Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 101 (1983)

Heft: 6: Prof. Dr. Bruno Thürlimann zum 60. Geburtstag

Artikel: Über Nachweise im Gebrauchszustand

Autor: Birkenmaier, Max

DOI: https://doi.org/10.5169/seals-75057

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über Nachweise im Gebrauchszustand

Von Max Birkenmaier, Zürich

Einführung

Im letzten Jahrzehnt ist ein grosser Wandel in der Bemessungspraxis des Stahlbetons eingetreten. Statt des Nachweises von zulässigen Spannungen in Beton und Stahl mittels eines konstanten Elastizitätsverhältnisses $n = E_a/E_b$ (n-Verfahren) wird der Bemessung der Bruchzustand des Querschnittes oder Bauteils zugrunde gelegt und ein aus Erfahrung gewonnener Sicherheitsfaktor eingehalten. Dieses Vorgehen erlaubt viel besser als bisher, die Festigkeitseigenschaften von Beton und Stahl richtig zu beurteilen und auszunützen. Für die Bestimmung des Grenzzustandes der Tragfähigkeit werden auf die Beanspruchungsart (Biegung, Biegung mit Querkraft usw.) abgestimmte, einfache Berechnungsmodelle verwendet. Bei der Herleitung solcher Modelle werden die Regeln der Plastizitätstheorie eingehalten und die AnwendungsgrenzendieserTheorieaufgezeigt[1,2,3].

Nach der neuen Bemessungspraxis muss auch nachgewiesen werden, dass sich der Bauteil im Gebrauchszustand, d. h. unter Nutzlast und anderen Einflüssen, einwandfrei verhält. Unter anderem muss dabei kontrolliert werden, dass nicht zu breite Risse entstehen und dass die Verformungen des Bauteils nicht zu gross werden. Man verwendet dazu Berechnungsformeln, mit denen man Rissabstand und Rissbreite sowie die Steifigkeit eines Balkenabschnittes angenähert ermitteln kann. Solche halbempirischen Formeln werden meist aufgrund von Beobachtungen an Versuchsbalken hergeleitet [4, 5, 6].

Die Herleitung solcher Formeln aufgrund eines Berechnungsmodells war erst möglich, als Rehm [7] das Verbundgesetz für einbetonierte Betonstähle, d. h. die Beziehung zwischen Verbundspannungen und Gleitweg, bekanntgemacht hatte. Aufbauend auf dieser Erkenntnis sind in der Folge eine Reihe von Arbeiten entstanden, die sich mit der genaueren Berechnung von Stahlbeton-Balkenabschnitten befassten, wobei Rissebildung, Verbundverhalten, Betonverformung usw. zutreffend berücksichtigt wurden [8].

Nachfolgend wird für Nachweise im Gebrauchszustand ein einfaches Berechnungsmodell vorgestellt, bei dem das Verbundverhalten der Stähle mitberücksichtigt wird (sog. «Erweitertes n-Verfahren»).

Grundlagen

In Bild 1 ist ein unter konstanter Momentenbeanspruchung M stehender Balkenabschnitt dargestellt, der Risse im Abstand a aufweist.

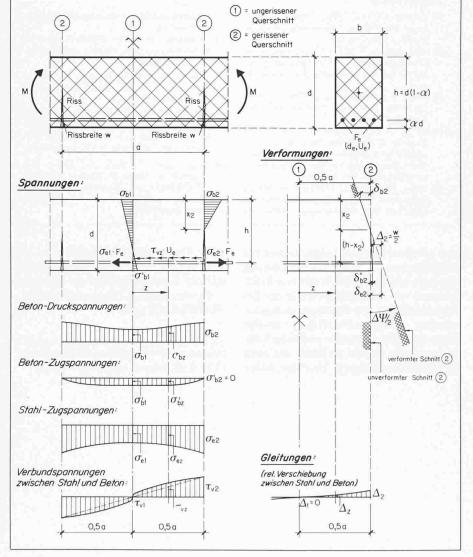
Erweitertes Berechnungsmodell

Im eingerissenen Querschnitt 2 treten am oberen Rande Druckspannungen σ_{h2} und in den Stahleinlagen Zugspannungen oe2 auf. Die resultierende Schnittgrösse dieser im Querschnitt wirkenden Druck- und Zugspannungen entspricht dem äusseren Moment M. Da der Balken im Gebrauchszustand betrachtet wird, kann zwischen Spannungen und Verformungen sowohl für Beton wie auch für Stahl ein linearer, d. h. elastischer Zusammenhang angenommen werden. Demnach sind die Betondruckspannungen im Schnitt ② linear über die Höhe x2 der Druckzone

Der ungerissene Querschnitt (1) liegt in der Mitte zwischen zwei Rissen. Das äussere Moment M bewirkt in diesem Schnitt (1) am obern Rand Betondruckspannungen σ_{b1} , am untern Rand Betonzugspannungen of und in den Stählen Zugspannungen σ_{e1} . Es wird angenommen, dass die Betonspannungen linear über die Balkenhöhe verteilt sind. Obwohl besonders bei engerem Rissabstand eine nichtlineare Verteilung der Betonspannung (Scheiben-Spannungszustand) möglich ist, wird für das nachfolgend entwickelte einfache Berechnungsmodell der lineare Verlauf beibehalten.

