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Uber Nachweise im Gebrauchszustand

Von Max Birkenmaier, Ziirich

Einfiihrung

Im letzten Jahrzehnt ist ein grosser
Wandel in der Bemessungspraxis des
Stahlbetons eingetreten. Statt des Nach-
weises von zuldssigen Spannungen in
Beton und Stahl mittels eines konstan-
ten Elastizitatsverhiltnisses n = E,/E,
(n-Verfahren) wird der Bemessung der
Bruchzustand des Querschnittes oder
Bauteils zugrunde gelegt und ein aus
Erfahrung gewonnener Sicherheitsfak-
tor eingehalten. Dieses Vorgehen er-
laubt viel besser als bisher, die Festig-
keitseigenschaften von Beton und Stahl
richtig zu beurteilen und auszuniitzen.
Fir die Bestimmung des Grenzzustan-
des der Tragfihigkeit werden auf die
Beanspruchungsart (Biegung, Biegung
mit Querkraft usw.) abgestimmte, ein-
fache Berechnungsmodelle verwendet.
Bei der Herleitung solcher Modelle
werden die Regeln der Plastizitdtstheo-

Bild 1.

rie eingehalten und die Anwendungs-
grenzendieser Theorieaufgezeigt[1,2,3].

Nach der neuen Bemessungspraxis
muss auch nachgewiesen werden, dass
sich der Bauteil im Gebrauchszustand,
d. h. unter Nutzlast und anderen Ein-
fliissen, einwandfrei verhélt. Unter an-
derem muss dabei kontrolliert werden,
dass nicht zu breite Risse entstehen und
dass die Verformungen des Bauteils
nicht zu gross werden. Man verwendet
dazu Berechnungsformeln, mit denen
man Rissabstand und Rissbreite sowie
die Steifigkeit eines Balkenabschnittes
angendhert ermitteln kann. Solche
halbempirischen Formeln werden meist
aufgrund von Beobachtungen an Ver-
suchsbalken hergeleitet [4, 5, 6].

Die Herleitung solcher Formeln auf-
grund eines Berechnungsmodells war
erst moglich, als Rehm [7] das Verbund-
gesetz fiir einbetonierte Betonstdhle,
d. h. die Beziehung zwischen Verbund-

Spannungen und Verformungen im Stahlbeton-Balkenabschnitt

M
! ‘\Rissbreite w Rissbreite w
| o |
1 1
Spannungen |
!;{ Obl J Ob2 “
[
|| - ? |
| d |
J: Oet - Fe :g_'_ue » L, Oez- Fe
\ Tl ‘ '
| .

Beton-Druckspannungen:
|

Beton-Zugspannungen: |
| .
’ Ty | (Tl;z ’
Stahl-Zugspannungen:

‘ |
1 | [

Verbundsbannungen
zwischen Stah! und Beton:

@ = ungerissener

Querschnitt .
@ = gerissener
Querschnitt
b e @
\_‘ N
M d h=d(1-a)
S > " d
A e o [
Fe
(de,Ue)
Verformungen:
0,5a

—

RSN

e2. \

AW,
‘ verformter Schnitt @
|

\
J
|
|
|
{ nverformter Schnitt
\
|
\

|

Gleitungen - |

]
|
|
|
|
|
|
|

(rel. Verschiebung

zwischen Stahl und Beton)
| M 4,

=0 |
1
4,
0,50

120

spannungen und Gleitweg, bekanntge-
macht hatte. Aufbauend auf dieser Er-
kenntnis sind in der Folge eine Reihe
von Arbeiten entstanden, die sich mit
der genaueren Berechnung von Stahl-
beton-Balkenabschnitten befassten, wo-
bei Rissebildung, Verbundverhalten,
Betonverformung usw. zutreffend be-
riicksichtigt wurden [8].

Nachfolgend wird fiir Nachweise im
Gebrauchszustand ein einfaches Be-
rechnungsmodell vorgestellt, bei dem
das Verbundverhalten der Stdahle mit-
beriicksichtigt wird (sog. «Erweitertes
n-Verfahren»).

