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Prof. Thürlimann zum 60. Geburtstag Schweizer Ingenieur undArchitekt 6/83

Über den Einfluss von Rissen beim Rammen
von Pfählen
Von A. L. Bouma, Delft

Im Beitrag wird das dynamische Spannungs- und Verformungsverhalten von Stahlbetonpfählen
beim Rammen unter besonderer Berücksichtigung der Rissbildung untersucht. Zuerst

wird anhand eines Federmodells eine Analyse durchgeführt, wobei auch theoretische Grundlagen

ausführlich erläutert sind. Darauf folgen eine Diskussion der Ergebnisse dieser Analyse

und die Erläuterung weiterer, bei der Idealisierung zuvor vernachlässigter Einflussfaktoren.

The article invesrjgat.es the dynamic stress and deformation behavior of reinforced concrete
piles under the action of ramming with particular interest in the development of cracks.

Firstly, an analysis is carried out using a spring model, in which the basic theoretical aspects
are explained in detail. This is follovved by a discussion of the results of this analysis and the

explanation of further influencing factors which in idealizing this problem have been neglect-
ed.

Druckwelle von einer gewissen Länge,
die mit einer Geschwindigkeit c nach
unten läuft. In dieser Druckwelle ist auch
die Geschwindigkeit v der materiellen
Punkte nach unten gerichtet. Nach einiger

Zeit wird die Welle am unteren Ende
des Pfahls reflektiert.

Einführung

Die Kunst, Pfahle zu rammen, ist in
Holland schon sehr alt. Insbesondere wichtig
ist sie für die Gründung von Gebäuden
und Brücken sowie von Wasserbauten
wie Schleusen, Wehre u.s.w.. Es ist wohl
bekannt, dass die Stadt Amsterdam auf
Pfählen gegründet ist (Bild 1). Früher,
und z.T. auch heute noch, verwendete
man hölzerne Pfähle mit einer Tragfähigkeit

von 10 Tonnen. In den letzten
Jahrzehnten wurden jedoch immer mehr
vorgefertigte Pfähle in bewehrtem oder
vorgespanntem Beton mit einer
Tragfähigkeit bis zu 200 Tonnen verwendet.

Ein sehr wichtiges Phänomen ist das
Entstehen von Rissen während des Rammens.
Um dieses Phänomen zu verstehen, müssen

wir die Fortpflanzung von Spannungswellen

in einem Pfahl analysieren. Hierzu

betrachten wir Bild 2. Ein Stoss am
oberen Ende des Pfahls verursacht eine

Wenn dieses Ende fest ist und somit
keine Verschiebung zulässt (Bild 2), wird
die reflektierte Welle ebenfalls eine
Druckwelle sein. Dies bedeutet, dass sich
die Druckspannungen am Ende des Pfahls
während einer kurzen Periode verdoppeln

und dass die Geschwindigkeit der
materiellen Punkte in der nach oben
laufende Druckwelle ebenfalls nach oben
gerichtet ist.

Wenn das Unterende des Pfahls frei ist
(Bild 3), können an diesem Ende auch
keine Spannungen auftreten. In diesem
Fall werden Verschiebung und
Geschwindigkeit verdoppelt. In der
reflektierten Welle ist die Geschwindigkeit der
materiellen Punkte deshalb nach unten

|P

et

Bild 2.

Ende
Reflexion einer Druckwelle an einem festen

gerichtet und die reflektierte Welle ist
eine Zugwelle.