Die Öffnung des Risses im Schnitt (2) d. h. die Rissbreite w zeigt an, dass zwischen den Stahlstäben und dem umgebenden Beton eine relative Verschiebung oder Gleitung von der Grösse Δ_2 stattgefunden hat. Durch solche Verschiebungen werden Verbundspannungen Tyz zwischen Beton und den profilierten Stahlstäben geweckt. Wie in Bild 1 schematisch dargestellt, wachsen diese

Bild 1. Spannungen und Verformungen im Stahlbeton-Balkenabschnitt



Verschiebungen Δ_z vom $\Delta_1 = 0$ im Schnitt ① auf Δ_2 im Schnitt ② stetig an. Entsprechend nehmen auch die Verbundspannungen von τ_{v1} auf τ_{v2} zu. Es wird somit ein solcher Rissabstand a vorausgesetzt, bei dem sich die vom Riss (2) ausgehenden Verbundspannungen τ_{vz} bis zum Schnitt 1 erstrecken. Durch diese Verbundspannungen τ_{νz} werden die Zugspannungen in den Stählen von σ_{e2} im Rissequerschnitt ② auf σ_{el} im Schnitt ① abgebaut.

Rehm [7] hat gezeigt, dass die Grösse der an der Stelle z des Stabes wirkenden lokalen Verbundspannung τ_{vz} aus der daselbst auftretenden gesamten Verschiebung Δ_z bestimmt werden kann. Mittels sorgfältig durchgeführter Ausziehversuche wurde von Martin und Noakowski [9] die in Bild 2 angegebene «Verbund-Verschiebungs-Charakteristik» von Betonstählen ermittelt. Als Mass für die Stärke der Profilierung eines Stahles wurde das Verhältnis f_R = A_R/A_M verwendet. (A_R = senkrecht zur Stabachse projizierte Fläche der am Stabumfang vorhandenen Rippen; A_M = die zu A_R gehörige Mantelfläche des Stabes mit Nenndurchmesser d_e .) Wie Bild 2 zeigt, ist bei $\Delta = 0$ nur ein geringer Haftverbund wirksam; mit zunehmender Verschiebung Δ wird der durch die Profilierung gegebene Scherverbund wirksam, wodurch τ_v rasch ansteigt. Die Versuche haben zudem gezeigt, dass die Grösse der Verbundspannungen linear mit der Würfeldruckfestigkeit des Betons β, anwachsen; daher sind in Bild 2 bezogene Werte τ_v/β_w aufgetragen.

Lage der Nullinie

Es ist leicht einzusehen, dass eine genaue Berücksichtigung der nicht linearen Verbundbeziehungen gemäss Bild 2 in einer Stahlbeton-Berechnung auf komplizierte, unhandliche Formeln führen müsste. Daher wird in der folgenden Ableitung vereinfachend angenommen, dass die Verbundspannungen τ_{vz} linear von $\tau_{v1} = 0$ (Schnitt ①) auf τ_{v2} (Schnitt 2) anwachsen (Bild 1). Die Verbundbeziehungen gemäss Bild 2 werden somit nur bei der Ermittlung von τ_{y2} herangezogen, d. h. nur die im Schnitt 2 auftretende Gleitung

$$\Delta_2 = \frac{w}{2}$$

ist genau berücksichtigt.

Den durch Verbundspannungen bewirkten Abbau der Stahlspannungen von σ_{e2} im Schnitt ② auf σ_{e1} im Schnitt 1) erhält man aus folgender Gleichgewichtsbetrachtung:

(2)
$$\sigma_{e1} \cdot F_e = \sigma_{e2} \cdot F_e - \tau_{v2} \cdot U_e \cdot \frac{a}{4}$$

