Die Geschwindigkeit u, verlduft gleich-
formig mit der Federkraft N.

Schliesslich geben wir noch:
(34) Np=—-N,exp (—2LZ’1)
und

(35) vg=v, exp (—2% /)

Die letzte Funktion ist in Bild 10c wieder-
gegeben. Die reflektierte Welle nimmt
allméhlich ab und nédhert sich Null. Es
gibt dann also praktisch keine Reflexion
mehr. Die einfallende Welle u, passiert
nahezu unbehindert die Feder und
pflanzt sich im rechten Betonstab mit
nahezu derselben Intensitét fort. Mittler-
weile hat sich jedoch die Form dieser
Welle von einem Rechteck in die in
Bild 11 wiedergegebene Form gedndert.

Es ist schon erwihnt worden, dass das
Phidnomen der Fortpflanzung von Wel-
len in einem Stab eine Analogie zeigt zu
einem viskosen Diampfer. Die Differen-
tialgleichung (30) ist darum auch analog
zur Differentialgleichung fiir ein System,
bestehend aus einer Feder und einem
Diampfer, die nebeneinander (parallel)
geschaltet sind (Bild 12). Weil es sich hier
um zwei Betonstibe, also zwei Dampfer
handelt, die hintereinander (in Serie)
geschaltet sind, ist die resultierende
Dimpfungskonstante (oder Impedanz)
gleich Z/2.

g s e
U, U,

g Ay H— - H—|\
Ns N, N, €

VA
d) -V

——— —

vi=u, V=,

Bild 9. Das Federmodell

Imn“l%ﬁllllllmn..

m j

Ns (NE)
] O i B

063N, ‘ }
NN

a) ftf% t

b) t

c) t

Bild 11. Die Form der durchgelassenen Spannungs-
welle

Man konnte jetzt fragen, wie schnell
die Federkraft N, anwichst. Um eine
Vorstellung zu bekommen, sehen wir
uns Bild 10a nochmals an. Die Tangente
am Ursprung der Kurve schneidet
die Asymptote in einem Punkt, fiir den

ty= 2_Zk gilt. Der zugehorige Wert von N,

betrigt 0,63 N, Nach einer Zeitdauer
t; = (Z/2k) hat die Federkraft also gut
60 % ihres endgiiltigen Wertes erreicht.
In diesem Ausdruck ist die Impedanz
Z = (Ey A4,/0). Unter Vernachlissigung
der Stahleinlagen nehmen wir:

E, = E-Modul des Betons

Ap = Querschnitt des Betons

Wir nehmen fir die Feder ver-
einfachend an, dass es sich um eine
lineare Feder mit einer Federkonstanten

k = (EAJ) ESIAS

E; = E-Modul des Stahls
A, = Querschnitt der Bewehrung

handle, worin

1 = Federldnge

Nehmen wir fir die Federlidnge das Dop-
pelte der mittleren Haftlinge der Stahl-
stibe im Beton, erhalten wir:

L E 4 1

Ly = .
‘T2 E A c

Bild 10. Verlauf von Ng, vi = 1| und vg mit der Zeit

—F

— =1
‘ /
~Z L4

Bild 12. Das analoge System

MitE//E, =5, A,/ A, = 0,01, ¢ =4000 m/s
und einer mittleren Haftlinge auf jeder
Seite von 0,2 m, also 1 = 0,4 m, fiihrt diese
Formel zum Ergebnis 7, = 107 s, womit
man eine Vorstellung hat von der Ge-
schwindigkeit des Anwachsens der
Federkraft M.

Als Federkonstante kann man auch den
Wert nehmen, der sich aus einem Aus-
ziehversuch ergibt. Im elastischen Be-
reich ist sie jedoch etwas grosser.

Weitere Faktoren

Das Ergebnis dieser Analyse, ndmlich
dass die Kraft N, in der Bewehrung an
der Stelle des Risses sehr schnell an-
wichst bis zum Wert N, der Zugwelle,
fithrt zur Moglichkeit von grossen Stahl-
spannungen in der Bewehrung. Die
Grosse von N, in bezug zur axialen
Druckkraft £, hingt beim Rammen von
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f— B —t
/_\_/>C
Ns N, (I
T SCECEA
0 1 2 3 L t ms)

Bild 13. Der Verlauf von Ny bei einer beschrinkien
Zeitdauer der Zugwelle

T T
0 1 2 3 4

t ims)

Bild 14. Der Verlauf von Ny bei einer sinusformigen
Zugwelle

"N 0rt der Risse a:0Lm

Bild 15. Stab mit drei Rissen

Bild 16. Verlauf von Ng im ersten Riss (Wellenldnge 32 m)

der Mantelreibung und vom Spitzen-
widerstand des Pfahls ab, von Faktoren
also, die ausserhalb des Pfahls liegen
und auf die nicht weiter eingegangen
wird. Es ist jedoch klar, dass unter Um-
stinden Zugwellen mit grossen Kriften
N, auftreten konnen, sodass man fiirch-
ten muss, die Bewehrung konnte bre-
chen. Obwohl diese Gefahr besteht, ist
die Situation in Wirklichkeit weniger
schlimm, weil es einige Faktoren gibt,
welche die Grisse der Stahlspannung
herabsetzen. Diese Faktoren sind:

a) Die endliche Dauer der Zugwelle,

b) der Umstand, dass die Wellenform
meistens kein Rechteck ist,

¢) die Tatsache, dass die Zugwelle
nicht nur einen Riss, sondern meh-
rere Risse verursacht,

d) das elasto-plastische Verhalten der
Stahlstibe.