Dieses letzte Phänomen kann während
des Rammens auftreten, wenn der
Widerstand einer Bodenschicht plötzlich
nachlässt. Die Zugwellen können dann
leicht Risse im Beton verursachen, weil
dessen Zugfestigkeit nur ein Bruchteil
der Druckfestigkeit ist. Das Phänomen
kann sich mitjedem Schlag wiederholen,
was zu vielen über die Pfahllänge verteilten

Rissen führt.
Man kann sich weiter fragen, ob nach
dem Entstehen eines Risses auch die
Bewehrung oder die Vorspannung beschädigt

oder sogar gebrochen ist. Infolge des
Entstehens von Rissen können die
Stahlspannungen sehr hoch werden, sodass

der erforderliche Bewehrungsquer-
schnitt tatsächlich durch diese

Spannungen bestimmt wird. Die Frage ist also

wichtig. In der Praxis ist man früher
öfters überrascht worden durch eine
gebrochene Bewehrung, was zu mehr
oder weniger empirisch bestimmten
Regeln für die notwendige Bewehrung
geführt hat.

Im folgenden wird versucht, eine
möglichst einfache Analyse des Spannungsproblems

zu geben, um einen Einblick in
das Phänomen zu vermitteln.

Bild 1. Rammen im 17. Jahrhunden

-i^

«*£
&
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Bild 3. Reflexton einer Druckwelle an einem freien
Ende

Bild 4. Ein homogener Stab. Bezeichnungen

— x,u,v

tE,A,P
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Theoretische Grundlagen

Unser Ausgangspunkt ist die bekannte
Gleichung für eine longitudinale Wellein
einem homogenen Stab (Bild 4):

i82K „ ,n E
er —y 0 (1) mit er —

bxr p

Hierin ist:
m Verschiebung in Richtung der x-

Koordinate
t Zeit
c Fortpflanzungsgeschwindigkeit
E Elastizitätsmodul
p Dichte des Baustoffs

öf2

Die allgemeine Lösung dieser Gleichung
lautet bekanntlich:

(2) //(x-ct)+/2(x+ct)
Hierin stellt die erste Funktion im rechten

Glied eine nach rechts - in der
positiven x-Richtung - laufende Welle dar,
die zweite Funktion eine nach links - in
der negativen x-Richtung - laufende
Welle.

Für die Geschwindigkeit v der materiellen

Punkte finden wir:

(3)
to¬

bt
¦cf{(x-ct) + cfi(x+ct)

Mit dem Strich wird hier die abgeleitete
Funktion angedeutet. Wie bekannt, gilt
für die Dehnung e:

(4)
bu

~bx

Wird der Querschnitt mit A bezeichnet,
dann finden wir für die Schnittkraft N:

N EAt EA
bu

bx

(5)
EAf{ (x - et) + EAfi (x + et)

Eine Gegenüberstellung der Gleichungen

(3) und (5) führt für die nach rechts
laufende Welle zu der Beziehung:

(6)

N
EA

m

oder:

¦Zv mit Z
EA

und für die nach links laufende Welle zu:

(7)
N

EA
oder: N Zv

Die Grösse Z wird Impedanz genannt.
Diese linearen Beziehungen zwischen
der Geschwindigkeit v und der Schnittkraft

N erlauben eine einfache Lösung
unseres Problems. Die Gleichungen (6)
und (7) sind analog zu den Gleichungen
für einen viskosen Dämpfer, für den
ebenfalls eine lineare Beziehung
zwischen der ausgeübten Kraft und der
Geschwindigkeiit besteht.

Ein bewehrter Betonpfahl ist zusammengesetzt

aus zwei Baustoffen: Stahl und
Beton. Werden die Fortpflanzungsgeschwindigkeiten

einander gleichgesetzt,
dann können die Impedanzen des Stahl-
und Betonquerschnittes addiert werden.
Weil der Stahlquerschnitt klein ist im
Vergleich zum Betonquerschnitt (in der
Grössenordnung von 1 %), ist dieses
Verfahren durchaus erlaubt.

Bei einem Riss tritt jedoch eine plötzliche
Änderung auf: der Betonquerschnitt wird
unterbrachen, nur die Stahlstäbe gehen
weiter. Dies führt zu einer Änderung der
Impedanz, wodurch an der Bruchfläche
die Welle zum Teil reflektiert wird. Um
unser Problem zu analysieren, brauchen
wir deshalb die Gesetze für die Reflexion
und Refraktion von Wellen bei einem
plötzlichen Übergang. Wir sehen uns
dazu Bild 5 an.