Dabei ist F_e = Querschnitt und U_e =

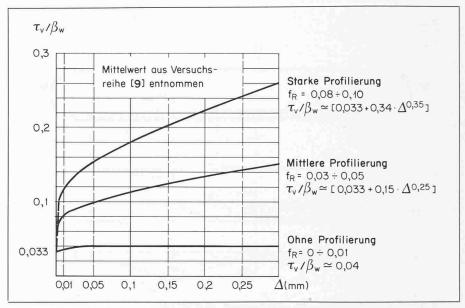


Bild 2. Verbund-Verschiebungs-Charakteristik von Betonstählen

Umfang der Stahlstäbe. Mit F_e/U_e = $d_e/4$ (d_e = Stabdurchmesser) folgt aus

(2a)
$$\sigma_{e1} = \sigma_{e2} - \tau_{v2} \cdot \frac{a}{d_e}$$

Die Stahlspannung σ_{e2} im eingerissenen Querschnitt 2 folgt aus der bekannten Formel:

(3)
$$\sigma_{e2} = \frac{M}{F_e \cdot (h - x_2/3)}$$

Mit $\mu = F_e/bh$ und $\xi_2 = x_2/h$ ist

(3a)
$$\sigma_{e2} = \frac{M}{bh^2} \cdot \frac{1}{\mu \cdot (1 - \xi_2/3)}$$

Der Nullinien-Abstand x₂ muss aus einer Verformungsbedingung abgeleitet werden, welche für den Balkenabschnitt (1) bis (2) zu formulieren ist.

Aus der Darstellung in Bild 1 folgt anschaulich diese Verformungsbedingung

(4)
$$\delta_{b2} = \delta_{e2} \frac{x_2}{(h-x_2)}$$

Die Beton-Randverformung δ_{b2} folgt

$$\delta_{b2} = \int_{0}^{a/2} \frac{\sigma_{bz}}{E_b} d_z$$

Ohne grossen Fehler auf das Endergebnis kann vereinfachend geschrieben werden:

$$(5) \qquad \delta_{b2} \simeq \frac{\sigma_{b2}}{E_b} \cdot \frac{a}{2}$$

Für die Stahlverformung δ_{e2} muss die durch die Verbundspannung τ_{vz} bewirkte Veränderlichkeit der Stahlspannungen oez berücksichtigt werden.

Bei dreieckförmiger Verteilung von τ_{v2} verläuft σ_{e2} zwischen σ_{e1} und σ_{e2} nach quadratischer Parabel. Somit ist

$$\delta_{e2} = \frac{\sigma_{e2} \cdot a}{2 \cdot E_e} - \frac{(\sigma_{e2} - \sigma_{e1}) \cdot a}{3 \cdot E_e}$$

oder

(6)
$$\delta_{e2} = \frac{(\sigma_{e2} + 2 \cdot \sigma_{e1}) \cdot a}{6 \cdot E_e}$$

Gl. (5) und Gl. (6) in Gl. (4) eingesetzt ergibt:

$$\frac{\sigma_{b2} \cdot a}{2 \cdot E_b} = \frac{(\sigma_{e2} + 2 \cdot \sigma_{e1}) \cdot a}{6 \cdot E_e} \cdot \frac{x_2}{(h - x_2)}$$

Am Rissequerschnitt gilt zudem:

$$\frac{\sigma_{b2} \cdot b \cdot x_2}{2} = \sigma_{e2} \cdot F_e \quad \text{oder}$$

$$\sigma_{b2} = \frac{2 \cdot \sigma_{e2} \cdot F_e}{b \cdot x_2}$$

Daher ist auch:

$$\frac{\sigma_{e2} \cdot F_e \cdot a}{E_b \cdot b \cdot x_2} = \frac{(\sigma_{e2} + 2 \cdot \sigma_{e1}) \cdot a}{6 \cdot E_e} \cdot \frac{x_2}{(h - x_2)}$$

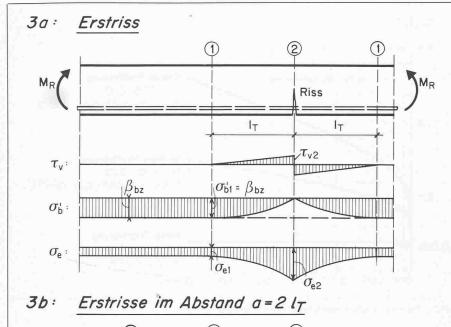
oder mit: $E_e = n \cdot E_b$:

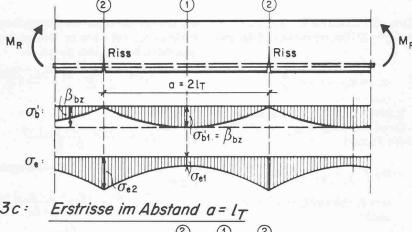
$$x_2^2 - \frac{2 \cdot n \cdot F_e}{b} \cdot \frac{3 \cdot \sigma_{e2}}{(\sigma_{e2} + 2 \cdot \sigma_{e1})}$$
$$\cdot (h - x_2) = 0$$

Setzt man:

(7)
$$\lambda = \frac{3 \cdot \sigma_{e2}}{(\sigma_{e2} + 2 \cdot \sigma_{e1})}$$
$$= \frac{3}{(1 + 2\sigma_{e1}/\sigma_{e2})}$$

so erhält man die folgende Bestimmungsgleichung für den Nullinien-Abstand x_2 :





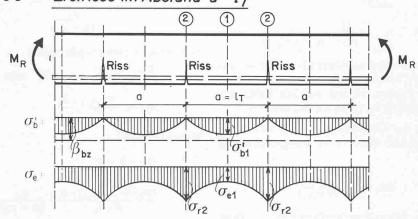


Bild 3. Erstriss-Bildung

(8)
$$x_2^2 - \frac{2 \cdot n \cdot \lambda \cdot F_e}{b} (h - x_2) = 0$$

 $\xi_2 = x_2/h$ und $\mu = F_e/b \cdot h$ mit:

ist auch:

(9)
$$\xi_2^2 - 2 \cdot n \cdot \lambda \cdot \mu (1 - \xi_2) = 0$$

Die Auflösung der quadratischen Gleichung ergibt:

(10)
$$\xi_2 = n \cdot \lambda \cdot \mu \left[\sqrt{1 + \frac{2}{n \cdot \lambda \cdot \mu}} - 1 \right]$$
 Die Rissbreite wergibt sich gemäss Bild 1 aus der Stahlverformung δ_{e2} und der

Durch den Faktor λ wird in Gl. (10) der Abbau der Stahlspannungen von σ_{e2} im Schnitt (2) auf σ_{e1} im Schnitt (1) infolge Verbundspannungen berücksichtigt. Bei engem Rissabstand ist $\sigma_{e1} = \sigma_{e2}$ und damit $\lambda = 1,0$; Gl. (10) stimmt in diesem Falle mit der bekannten Gleichung der klassischen Stahlbetontheorie über-

Rissbreite

1 aus der Stahlverformung δ_{e2} und der

in der Höhe des Stahles vorhandenen Betonverformung $\delta_{b2}^{"}$ zu:

$$(11) w = 2 \cdot (\delta_{e2} - \delta_{b2}'')$$

Im Vergleich zu δ_{e2} ist die zugehörige Verformung δ_{b2}'' klein, so dass man ohne grossen Fehler in Gl. (11) $\delta_{b2}^{"} \simeq 0$ annehmen kann. Setzt man zudem δe2 nach Gl. (6) in Gl. (11) ein, so wird:

(12)
$$w = \frac{(\sigma_{e2} + 2 \sigma_{e1})}{3 E_e} \cdot a$$

Führt man den Faktor λ nach Gl. (7) ein, so ist auch

(12a)
$$w = \frac{\sigma_{e2}}{\lambda \cdot E_e} \cdot a$$

Wird a nach Gl. (2a) eingesetzt, so

(12b)
$$w = \frac{\sigma_{e2} \cdot (\sigma_{e2} - \sigma_{e1})}{\lambda \cdot E_e \cdot \tau_{v2}} \cdot d_e$$

Krümmung

Der Balkenabschnitt Bild 1 verformt sich unter Momentenbeanspruchung M auf der Länge a um den Winkel:

$$\Delta \psi = 2 \cdot \frac{\delta_{e2}}{(h - x_2)}$$

Die auf der Strecke a vorhandene mittlere Krümmung χ beträgt somit:

$$\chi = \frac{1}{\varrho} = \frac{\Delta \psi}{a} = \frac{2 \cdot \delta_e}{(h - x_2) \cdot a}$$

Mit δ_{e2} nach Gl. (6) wire

$$\chi = \frac{1}{\varrho} = \frac{(\sigma_{e2} + 2 \cdot \sigma_{e1})}{3 \cdot E_e \cdot (h - x_2)}$$

Führt man wiederum den Faktor λ nach Gl. (7) ein, so ist:

$$\chi = \frac{1}{\varrho} = \frac{\sigma_{e2}}{\lambda \cdot E_e \cdot (h - x_2)} = \frac{\sigma_{e2}}{\lambda \cdot E_e \cdot h \cdot (1 - \xi_2)}$$

Mit σ_{e2} nach Gl. (3) und $E_e = n \cdot E_b$ ist

(13)
$$\chi = \frac{1}{\varrho} = \frac{M}{E_b \cdot b \cdot h^3} \cdot \frac{1}{n \cdot \lambda \cdot \mu \cdot (1 - \xi_2) \cdot (1 - \xi_2/3)}$$

Bezieht man die Krümmung auf den homogenen Betonquerschnitt mit J_b = $b \cdot d^3/12 = b \cdot h^3/12 \cdot (1 - \alpha)^3$

so erhält man:

(13a)
$$\chi = \frac{1}{\varrho} = \frac{M}{[E_b \cdot J]};$$

$$[E_b \cdot J] = k \cdot E_b \cdot J_b$$

$$k = [12 \cdot (1 - \alpha)^3 \cdot n \cdot \lambda \cdot \mu \cdot (1 - \xi_2) \cdot (1 - \xi_2/3)]$$

Der Faktor k beschreibt die Abminde-

rung der Biegesteifigkeit infolge Rissebildung.