Erweitertes Berechnungsmodell

Grundlagen

In Bild 1 ist ein unter konstanter Mo-
mentenbeanspruchung M stehender
Balkenabschnitt dargestellt, der Risse
im Abstand a aufweist.

Im eingerissenen Querschnitt (2) treten
am oberen Rande Druckspannungen
G, und in den Stahleinlagen Zugspan-
nungen o,, auf. Die resultierende
Schnittgrosse dieser im Querschnitt
wirkenden Druck- und Zugspannungen
entspricht dem &dusseren Moment M.
Da der Balken im Gebrauchszustand
betrachtet wird, kann zwischen Span-
nungen und Verformungen sowohl fiir
Beton wie auch fiir Stahl ein linearer,
d. h. elastischer Zusammenhang ange-
nommen werden. Demnach sind die
Betondruckspannungen im Schnitt (2
linear liber die Hohe x, der Druckzone
verteilt.

Der ungerissene Querschnitt (1) liegt in
der Mitte zwischen zwei Rissen. Das
dussere Moment M bewirkt in diesem
Schnitt (1) am obern Rand Betondruck-
spannungen o,,, am untern Rand Be-
tonzugspannungen o/, und in den Stédh-
len Zugspannungen o,,. Es wird ange-
nommen, dass die Betonspannungen li-
near iliber die Balkenhohe verteilt sind.
Obwohl besonders bei engerem Rissab-
stand eine nichtlineare Verteilung der
Betonspannung (Scheiben-Spannungs-
zustand) moglich ist, wird flir das nach-
folgend entwickelte einfache Berech-
nungsmodell der lineare Verlauf beibe-
halten. '

Die Offnung des Risses im Schnitt
d. h. die Rissbreite w zeigt an, dass zwi-
schen den Stahlstiben und dem umge-
benden Beton eine relative Verschie-
bung oder Gleitung von der Grosse A,
stattgefunden hat. Durch solche Ver-
schiebungen werden Verbundspannun-
gen t,. zwischen Beton und den profi-
lierten Stahlstiben geweckt. Wie in Bild |
schematisch dargestellt, wachsen diese
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Verschiebungen A. vom A, = 0 im
Schnitt (@) auf A, im Schnitt (2) stetig an.
Entsprechend nehmen auch die Ver-
bundspannungen von 1, auf t,, zu. Es
wird somit ein solcher Rissabstand a
vorausgesetzt, bei dem sich die vom
Riss (2) ausgehenden Verbundspannun-
gen T,. bis zum Schnitt (@) erstrecken.
Durch diese Verbundspannungen T,.
werden die Zugspannungen in den
Stdhlen von o, im Rissequerschnitt (2
auf o, im Schnitt (1) abgebaut.

Rehm [7] hat gezeigt, dass die Grdésse
der an der Stelle z des Stabes wirkenden
lokalen Verbundspannung t,. aus der
daselbst auftretenden gesamten Ver-
schiebung A. bestimmt werden kann.
Mittels sorgfiltig durchgefithrter Aus-
ziehversuche wurde von Martin und
Noakowski [9] die in Bild 2 angegebene
«Verbund-Verschiebungs-Charakteri-
stik» von Betonstdhlen ermittelt. Als
Mass fiir die Stirke der Profilierung
eines Stahles wurde das Verhéltnis f =
Ag/ Ay verwendet. (Ag = senkrecht zur
Stabachse projizierte Fliche der am
Stabumfang vorhandenen Rippen; A,
= die zu Ay gehorige Mantelflache des
Stabes mit Nenndurchmesser d,.) Wie
Bild 2 zeigt, ist bei A = 0 nur ein gerin-
ger Haftverbund wirksam; mit zuneh-
mender Verschiebung A wird der durch
die Profilierung gegebene Scherver-
bund wirksam, wodurch t, rasch an-
steigt. Die Versuche haben zudem ge-
zeigt, dass die Grosse der Verbundspan-
nungen linear mit der Wiirfeldruckfe-
stigkeit des Betons B, anwachsen; daher
sind in Bild 2 bezogene Werte t,/p,. auf-
getragen.