Zwei Betonstäbe mit Impedanz Zb sind
verbunden durch einen Stahlstab mit
Impedanz Z,. Von links kommt eine Welle,
angedeutet mit uA. Beim Übergang
zwischen Beton und Stahl wird eine Welle
reflektiert, angedeutet mit uB und eine
Welle durchgelassen, angedeutet mit uc-
Beim Übergang an der rechten Seite wird
wiederum eine Welle reflektiert,
angedeutet mit uD und eine Welle durchgelassen,

angedeutet mit ug.

Den Verschiebungen u entsprechen
Geschwindigkeiten v und Schnittkräfte N.
Zwischen diesen beiden bestehen die
Beziehungen:

AT, -ZbvA NB ZbvB

(8) Nc -Zsvc

ND ZsvD NE -ZbvE

Aus der Kompatibilitätgeht hervor, dass:

UA + UB Uc

oder auch:

(9) vA + vB vc

Aus dem Gleichgewicht beim Übergang
folgt (Bild 5):

(10) NA + NB Nc

Mit den Beziehungen aus (8) folgt aus
diesen beiden Gleichungen:

(11) vB =Zt~Zs vA
Zb + Zs

(12) vc
2Z*

vA
Zb + Z<

NR
Zb(Zh - Z,)

zh + zs

Nr

Bild 5. Schema von zwei Betonstäben, verbunden
durch einen Stahlstab

(13)

Nr

(14)

Zb Zs

zb + zs

2 Zb Zs

zb + Zs

2 Z,

Nj

Zh + Z,
Na

Die Phänomene der Reflexion an einem
fixierten Ende (Bild 2) und an einem
freien Ende (Bild 3) folgen aus diesen
Formeln, wenn Z, gleich Unendlich
beziehungsweise gleich Null gesetzt
wird.

Im folgenden interessiert uns besonders
die durchgelassene Schnittkraft Nc (14)

Am rechten Übergang wird die Welle ac
wieder teilweise reflektiert Die Formeln
lassen sich gleich aufstellen wie früher,
und hieraus geht insbesondere die an
dieser Seite reflektierte Kraft Nr> hervor:

^-Nr(15) ND
Zb + Zs

Diese Formel folgt auch aus (13) durch
Vertauschen von Zb mit ZF

Wir können nun folgendes sagen: Wenn
eine Spannungswelle in einem Stahlstab
mit der Schnittkraft Nc auf einen
Betonquerschnitt stösst, gehört zur reflektierten

Spannungswelle die Schnittkraft:

(16) ND r-Nc

Der Reflexionskoeffizient r lässt sich
berechnen aus:

(17) r
Zb + Zs

Die Schnittkraft in der Bewehrung

Wenden wir uns jetzt unserem eigentlichen

Problem zu (Bild 6). Eine plötzlich

am rechten Ende angreifende axiale
Kraft F0 einer bestimmten konstanten
Grösse und einer bestimmten Zeitdauer
(Bild 6b) verursacht in einem Pfahl eine
Druckwelle von einer bestimmten Länge
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Bild 6. Veranschaulichung des Problems

Beton itah ?ron

zz
Nc

Z.+Zs-*-s
rN

r2N

r3Nc

r"Nc

S/W 7. Analyse der Kraft Ns im Stahlstab

Bild 8. Das Anwachsen der Kraft Ns Im Stahlstab
mit der Zelt

s

NA=F0

(Bild 6a), die sich mit einer Geschwindigkeit

c nach links fortpflanzt. Wenn das
linke Ende als frei betrachtet werden
kann, kehrt die DraclSelle als Zugwelle

^^Sck (Bild 6c). Die dazu gehörende
Schnittkraft NA ist gleich der absoluten
Grösse von F0.