Wir werden den Einfluss dieser verschie-
denen Faktoren kurz erlautern.

a) Die endliche Dauer der Zugwelle be-
deutet, dass die Kraft N, nicht ganz zur
Entwicklung kommen kann. Nehmen
wir z. B. eine Wellenldnge von 8 m (Bild
13), dann kommt bei einer Fortpflan-
zungsgeschwindigkeit von 4000 m/s der
Zuwachs von N, nach 2 - 1073 s zu Ende,
wonach der Wert von N, allmihlich wie-
der abnimmt auf Null. Bild 13 zeigt die-
ses Bild fiir eine Federlinge von 0,40 m.

b) Die Form der Druckwelle weicht
meistens stark ab vom hier angenomme-
nen Rechteck, und das gilt umso mehr
fiir die reflektierte Zugwelle. Eine gute
Annidherung kann oft erreicht werden
mit einer geddmpften Sinuswelle. Es
braucht also einige Zeit, bis die Zugkraft
im Querschnitt ihren Maximalwert er-
reicht hat. Dementsprechend wird das
Anwachsen von N, weniger rasch statt-
finden und der Maximalwert auch ge-

ringer sein. Bild 14 zeigt den Verlauf von
N, fiir eine normale Sinuswelle mit einer
halben Wellenldnge von 8 m. In diesem
Fall erreicht N, nur etwa 6Q % des Maxi-
malwertes N,.

¢) Die Zugwelle verursacht immer ver-
schiedene Risse hintereinander. Die Si-
tuation wird dadurch um ein Vielfaches
komplizierter. Wenn die von links einfal-
lende Zugwelle u, von konstanter Grosse
den Riss Nummer 1 (Bild 15) passiert hat,
wird sie an den Grenzflichen vom Riss
Nummer 2 reflektiert. Von diesen reflek-
tierten Wellen sind die Druckwellen die
grosseren. Dies bedeutet, dass das An-
wachsen von N, im ersten Riss abgemin-
dert wird. Bild 16 zeigt fiir den Fall von
drei Rissen, wie in Bild 15 angedeutet,
den Verlaufvon N, im ersten Riss fiir eine
sehr lange Welle von 32 m. Nach 8 ms
wird praktisch der Wert von N - in die-
sem Fall 1,6 MN - erreicht. Selbstver-
stiandlich sind diese Resultate mit einem
Computerprogramm errechnet worden.
Bild 17 zeigt den Verlauf von N, im drit-
ten Riss. Auch hier wird schliesslich
nahezu der Wert von N, erreicht.

Die Risse wirken sich in Form einer
Ddmpfung aus. Das bedeutet auch, dass
fir eine kirzere, wirklichkeitsnahere
Wellenlédnge, z. B. 8 m, der Maximalwert
von N, bei weiten nicht erreicht wird. Ins-
besondere trifft das zu fiir N, im ersten
Riss, wo nach 2 ms (dquivalent mit 8 m)
nur etwa ein Drittel des Maximalwertes
erreicht wird. Fir N, im dritten Riss
trifft das weniger zu. Dieser Wert ist be-
deutend grosser.

d) Der wichtigste Faktor, der den maxi-
malen Wert der Kraft N, in der Beweh-
rung herabsetzt, ist das elasto-plastische
Verhalten von Stahl. Die Herabminde-
rung der Steifigkeit eines Stahlstabes von
k auf & ist fir einen normalen Stahl in
Bild 18 wiedergegeben, wobei N die Nor-
malkraft und A die Verlingerung dar-
stellen. Eine exakte Losung des Pro-

Bild 17. Verlauf von Ng im dritten Riss (Wellenldnge 32 m)
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blems wird recht kompliziert, weshalb
hierauf nicht weiter eingegangen wird. N
Wir nehmen vereinfachend an, dass we-
gen des betrichtlichen Fliessvermdgens
die tatsichliche Steifigkeit um einen Fak-

tor 10 abgemindert werden kann. Das Ik Jﬂc/

bedeutet, dass wir im Ausdruck (31) fiir L=

N, die Steifigkeit k ersetzen durch k' = et

0,1 k. Die Stahlkraft N, wird jetzt viel B

langsamer anwachsen mit der Zeit (Bild A

t (ms)

T
0 Z1 2 3
0.005 N,

19). Es ldsst sich zum Beispiel leicht zei-
gen, dass N; flir 1 = 1073 s jetzt nur den
Wert 0,095 N, erreicht, was ungefihr
15% des vorherigen Werts aus Bild 10a  spannung g, = 1000 MN/m? (10* kg/cm?)
ist. fithren. Die oben eingefiithrten Reduk-
tionsfaktoren werden diese Spannung
abmindern bis auf eine Gréssenordnung
von 50 MN/m? (500 kg/cm?).