Lage der Nullinie

Es ist leicht einzusehen, dass eine ge-
naue Berlicksichtigung der nicht linea-
ren Verbundbeziehungen gemadss Bild 2
in einer Stahlbeton-Berechnung auf
komplizierte, unhandliche Formeln
flihren misste. Daher wird in der fol-
genden Ableitung vereinfachend ange-
nommen, dass die Verbundspannungen
T,.linear von t,; = 0 (Schnitt ) auf 1,
(Schnitt (@) anwachsen (Bild 1). Die
Verbundbeziehungen gemiss Bild 2
werden somit nur bei der Ermittlung
von T, herangezogen, d. h. nur die im
Schnitt (@ auftretende Gleitung

w

2
ist genau berticksichtigt.

A2=

Den durch Verbundspannungen be-
wirkten Abbau der Stahlspannungen
von 6,3 im Schnitt 2) auf o, im Schnitt
(@ erhidlt man aus folgender Gleichge-
wichtsbetrachtung:

(2) Oei v Fe=0c2° Fo— Ty2s Ue

a
4
Dabei ist F, = Querschnitt und U, =

Tv/Pu

0,3 [ l T T 1

i Mittelwert aus Versuchs-

reihe [9] entnommen

7 Starke Profilierung
fr = 0,08+0,10

T,/PBw=[0033+034- AO354

Mittlere Profilierung
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Bild 2. Verbund-Verschiebungs-Charakieristik von Betonstdhlen

Umfang der Stahlstibe. Mit F./U, =
d./4 (d, = Stabdurchmesser) folgt aus
G2

a
de

(2a) Cel =0e2— T2

Die Stahlspannung ., im eingerisse-
nen Querschnitt (2) folgt aus der be-
kannten Formel:

M
@) 2= T -3
Mit w= F,/bhund & = x»/hist
auch:
(3a) o©a= b l

bh? u - (1-6/3

Der Nullinien-Abstand x, muss aus
einer Verformungsbedingung abgelei-
tet werden, welche fiir den Balkenab-
schnitt () bis @ zu formulieren ist.

Aus der Darstellung in Bild 1 folgt an-
schaulich diese Verformungsbedingung
zu

X

(4) 6h2=602 W

Die Beton-Randverformung 8> folgt
aus:

a/2

Sbz 4

6h2= Eh z

ot—

Ohne grossen Fehler auf das Endergeb-
nis kann vereinfachend geschrieben
werden:

Op2 a

(5 Bpp =Pk
Fiir die Stahlverformung 8., muss die
durch die Verbundspannung t,- bewirk-
te Veranderlichkeit der Stahlspannun-
gen o, beriicksichtigt werden.

Bei dreieckférmiger Verteilung von T,
verlauft ., zwischen ., und c.2 nach
quadratischer Parabel. Somit ist

= Ge2°a _ (Ge2—0Ce1): a
I O 3.E,
oder
(6) 5., = (GEZ+2'GPI)'a

6+ E;

GI. (5) und GI. (6) in GI. (4) eingesetzt
ergibt:
Oh2:a _ (Ge2+2-0c1)-a

2. Ep 6+ E.
X2
(h—x2)
Am Rissequerschnitt gilt zudem:
Obsz-n:cez,ﬁ oder
o 285G 0 B
Op2= —b . X,
Dabher ist auch:
Oe2 Faoo a _
Eyp+b- x>
(Ce2t+2-0e1)-a X3
6. E, (h— x»)
odermit: E,=n- Ep:
o 2-n-Fe‘ 3.0.
2 b (O'C2+2'G(,])
(h=x7)=0
Setzt man:
= 3. O¢2
™ e (Ce2+2 - 0e1)
) 3
(] s 20(‘1/001)

so erhdlt man die folgende Bestim-
mungsgleichung flir den Nullinien-Ab-
stand x; :

121
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Bild 3.  Erstriss-Bildung