Die Druckwelle wird nicht beeinflusst
von eventuellen Rissen. Für die
Zugwelle gilt das jedoch nicht Die Situation
für einen völlig gerissenen Querschnitt
A-A (Bild. 6c) ist in Bild 6d wiedergegeben.

Anhand von Bild 7 analysieren wir, was
im Stahlstab passjst Dabei wird
vorausgesetzt, dass der Stahlstab starr mit dem
Beton verbunden ist.

Die Zugwelle uA, die von links kommt,
führt im Stahlstab zu einer Zugwelle mit
der Schpttkraft (14)

(14) Nc
2ZS

NA
Zb + Zs

An der rechten Seite wird diese Welle
reflektiert Es entsteht eine nach links
zurücklaufende Zugwelle mit der
Schnittkraft rNc. Diese wird wieder an
der linken Seite reflektiert, was eine nach
rechts laufende Zugwelle mit Schnittkraft

p-Nc zur Folge hat Das geht so
immer weiter. Und bei einer unbegrenzt
grossen Wellenlänge wird die Schnitt-
kraft im Stahlstab schliesslich gleich der
Summe 5 der unendlichen Reihe.

(18a) S Nc[l + r+ r2 + 1

Wie bekannt, ist diese Summe:

(18b) S Nc—^—
1 - r

Substition von Ausdruck (14) für iVcund
Ausdruck (17) für r führt zum Resultat:

(19) S=NA

Die Schnittkraft Ns im Stahlstab nähert
sich allmählich dem Wert der Schnittkraft

NA der einfallenden Zugwelle. Der
Vorgang ist in Bild 8 abgebildet und man
sieht hieraus, dass sich der Stahlstab

W&sbält wie eine Feder.

Idealisierung durch ein
Federmodell

Aufgrund des vorherigen Ergebnisses
betrachten wir jetzt ein System, das aus
zwei Betonstäben mit der Impedanz Zb
besteht, die durch eine Feder mit der
Federkonstanten k verbunden sind
(Bild 9a). Auf die Grösse von k wird später

eingegangen.

Wiederum kommt von links eine
Zugwelle uA. Beim Übergang auf die Feder

wird eine Welle uB reflektiert Im rechten
Betonstab entsteht eine nach rechts
laufende Welle uE.

Diesen Verschiebungen u entsprechen
wiederum Geschwindigkeiten v und
Schnittkräfte Wund wir können die
folgenden Beziehungen aufstellen:

(20) NA -Z-VA,NB Z-vB,

NE -Z-vE

Wir können jetzt den Index b weglassen.
Die Befestigungspunkte der Feder werden

mit 1 bzw. mit 2 angedeutet. Die
Verschiebungen dieser Punkte sind also

«! und u2, und die Geschwindigkeiten
sind Vi «i und v2 ü2. Mit einem Punkt
über den Buchstaben wird die Ableitung
nach t angedeutet.

Wir schreiben jetzt die beiden
Gleichgewichtsgleichungen hin (Bild 9c):

(21) Punkt \:NA + NB Ns

(22) Punkt 2: Ns NE

und die beiden Kompatibilitätsgleichungen
(Bild 9d):

(23) Punkt 1: vA + vB vj üx

(24) Punkt 2: v2 ü2 vE.

Wir fügen noch die konstitutive
Gleichung der Feder (Bild 9b) hinzu:

(25) N, Ku2 ~ «i)

Mit Hilfe der Ausdrücke (20) lässt sich
vB aus den Gleichungen (21) und (23)
eliminieren. Gefunden wird:

(26) Z«i - Ns 2ZvA - -2NA

Mit Hilfe von (20) folgt aus (22) und (24):

(27) Zü2 + Ns 0

Aus diesen beiden letzten Gleichungen
folgt:

(28) Z(ü2 - ii,) + IN, - 2NA.

Andererseits führt Gleichung (25) zu:

(29) HMi - ui) - Ns - 0.