Rissmoment

Die ersten Risse entstehen, wenn im homogenen, ungerissenen Balken die Beton-Randspannung σ_{b1}^{\prime} die Biegezugfestigkeit β_{bz} überschreitet. Das bei σ_{b1}^{\prime} = β_{bz} vorhandene Moment $M=M_R$ wird als Rissmoment bezeichnet.

(14)
$$M_R = \beta_{bz} \cdot w_{iu}$$

Dabei ist W_{iu} das Widerstandsmoment des ideellen Querschnittes, berechnet mit der vollen Betonfläche und der n-fachen Stahlfläche. Bei geringem Bewehrungsgehalt kann $W_{iu} = W_{bu}$ gesetzt werden und man erhält:

(14a)
$$M_R = \beta_{bz} \cdot \frac{bh^2}{6(1-\alpha)^2}$$

Die unter M_R im homogenen Verbundquerschnitt vorhandene geringe Stahlspannung folgt aus:

$$\sigma_{el} \simeq n \cdot \beta_{bz} \cdot \frac{(d/2 - \alpha d)}{d/2};$$

oder:

(14b)
$$\sigma_{e1} = n \cdot \beta_{bz} \cdot (1 - 2\alpha)$$

Erstriss-Abstand

Auf Bild (3a) ist der Verlauf der Verbundspannungen τ_v , der Betonspannungen σ_{b1} und der Stahlspannungen σ_e angegeben, wie diese nach Bildung eines Einzelrisses unter $M=M_R$ sich einstellen. Im Abstand L_T (sog. Eintraglänge) vom Riss ist der ungestörte homogene Zustand wieder vorhanden. Mit Hilfe der Eintragslänge L_T lässt sich der mögliche Abstand der Erstrisse unter $M=M_R$ festlegen. Aus Bild 3b) und 3c) kann entnommen werden, dass solche Erstrisse nur in einem Abstand, der kleiner als $2 \cdot L_T$ oder grösser als L_T ist, auftreten können. Somit ist:

$$(15) L_T < a < 2 \cdot L_T$$

Für die üblichen Nachweise ist es zweckmässig, von einem Erstrissabstand $a = 1,5 L_T$ auszugehen.

Zur Bestimmung der Eintraglänge L_T betrachtet man den Zustand Bild 3b) mit $a = 2L_T$ und erhält aus Gl. (2a):

(16)
$$a = 2L_T = \frac{(\sigma_{e2} - \sigma_{e1})}{\tau_{v2}} \cdot d_e$$

Die Stahlspannung σ_{e1} im homogenen Mittelschnitt ① folgt aus Gl. (14b), während σ_{e2} nach Gl. (3a) mit $M=M_R$ bestimmt wird (siehe Beispiel).

Rissabstand bei Laststeigerung

Bei Steigerung des Momentes über M_R hinaus, d. h. $M > M_R$, kann der Erstriss-

abstand $a=1,5L_T$ so lange beibehalten werden, bis im Mittelschnitt ① wieder $\sigma_{b1}'=\beta_{bz}$ erreicht ist. Dann bildet sich dort ein neuer Riss, und die Rechnung muss mit dem neuen Rissabstand a=0,75 L_T fortgeführt werden usw.

Man kann den Momentenbereich, bis zu welchem ein bestimmter Rissabstand a beibehalten werden kann, wie folgt eingrenzen: Das im Schnitt ① wirkende Biegemoment M wird von der mit Stahl vorhandenen Zugkraft $Z_{e1} = \sigma_{e1} \cdot F_e$ und von den über die Querschnittshöhe linear verteilten Betonspannungen σ_{b1} gebildet.