2.n-A-F,

(8) X3— 7 “(h=x2)=0
mit: & =x/hundu=F/b-h
istauch:

9)  &-2-n-h-u(l-E&)=0

Die Auflosung der quadratischen Glei-
chung ergibt:

2
(10) a”;g=n-7wu[ l+”.>\.“—ll
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Durch den Faktor A wird in G1. (10) der
Abbau der Stahlspannungen von ¢,> im
Schnitt @) auf o, im Schnitt (@) infolge
Verbundspannungen  berticksichtigt.
Bei engem Rissabstand ist o, = 6., und
damit A = 1,0; Gl. (10) stimmt in die-
sem Falle mit der bekannten Gleichung
der klassischen Stahlbetontheorie iber-
ein.

Rissbreite
Die Rissbreite w ergibt sich gemiss Bild
1 aus der Stahlverformung 6., und der

in der Hohe des Stahles vorhandenen
Betonverformung 6}, zu:

(1)  w=2- (82— 8},)

Im Vergleich zu §,» ist die zugehdrige
Verformung 87, klein, so dass man
ohne grossen Fehler in Gl. (11) 8}, =
annehmen kann. Setzt man zudem &.»
nach Gl. (6) in GI. (11) ein, so wird:

(Gel s 20'el) .
3E, a

Fiihrt man den Faktor A nach Gl. (7)
ein, so ist auch

(12) w=

Ge2
(12a) w_X-—Ee. a

Wird a nach GIl. (2a) eingesetzt, so |
folgt:

Oe2 * (092 - Gel) . d

(12b) h- E, Ty e

w=

Kriimmung

Der Balkenabschnitt Bild 1 verformt
sich unter Momentenbeanspruchung M
auf der Ldnge a um den Winkel:

602
(h=%2)

Die auf der Strecke a vorhandene mitt-
lere Kriimmung ¥ betrédgt somit:

Ay=2.

_1_Ay _ 2.9,
=% a (h—x3)-a
Mit 8., nach Gl. (6) wird:
X=i= (Ce2+2 - Ge1)

0 3. E, « (h—=x5)

Fiihrt man wiederum den Faktor A
nach G1. (7) ein, so ist:

S IR
=0 T A E-(h=x2)
Ce2

AE-h-(1-8)

Mit 6.> nach Gl. 3) und E, = n - Ep ist
auch:

= Lo
(13)X_ 0 - Eb'b'h3

|
“nehep-(1-8)- (1-8/3)

Bezieht man die Kriimmung auf den
homogenen Betonquerschnitt mit J, =
b-d3/12=b-h¥12-(1 — a)’

so erhilt man:

M

Lo M

o [Ep-J]’
[Ese F]=k By »
c={12-(1=-a)3 n-r-pn
c(1=&) - (1 - &/3)|
Der Faktor k beschreibt die Abminde-

(13a) x=
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rung der Biegesteifigkeit infolge Risse-
bildung.

Rissmoment

Die ersten Risse entstehen, wenn im
homogenen, ungerissenen Balken die
Beton-Randspannung o}, die Biegezug-
festigkeit B, liberschreitet. Das bei o,
= B,. vorhandene Moment M = M,
wird als Rissmoment bezeichnet.

(14) MR=Bh:‘ Wiy

Dabei ist W, das Widerstandsmoment
des ideellen Querschnittes, berechnet
mit der vollen Betonfliche und der
n-fachen Stahlfldche. Bei geringem Be-
wehrungsgehalt kann W, = W, gesetzt
werden und man erhalt:

bh?
6(1 —o)?