Elimination von («j — üi) aus diesen beiden

Gleichungen führt zur Differentialgleichung

für die Federkraft Ns:

(30)
2k

Ns + Ns NA

Die Lösung dieser Differentialgleichung
mit der Anfangsbedingung Ns 0 für
t 0 lautet:

(31) NS'NA[1 -exp(-2-|f)]
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Der Verlauf der Federkraft N, mit der
Zeit ist in Bild 10a wiedergegeben. Die
Figur zeigt dasselbe Bild wie Bild 8, nur
kontinuierlich statt diskontinuierlich.
Die Federkraft nähert sich asymptotisch
dem Wert NA.

Wir geben noch die folgenden Ergebnisse:

Aus (26) folgt:

(32) ü, \lN, 2NA

-vA[l + exp (-2— t)].

Die Funktion ist in Bild 10b wiedergegeben.

Die Geschwindigkeit ü\ fängt an mit
einem Wert, der doppelt so gross ist wie
v^. Das Ende des linken Betonstabes
verhält sich in diesem Augenblick wie ein
freies Ende. Allmählich wird jedoch die
Feder zusammengedrückt und dies führt
zu einer anwachsenden Kraft auf das

Stabende, sodass die Geschwindigkeit ü\

allmählich abnimmt und sich asymptotisch

dem Wert vA nähert

Aus (27) folgt:

(33) ü2 \n,z 5

v^[l exp (-2— t)]

Die Geschwindigkeit ü2 verläuft gleichförmig

mit der Federkraft Ns.

Schliesslich geben wir noch:

(34) NB

und

-iV^exp (-2—r)

(35) vB vA exp (-2Ä
Z

t)

Die letzte Funktion ist in Bild 10c
wiedergegeben. Die reflektierte Welle nimmt
allmählich ab und nähert sich Null. Es
gibt dann also praktisch keine Reflexion
mehr. Die einfallende Welle uA passiert
nahezu unbehindert die Feder und
pflanzt sich im rechten Betonstab mit
nahezu derselben Intensität fort Mittlerweile

hat sich jedoch die Form dieser
Welle von einem Rechteck in die in
Bild 11 wiedergegebene Form geändert

Es ist schon erwähnt worden, dass das
Phänomen der Fortpflanzung von Wellen

in einem Stab eine Analogie zeigt zu
einem viskosen Dämpfer. Die
Differentialgleichung (30) ist darum auch analog
zur Differentialgleichung für ein System,
bestehend aus einer Feder und einem
Dämpfer, die nebeneinander (parallel)
geschaltet sind (Bild 12). WeU es sich hier
um zwei Betonstäbe, also zwei Dämpfer
handelt die hintereinander (in Serie)
geschaltet sind, ist die resultierende
Dämpfungskonstante (oder Impedanz)
gleich Z/2.

A/WWW»
b ®

a)

Ns—M/WW\A—-«- Ns

0 %
NSNS

— M, \ä=u, y,=ü3K2-U2

Bild 9. Das Federmodell

/VvV-

Bild II. Die Form der durchgelassenen Spannungs-
welle

Man könnte jetzt fragen, wie schnell
die Federkraft N, anwächst Um eine
Vorstellung zu bekommen, sehen wir
uns Bild 10a nochmals an. Die Tangente
am Ursprung der Kurve schneidet
die Asymptote in einem Punkt für den

Z
td —— gilt Der zugehörige Wert von N,

2k
beträgt 0,63 NA. Nach einer Zeitdauer
td (Z/2k) hat die Federkraft also gut
60% ihres endgültigen Wertes erreicht
In diesem Ausdruck ist die Impedanz
Z (EbAblc). Unter Vernachlässigung
der Stahleinlagen nehmen wir:

Eb — E-Modul des Betons

AB Querschnitt des Betons

Wir nehmen für die Feder
vereinfachend an, dass es sich um eine
üneare Feder mit einer Federkonstanten