Man kann somit anschreiben:

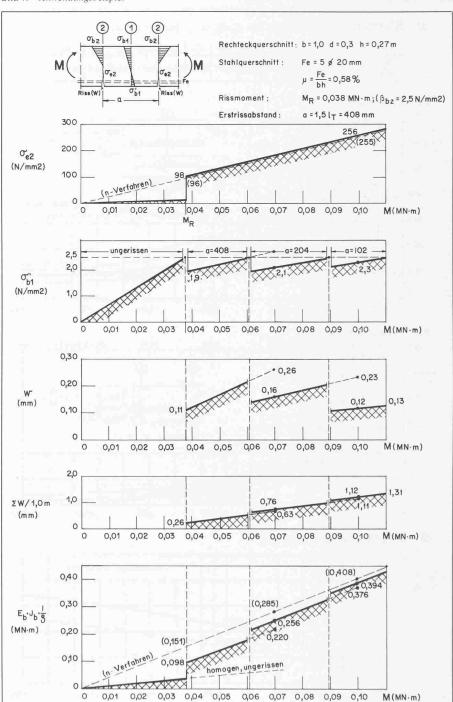
(17)
$$M = \sigma_{e1} \cdot F_e \cdot (h - d/3) + \sigma'_{b1} \cdot \frac{b \cdot d^2}{6}$$

Dabei ist der Abstand der Zugkraft Z_{e1} vom oberen Kernpunkt und $bd^2/6$ das Widerstandsmoment des Betonquerschnittes. Mit $h = d(1 - \alpha)$ erhält man daraus die folgende Bedingungsgleichung:

(18)
$$\sigma'_{b1} = \frac{M}{b \cdot h^2} \cdot 6 \cdot (1 - \alpha)^2 - \sigma_{e1}.$$

$$\mu \cdot (4 - 6\alpha) \cdot (1 - \alpha) \leq \beta_{bz}$$

Bild 4. Anwendungsbeispiel



Anwendungsbeispiel

Bei Anwendung der Formeln ist es zweckmässig, von geschätzten Zahlenwerten für λ auszugehen und diese wenn nötig zu korrigieren.

Rechteckquerschnitt

b = 1.0 m; d = 0.3 m; h = 0.27 m; $bh^2 = 0.0729 \text{ m}^3$; $\alpha = 0.1$ $\beta_w = 30 \text{ N/mm}^2$; $\beta_{bz} = 2.5 \text{ N/mm}^2$ $F_e = 5 \varnothing 20 \text{ mm} = 1571 \text{ mm}^2$; $\mu = 0.58\%$; mittlere Prof. $f_R \sim 0.04$ $\sigma_{ef} = 460 \text{ N/mm}^2$; $E_e = 210 000 \text{ N/mm}^2$, n = 7

Rissmoment

(14a)
$$\frac{M_R}{bh^2} = \frac{\beta_{bz}}{6(1-\alpha)^2} = 0.514 \text{ N/mm}^2; M_R = 0.038 \text{ MN} \cdot \text{m}$$

Eintraglänge l_T für $M = M_R$:

(Betrachte dazu Zustand gemäss Bild 3b mit $a = 2L_T$ Schätze $\lambda = 2,4$

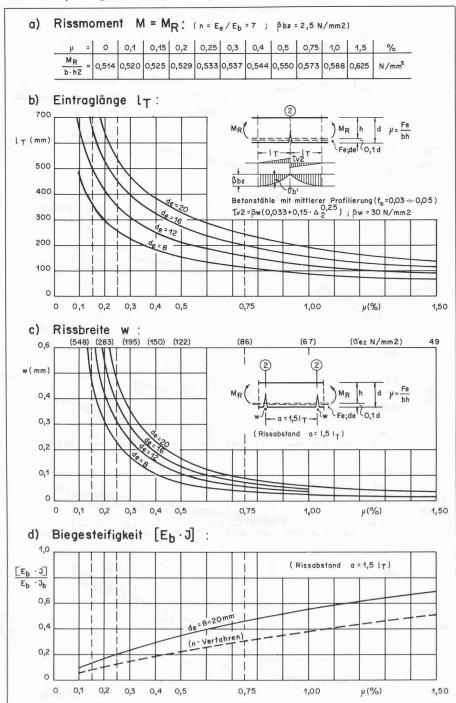
(10): $\xi_2 = 0.355$

(3a): $\sigma_{e2} = 100.5 \text{ N/mm}^2; (14b): \sigma_{e1} =$ $n \cdot \beta_{bz} (1 - 2 \alpha) = 14.0 \text{ N/mm}^2$

(7): $\lambda = 2,35$ (Schätzung $\lambda = 2,4$ genügt)

(12b): $w = \frac{0,352}{\tau_{v2}}$

Bild 5. Beanspruchung mit Rissmoment $M = M_R$



$$\Delta_2 = \frac{0.176}{\tau_{v2}}$$

Bild 2: $\tau_{v2} = 30 [0.033 + 0.15 \cdot \Delta_2^{0.25}]$

Auflösen durch Probieren gibt:

 $\tau_{v2} = 3.17 \text{ N/mm}^2$

(16): $a = 2 \cdot L_T = 544 \text{ mm}$; $L_T = 272 \text{ mm}$ Erstrissabstand: $a = 1.5 \cdot L_T = 408$

Zustand $M = M_R$:

Rissabstand: a = 408 mm

Schätze $\lambda = 1.8$

(10): $\xi_2 = 0.316$; (3a): $\sigma_{e2} = 99.1 \text{ N/mm}^2$

(12a): w = 0.107 mm; $\Delta_2 = 0.053 \text{ mm}$

Bild 2: $\tau_{v2} = 3,15 \text{ N/mm}^2$; (2a): $\sigma_{e1} =$ 34,7 N/mm²

(7): $\lambda = 1,76$ (Schätzung λ genügt)

(18) $\sigma'_{b1} = 1.9 \text{ N/mm}^2$

(13a): $[E_b \cdot J] = [0,383] \cdot E_b \cdot J_b;$

$$E_b J_b \cdot \frac{1}{\varrho} = 0,099 \,\mathrm{MN} \cdot \mathrm{m}$$

Zustand $M = M_{ser}$:

Bruchmoment

$$M_u = \sigma_{ef} \cdot F_e \cdot h (1 - 0.5 \xi_u);$$

$$\xi_{u} = \frac{\sigma_{ef} \cdot F_{e}}{0.6 \cdot \beta_{w} \cdot b \cdot h}$$

 $M_{u} = 0.180 \, \text{MN} \cdot \text{m}$

Moment unter max. Gebrauchslast:

$$M_{max} = M_u/1.8 = 0.100 \,\mathrm{MN} \cdot \mathrm{m}$$

Moment unter massgebender Gebrauchs-

$$M_{ser} = 0.070 \cdot M_{max} = 0.100 \,\text{MN} \cdot \text{m}$$

Rissabstand:

$$a = 0.75 \cdot L_T = 204 \text{ mm}$$

Schätze $\lambda = 1,15$

(10): $\xi_2 = 0,262$;

 $(3a): \sigma_{e2} = 181.9 \text{ N/mm}^2$

(12a): w = 0.155 mm; $\Delta_2 = 0.077 \text{ mm}$; Bild 2: $\tau_{v2} = 3,36 \text{ N/mm}^2$

(2a): $\sigma_{e1} = 147.6 \text{ N/mm}^2$; (7): $\lambda = 1.14$ (Schätzung λ genügt)

(18): $\sigma'_{h1} = 2,1 \text{ N/mm}^2$; somit ist Annahme a = 204 mm zulässig

> Hinweis: Wenn $\sigma'_{b1} > \beta_{bZ}$ ist, muss Rechnung mit Rissabstand a = $0.375 L_T = 102 \text{ mm wiederholt}$

(13a):
$$[E_b \cdot J] = [0,273] E_b \cdot J_b;$$

 $E_b \cdot J_b \cdot \frac{1}{0} = 0,256 \text{ MN} \cdot \text{m}$

Darstellung der Ergebnisse

In Bild 4 sind die Ergebnisse - ergänzt durch Rechnungen für andere M-Werte - aufgetragen. Solche Zahlenrechnungen werden mit Vorteil auf einem programmierbaren Taschenrechner durchgeführt. Man sieht, dass die Stahlspannung σ_{e2} nur wenig von den Werten der üblichen n-Berechnung abweicht. Erreicht die Betonzugspannung den Wert $\sigma'_{b1} = \beta_{bZ} = 2.5 \text{ N/mm}^2$, so halbiert sich jeweils der Rissabstand a, wobei die im Zwischenschnitt ① wirkende Zugspannung σ_{b1} jetzt kleiner als β_{bZ} ist.

Bemerkenswert ist die Tatsache, dass der mit wachsendem Moment M sprunghaft sich ändernde Rissabstand a masgebend die Rissbreite w beeinflusst. Halbiert sich der Rissabstand a, so reduziert sich die Rissbreite w etwa auf die Hälfte.

Wie dargestellt, kann der Rissezustand eines Balkenabschnittes auch durch Σ_w je 1,0 m, d. h. Anzahl der Risse je 1,0 m mal Rissbreite w, beschrieben werden. Das aufgetragene Momenten-Krümmungsdiagramm deutlich den Einfluss der Rissebildung.

Schlussfolgerungen

Durch Einbau des Rehmschen Verbundgesetzes in das bekannte n-Verfahren erhält man ein Berechnungsmodell, mit dem u. a. der Rissabstand a, die Rissbreite w und die Steifigkeit $[E_b \cdot J]$ in einem Stahlbetonbalken bestimmt werden können (sogenanntes «erweitertes n-Verfahren»).