Die unter Mg im homogenen Verbund-
querschnitt vorhandene geringe Stahl-
spannung folgt aus:

(14a) Mp=Bp--

/2 —
O'el:”'Bh:‘%;

oder:

(14b) ocer=n-Bp-- (1 -2a)

Erstriss-Abstand

Auf Bild (3a) ist der Verlauf der Ver-
bundspannungen t,, der Betonspan-
nungen G,; und der Stahlspannungen
G, angegeben, wie diese nach Bildung
eines Einzelrisses unter M = M sich
einstellen. Im Abstand L, (sog. Eintrag-
lange) vom Riss ist der ungestorte ho-
mogene Zustand wieder vorhanden.
Mit Hilfe der Eintragslinge L lasst sich
der mogliche Abstand der Erstrisse un-
ter M = Mp festlegen. Aus Bild 3b) und
3c) kann entnommen werden, dass sol-
che Erstrisse nur in einem Abstand, der
kleiner als 2 - Ly oder grosser als Ly ist,
auftreten kénnen. Somit ist:

(15) Lr<a<2- Ly

Fiir die Ublichen Nachweise ist es
zweckmadssig, von einem Erstrissab-
stand a = 1,5 Lyauszugehen.

Zur Bestimmung der Eintragldnge L be-
trachtet man den Zustand Bild 3b) mit a
= 2L;und erhélt aus Gl. (2a):

(0('3 — O I)

(16) a=2Ly= 52—

- d,

Die Stahlspannung ¢,, im homogenen
Mittelschnitt (@) folgt aus GI. (14b),
wiéhrend 6,, nach Gl. (3a) mit M = My
bestimmt wird (siehe Beispiel).

Rissabstand bei Laststeigerung

Bei Steigerung des Momentes liber M
hinaus, d. h. M > My, kann der Erstriss-

abstand a = 1,5L;so lange beibehalten
werden, bis im Mittelschnitt (1) wieder
G} = B,- erreicht ist. Dann bildet sich
dort ein neuer Riss, und die Rechnung
muss mit dem neuen Rissabstand a =
0,75 L fortgefiihrt werden usw.

Man kann den Momentenbereich, bis
zu welchem ein bestimmter Rissab-
stand a beibehalten werden kann, wie
folgt eingrenzen: Das im Schnitt (1) wir-
kende Biegemoment M wird von der im
Stahl vorhandenen Zugkraft Z,, = o, *
F, und von den tiiber die Querschnitts-
hohe linear verteilten Betonspannun-
gen o, gebildet.

Bild 4. Anwendungsbeispiel

Man kann somit anschreiben:
(17) M=o, -F,-(h—d/3)+c}, -

b-d?
6

Dabei ist der Abstand der Zugkraft Z,,
vom oberen Kernpunkt und bd?/6 das
Widerstandsmoment des Betonquer-
schnittes. Mit A = d (1 — o) erhdlt man
daraus die folgende Bedingungsglei-
chung:

(18) o4=

_M
b- h?
Lo (4=60)- (1 - ) ZBy

6+ (1—a)—oc..

Rechteckquerschnitt: b=4,0 d=0,3 h=0,27m

Stahlquerschnitt :

Rissmoment ;

Erstrissabstand :

Fe=5¢ 20mm
u =-E£h=o,5a%
Mg =0,038 MN-m ; (P}, = 2,5N/mm2)

a=1,5(y =408 mm

300
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Oe2
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Anwendungsbeispiel

Bei Anwendung der Formeln ist es zweck-
missig, von geschitzten Zahlenwerten fir A
auszugehen und diese wenn nétig zu
korrigieren.

Rechteckquerschnitt

b=10m;d=03m;h=0,27m;
bh2=0,0729 m?; a=0,1
B, =30N/mm?; B,.=2,5N/mm?
F, =520 mm = 1571 mm?; p = 0,58%;
mittlere Prof. fz ~ 0,04
G =460 N/mm?; E, = 210 000 N/mm? n =17

Bild5. Beanspruchung mit Rissmoment M = My

Rissmoment

(40) o = B

6(1—a)
0,514 N/mm?; Mz = 0,038 MN - m
Eintragliange [ fir M = Mp:
(Betrachte dazu Zustand gemadss Bild 3b mit

a=2Ly)

Schitze A =24

(10): &, =0,355

(3a): o©,,=100,5N/mm?;(14b):c,, =

ne Bp.(1 = 2a)=14,0N/mm?