E A*
k (E^ÄJI) —2p*- handle, worin

E, E-Modul des Stahls

A, Querschnitt der Bewehrung
1 Federlänge

Nehmen wir für die Federlänge das Doppelte

der mittleren Haftlänge der Stahlstäbe

im Beton, erhalten wir:

td IJkJkl
2 Er A, c

Ns (N

Tangente In t *0

0.63 NA

llllllll

Bild 10. Verlaufvon Ns, v\ m uy und vß mit der Zeit

1

,r*
^F

¦Lz Li
Bild 12. Das analoge System

Mit E,/Eb 5, A,IAb 0,01, c 4000 m/s
und einer mittleren Haftlänge auf jeder
Seite von 0,2 m, also 1 0,4 m, führt diese
Formel zum Ergebnis t& — 10 s, womit
man eine Vorstellung hat von der
Geschwindigkeit des Anwachsens der
Federkraft Ns.

Als Federkonstante kann man auch den
Wert nehmen, der sich aus einem
Ausziehversuch ergibt Im elastischen
Bereich ist sie jedoch etwas grösser.

Weitere Faktoren

Das Ergebnis dieser Analyse, nämlich
dass die Kraft N, in der Bewehrung an
der Stelle des Risses sehr schnell
anwächst bis zum Wert NA der Zugwelle,
führt zur Möglichkeit von grossen Stahl-
spannungen in der Bewehrung. Die
Grösse von NA in bezug zur axialen
Druckkraft F0 hängt beim Rammen von
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B m H

Ns NA| üffl

2 3 U

Bild 13. Der Verlauf von Ns bei einer beschränkten
Zeitdauer der Zugwelle

Ns NA| ^fMh,
N.-

0 1 f (ms

Bild 14. Der Verlauf von N, bei einer sinusförmigen
Zugwelle

3rt der Risse

der Mantelreibung und vom
Spitzenwiderstand des Pfahls ab, von Faktoren
also, die ausserhalb des Pfahls liegen
und auf die nicht weiter eingegangen
wird. Es ist jedoch klar, dass unter
Umständen Zugwellen mit grossen Kräften
NA auftreten können, sodass man fürchten

muss, die Bewehrung könnte
brechen. Obwohl diese Gefahr besteht ist
die Situation in Wirklichkeit weniger
schlimm, weil es einige Faktoren gibt,
welche die Grösse der Stahlspannung
herabsetzen. Diese Faktoren sind:

a) Die endliche Dauer der Zugwelle,

b) der Umstand, dass die Wellenform
meistens kein Rechteck ist

c) die Tatsache, dass die Zugwelle
nicht nur einen Riss, sondern mehrere

Risse verursacht

d) das elasto-plastische Verhalten der
Stahlstäbe.

Wir werden den Einfluss dieser verschiedenen

Faktoren kurz erläutern.

a) Die endliche Dauer der Zugwelle
bedeutet, dass die Kraft Ns nicht ganz zur
Entwicklung kommen kann. Nehmen
wir z. B. eine Wellenlänge von 8 m (Bild
13), dann kommt bei einer
Fortpflanzungsgeschwindigkeit von 4000 m/s der
Zuwachs von N, nach 2 • 10 s" zu Ende,
wonach der Wert von N, allmählich wieder

abnimmt auf Null. Bild 13 zeigt dieses

Bild für eine Federlänge von 0,40 m.

b) Die Form der Druckwelle weicht
meistens stark ab vom hier angenommenen

Rechteck, und das gilt umso mehr
für die reflektierte Zugwelle. Eine gute
Annäherung kann oft erreicht werden
mit einer gedämpften Sinuswelle. Es
braucht also einige Zeit bis die Zugkraft
im Querschnitt ihren Maximalwert
erreicht hat Dementsprechend wird das
Anwachsen von N, weniger rasch
stattfinden und der Maximalwert auch ge¬

ringer sein. Bild 14 zeigt den Verlaufvon
N, für eine normale Sinuswelle mit einer
halben Wellenlänge von 8 m. In diesem
Fall erreicht Ns nur etwa 60 % des
Maximalwertes NA.