Zusammenfassend kann man sagen,
dass die verschiedenen Reduktionsfak-

Bild 18. Ein Kraft-Verldngerungsdiagramm

In unserem Beispiel war Ny, = 1,6 MN.
Mit A4, = 0,16 m? wird die Betonspan-
nung o, = 10 MN/m? (100 kg/cm?). Mit
einer Bewehrung von 1% wiirde das zu-
nichst gemiss Formel (31) zu einer Stahl-

Spannungsumlagerung in bewehrten Beton-
konstruktionen durch Kriechen und Schwinden
des Betons

Von A.S.G. Bruggeling, Delft

In diesem Beitrag wird gezeigt, dass die Spannungsumlagerung durch Schwinden und Kriechen
einen Einfluss auf das Verhalten von Betonkonstruktionen hat. Dazu werden einige Beispiele be-
sprochen. Es handelt sich um die Spannungsumlagerung in hoch bewehrten Betonstiitzen, in einem
schlaff bewehrten Biegetriiger und in einem teilweise vorgespannten Biegetriiger. Im letzten Fall
wird gezeigt, dass einfache Methoden zur Berechnung von teilweise vorgespannten Biegetriigern ge-
rechtfertigt sind.

This article is dealing with the influences of creep and shrinkage on the behaviour of concrete struc-
tures. Three examples are discussed in detail, namely the redistribution of stress in columns with a
high percentage of reinforcement, a beam in reinforced concrete and a beam in partially prestressed
concrete.

It is shown that in the last case a simple design approach for partially prestressed concrete beams is
justified.

Dans cet article on démontre que le retrait et le fluage ont une influence sur le comportement des
constructions en béton. Trois examples sont choisis pour discuter ce phénomeéne: une pile avec un
haut pourcentage d’acier, une poutre en béton armé et une poutre en béton précontraint partielle-
ment. Pour le dernier cas il est aussi démontré qu'une méthode simple pour le calcul des poutres en
béton précontraint partiellement est admissible.

lich die wichtige Rolle des Schwindens
und Kriechens erkannt: Die aktiven Vor-
spannkriifte, die in eine Betonkonstruk-
tion eingeleitet werden, verringern sich
mitder Zeit, weil der Beton sich verkirzt.

Einleitung

Beton ist ein Material, das nach der Ver-
arbeitung und der Erhdrtung schwindet

- g y 1 ~ - . . .
und unter Belastung kriecht. Hat man einmal diese Erkenntnisse ge-

Diese Eigenschaften konnen das Verhal-
ten einer Betonkonstruktion betrichtlich
beeinflussen. Durch die Entwicklung der
Spannbetonbauweise hat man erst deut-

wonnen, wird auch klar, dass Schwinden
und Kriechen des Betons einen wichti-
gen Einfluss auf das Verhalten einer
nicht vorgespannten Betonkonstruktion

Bild 19. Verlauf von Ng bei einer um ein Zehnfaches
geringeren Steifigkeit

toren daflir sorgen, dass im allgemeinen
die Bewehrung nicht versagen wird. Die
Natur ist uns gut gesinnt.

Adresse des Verfassers: 4. L. Bouma, Professor ir. fiir
nischen Hochschule Delft (Abt. fiir Bauingenieure).
Stevinweg 1, NL-Delft 8.

haben konnen. Die zeitabhingige
Durchbiegung von Platten ist daflir ein
Beispiel.

In den sechziger Jahren ist die teilweise
Vorspannung entwickelt worden. Auch
dabei war es notwendig, zeitabhingige
Einfliisse in Betracht zu ziehen, weil sie
nicht nur die Rissbreite unter Vollast be-
einflussen konnen, sondern auch die
Dauerfestigkeit unter wiederholter Be-
lastung. Im folgenden Beitrag werden
einige Gedanken zu den Problemen ge-
dussert, die durch Spannungsumlage-
rung in bewehrten und vorgespannten
Betonkonstruktionen hervorgerufen
werden konnen, mit dem Ziel, einen
Zusammenhang zwischen dem Verhal-
ten unterschiedlicher Konstruktionen
nachzuweisen.

Betonstiitzen

Besonders in Gebduden spielen die verti-
kalen Tragglieder - die Stiitzen - eine
wichtige Rolle. Die im Erdgeschoss oder
im Keller stehenden Stiitzen tragen oft
eine nahezu zentrische, hohe Belastung.
Um die Abmessungen dieser Stiitzen zu
beschrinken, wird ein ziemlich hoher
Bewehrungsgehalt gewahlt.

Nach der Inbetriebnahme des Gebaudes
steuert eine Klimaanlage (Zentralhei-
zung) das Klima auch der Ridume, in
denen sich die Stiitzen befinden. Mei-
stens ist die relative Feuchtigkeit der
Luft gering und die Temperatur nahezu
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