Vergleiche mit Beobachtungen an Versuchsbalken zeigen, dass mit dem vorgeschlagenen Modell das Risseverhalten im Gebrauchszustand zutreffend beschrieben wird. Zur Vereinfachung der Nachweise können mit dem Verfahren auch Nachweis-Diagramme aufgestellt werden. Als Beispiel sind in Bild 5 für den Zustand Rissmoment $M = M_R$ sowohl die Eintraglänge L_T wie auch die Rissbreite w und die Biegesteifigkeit [E_b · J] in Funktion von Bewehrungsgehalt μ und Stabdurchmesser d_e aufgetragen. Auf Bild 6 sind analoge Diagramme für den Momentenbereich $M > M_R$ aufgetragen. Als Beispiel ist hier das beim Rissabstand $a = 0.75 L_T$ grösstmögliche Moment $M = M_2$ gewählt. Bei $M = M_2$ erreicht nämlich die Betonzugspannung σ'_{b1} den Wert β_{bZ} und die zu a =0,75 L_T gehörende Rissbreite w wird hier ein Maximum (siehe Bild 4). Wie dargestellt, ist beim Rissabstand a =0,75 L_T die Biegesteifigkeit $[E_b \cdot J]$ nur noch wenig grösser als nach dem n-Ver-

Man kann zeigen, dass für engere Rissabstände, d. h. für Momente $M > M_2$, die errechneten Rissbreiten eher kleiner sind als bei $a = 0.75 L_T$, so dass man Bild 6 zur Beschreibung der grösstmöglichen Werte für w verwenden kann.

Die in Bild 5 und 6 als Beispiele aufgetragenen Diagramme leisten auch beim Aufstellen einfacher Nachweisregeln (z.B. zulässige Stahlspannungen in Funktion von μ und d_e) gute Dienste.

Die Verwendung eines «geschlosse-

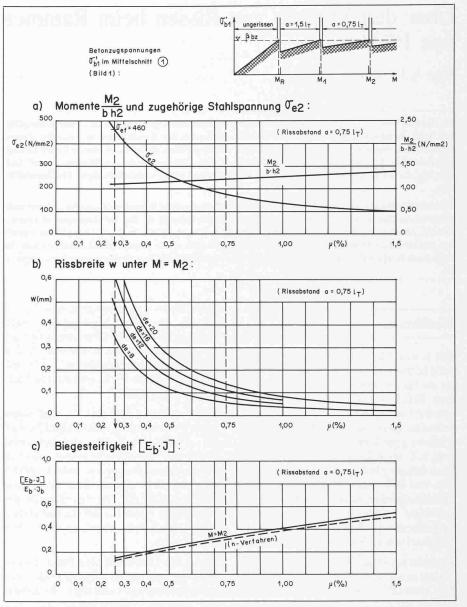


Bild 6. Beanspruchung mit Moment $M = M_2$ (Berechnungsannahmen siehe Bild 5)

Literatur

- [1] Thürlimann, B., Grob, J., Lüchinger, P. (1975): «Torsion, Biegung und Schub in Stahlbetonträgern». Vorlesungen, Institut für Baustatik und Konstruktion ETH Zü-
- [2] Marti, P., Thürlimann, B. (1977): «Fliessbedingung für Stahlbeton mit Berücksichtigung der Betonzugfestigkeit». Beton- und Stahlbetonbau Heft 1
- [3] Marti, P. (1980): «Zur plastischen Berechnung von Stahlbeton». Institut für Baustatik und Konstruktion ETH Zürich, Bericht Nr. 104
- [4] «Code Modèle CEB-FIP pour les structures en béton», 3e édition, 1978
- [5] Favre, R., Koprna, M., Putallaz, J.-C. (1981): «Deformation of Concrete Structu-

- res». Theoretical Basis for the Calculation. IVBH-Berichte
- Menn, Ch. (1981): «Gebrauchsfähigkeit von Stahlbetontragwerken». Schweizer Ingenieur und Architekt, Heft 1-2
- [7] Rehm, G. (1961): «Über die Grundlagen des Verbundes zwischen Stahl und Beton». Deutscher Ausschuss für Stahlbeton, Heft
- [8] Noakowski, P. (1978): «Die Bewehrung von Stahlbetonbauteilen bei Zwangsbeanspruchung infolge Temperatur». Deutscher Ausschuss für Stahlbeton, Heft 296 (darin ausführliches Literaturverzeichnis)
- [9] Martin, H., Noakowski, P. (1981): «Verbundverhalten von Betonstählen. Untersuchung auf Grundlage von Ausziehversuchen». Deutscher Ausschuss für Stahlbeton, Heft 316

nen» Berechnungsmodelles in der hier gezeigten Art ist oft vorteilhaft, denn mit nur wenigen Modellparametern in unserem Falle $n = E_e/E_b$; $\tau_v = f(\Delta)$; β_{bz} - kann ein komplexer physikalischer Vorgang einfach erfasst werden.

Adresse des Verfassers: Dr. M. Birkenmaier, Stahlton AG, Riesbachstr. 57, 8034 Zürich.