c) Die Zugwelle verursacht immer
verschiedene Risse hintereinander. Die
Situation wird dadurch um ein Vielfaches
komplizierter. Wenn die von links einfallende

Zugwelle uA von konstanter Grösse
den Riss Nummer 1 (Bild 15) passiert hat,
wird sie an den Grenzflächen vom Riss
Nummer 2 reflektiert Von diesen
reflektierten Wellen sind die Druckwellen die
grösseren. Dies bedeutet, dass das
Anwachsen von N, im ersten Riss abgemindert

wird. Bild 16 zeigt für den Fall von
drei Rissen, wie in Bild 15 angedeutet
den Verlaufvon N, im eisten Riss füreine
sehr lange Welle von 32 m. Nach 8 ms
wird praktisch der Wert von NA - in
diesem Fall 1,6 MN - erreicht Selbstverständlich

sind diese Resultate mit einem
Computerprogramm errechnet worden.
Bild 17 zeigt den Verlauf von N, im dritten

Riss. Auch hier wird schliesslich
nahezu der Wert von NA erreicht

Die Risse wirken sich in Form einer
Dämpfung aus. Das bedeutet auch, dass

für eine kürzere, wirklichkeitsnahere
Wellenlänge, z. B. 8 m, der Maximalwert
von N, bei weiten nichterreichtwird.
Insbesondere trifft das zu für N, im ersten
Riss, wo nach 2 ms (äquivalent mit 8 m)
nur etwa ein Drittel des Maximalwertes
erreicht wird. Für N, im dritten Riss
trifft das weniger zu. Dieser Wert ist
bedeutend grösser.

d) Der wichtigste Faktor, der den
maximalen Wert der Kraft N, in der Bewehrung

herabsetzt, ist das elasto-plastische
Verhalten von Stahl. Die Herabminderung

der Steifigkeit eines Stahlstabes von
k auf kf ist für einen normalen Stahl in
Bild 18 wiedergegeben, wobei Ndie
Normalkraft und A die Verlängerung
darstellen. Eine exakte Lösung des Pro-

Btid 15. Stab mit drei Rissen

Bild 16. Verlauf von N, im ersten Riss (Weltenlänge 32 m)
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Bild 17. Verlauf von Ns Im dritten Riss (Wellenlänge 3 im)
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blems wird recht kompliziert, weshalb
hierauf nicht weiter eingegangen wird.
Wir nehmen vereinfachend an, dass

wegen des beträchtlichen Fliessvermögens
die tatsächliche Steifigkeit um einen Faktor

10 abgemindert werden kann. Das

bedeutet dass wir im Ausdruck (31) für
N, die Steifigkeit k ersetzen durch k
0,1 k. Die Stahlkraft Ns wird jetzt viel
langsamer anwachsen mit der Zeit (Bild
19). Es lässt sich zum Beispiel leicht
zeigen, dass N, für t 10 s jetzt nur den
Wert 0,095 NA erreicht, was ungefähr
15 % des vorherigen Werts aus Bild 10a

ist.

In unserem Beispiel war NA 1,6 MN.
Mit Ab 0,16 m2 wird die Betonspannung

ob 10 MN/m2 (100 kg/cm2). Mit
einer Bewehrung von 1 % würde das
zunächst gemäss Formel (31) zu einer Stahl-

*dffc

tl
0.095 N

Bild 18. Ein Kraft'Verlängerungsdiagramm

Spannung ab 1000 MN/m2 (104 kg/cm2)
führen. Die oben eingeführten
Reduktionsfaktoren werden diese Spannung
abmindern bis auf eine Grössenordnung
von 50 MN/m2 (500 kg/cm2).

Zusammenfassend kann man sagen,
dass die verschiedenen Reduktionsfak-

Bild 19. Verlauf von N, bei einer um ein Zehnfaches

geringeren Steifigkeit

toren dafür sorgen, dass im allgemeinen
die Bewehrung nicht versagen wird. Die
Natur ist uns gut gesinnt

Adresse des Verfassers: A. L. Bouma, Professor ix. für
nischen Hochschule Delft (Abt für Bauingenieure).
Stevinweg 1, NL-Delft 8.

Spannungsumlagerung in bewehrten
Betonkonstruktionen durch Kriechen und Schwinden
des Betons
Von A.S.G. Bruggeling, Delft

In diesem Beitrag wird gezeigt, dass die Spannungsumlagerung durch Schwinden und Kriechen
einen Einfluss auf das Verhalten von Betonkonstruktionen hat. Dazn werden einige Beispiele
besprochen. Es handelt sich um die Spannungsumlagerung in hoch bewehrten Betonstützen, in einem

schlaff bewehrten Biegeträger und in einem teilweise vorgespannten Biegeträger. Im letzten Fall
wird gezeigt, dass einfache Methoden zur Berechnung von teilweise vorgespannten Biegeträgern
gerechtfertigt sind.
This article is dealing with the influences of creep and shrinkage on the behaviour of concrete structures.

Three examples are discussed in detail, namely the redistribution of stress in columns with a

high percentage of reinforcement, a beam in reinforced concrete and a beam in partially prestressed
concrete.
It is shown that in the last case a simple design approach for partiall) prestressed concrete beams is

justified.
Dans cet article on demontre que le retrait et le fluage ont une influence sur le comportement des

constructions en beton. Trois examples sont choisis pour discuter ce phenomene: une pile avec an
haut pourcentage d'acier, une poutre en beton arme et une poutre en beton precontraint partielle-
ment. Pour le dernier cas il est aussi demontre qu'une methode simple pour le calcul des poutres en

beton precontraint partiellement est admissible.

Einleitung

Beton ist ein Material, das nach der
Verarbeitung und der Erhärtung schwindet
und unter Belastung kriecht

Diese Eigenschaften können das Verhalten

einer Betonkonstruktion beträchtlich
beeinflussen. Durch die Entwicklung der
Spannbetonbauweise hat man erst deut¬

lich die wichtige Rolle des Schwindens
und Kriechens erkannt: Die aktiven
Vorspannkräfte, die in eine Betonkonstruktion

eingeleitet werden, verringern sich
mit der Zeit, weil der Beton sich verkürzt.

Hat man einmal diese Erkenntnisse
gewonnen, wird auch klar, dass Schwinden
und Kriechen des Betons einen wichtigen

Einfluss auf das Verhalten einer
nicht vorgespannten Betonkonstruktion

haben können. Die zeitabhängige
Durchbiegung von Platten ist dafür ein
Beispiel.

In den sechziger Jahren ist die teilweise
Vorspannung entwickelt worden. Auch
dabei war es notwendig, zeitabhängige
Einflüsse in Betracht zu ziehen, weil sie
nicht hur die Rissbreite unter Vollast
beeinflussen können, sondern auch die
Dauerfestigkeit unter wiederholter
Belastung. Im folgenden Beitrag werden
einige Gedanken zu den Problemen
geäussert, die durch Spannungsumlagerung

in bewehrten und vorgespannten
Betonkonstruktionen hervorgerufen
werden können, mit dem Ziel, einen
Zusammenhang zwischen dem Verhalten

unterschiedlicher Konstruktionen
nachzuweisen.

Betonstützen

Besonders in Gebäuden spielen die
vertikalen Tragglieder - die Stützen - eine
wichtige Rolle. Die im Erdgeschoss oder
im Keller stehenden Stützen tragen oft
eine nahezu zentrische, hohe Belastung.
Um die Abmessungen dieser Stützen zu
beschränken, wird ein ziemlich hoher
Bewehrungsgehalt gewählt.

Nach der Inbetriebnahme des Gebäudes
steuert eine Klimaanlage (Zentralheizung)

das Klima auch der Räume, in
denen sich die Stützen befinden.
Meistens ist die relative Feuchtigkeit der
Luft gering und die Temperatur nahezu
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