(7): X =2,35(Schitzung A = 2,4 geniigt)
(12b): w = 032
Ty2

a) Rissmoment M =MR: (n:=€g,/e,=7 ; Pbz=2,5N/mm2)

p =| o | o1 |o5| 0202503 |04]|05|07510]| 45| %

0,514 |0,520 0525 (0,529 |0,533/0,537 |0,544 |0,550 |0,573 |0,588 | 0,625

N/mm*

b) Eintraglange LT :

700

-

T
|
L1 (mm) !

500 \: \\\;\

ol ANONN
300 \3\

Betonstdhle mit mittlerer Proﬁlierung('k=0,03+0.05)
Tv2:=pw(0,033+0,15-85'") ; pw =30 N/mm2

%
X0
T <6 ~3
%7
:g ]

l
1 T
N~
200 i | \\d\ \-_L\‘:__\\ —
e —
I - ] t— \\_\
- g ! \$\\:\~ —
| | |
0 111 |
0 01 02 03 04 05 0,75 1,00 p(%) 1,50
c) Rissbreite w :
06 (548) (283) (195) (150) (122) (86) 67) (Gez N/mm2) 49

o]
ool |1
\

|
0,3 |
|
0,2 |
|
01 |
|
[ |
0O 01 02 03 04 05 0,75 1,00 P (%) 1,50
d) Biegesteifigkeit [Ep-J] :
1,0
| | [
Cep -9 | ! ‘| ( Rissabstand a=1,5 lT)
Ep *Jp | ; |
08 { ; | 4
| _pom® // e B
0,4 : % }—BTM o =
) s =
| | L— ( —\Igﬂﬂ\‘\'a—“—r"
x| || Lt T
T+ T I
o} ] | ]
0O 01 02 03 04 05 0,75 1,00 p (%) 1,50
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Bild 2: 1,, = 30[0,033 + 0,15 - AY]

Auflésen durch Probieren gibt:
T,,=3,17N/mm?

(16): a=2.L;=544mm;L;=272mm
Erstrissabstand:a = 1,5 - Ly =408
mm

Zustand M = My:

Rissabstand: a = 408 mm

Schitze A= 1,8

(10): &,=0,316;(3a):0,, = 99,1 N/mm?
(12a): w=0,107 mm;A, = 0,053 mm

Bild 2: 1, = 3,15 N/mm?;(2a):6,, =
34,7 N/mm?

(7): X = 1,76 (Schitzung A geniigt)
(18) o}, =1,9N/mm?
(13a): [E, - J]=1{0,383] - Ey - J;:

E 0 % = 0,099 MN - m

Zustand M = M,,:
Bruchmoment
M,=0c,- F,-h(1-0,5&);
= G- F
! 06-B,-b-h
M,=0,180 MN + m
Moment unter max. Gebrauchslast:
Myox = M,/71,8 = 0,100 MN - m
Moment unter massgebender Gebrauchs-
last:
M, = 0,070 - M,,,.,= 0,100 MN - m
Rissabstand:
a=0,75+ Ly=204 mm
Schitze A = 1,15
(10): &,=0,262;
(3a):0,.,= 1819 N/mm?
(12a): w=0,155mm:;A, =0.077 mm;
Bild2:1,,=3.36 N/mm?

(2a): o,,= 147,6 N/mm?;
(7):h = 1,14 (Schitzung A gentigt)
(18): of,=2.1 N/mm?:somit ist Annah-

me a = 204 mm zuldssig

Hinweis: Wenn o, > B, ist, muss
Rechnung mit Rissabstand a =
0,375 Ly = 102 mm wiederholt
werden.

(13a): [E, - J1=0.273| E, - J;:

Ey-Jy- = 0,256 MN - m

1
0

Darstellung der Ergebnisse

In Bild 4 sind die Ergebnisse - erginzt durch
Rechnungen flir andere M-Werte - aufgetra-
gen. Solche Zahlenrechnungen werden mit
Vorteil auf einem programmierbaren Ta-
schenrechner durchgefiihrt. Man sieht, dass
die Stahlspannung o,, nur wenig von den
Werten der {blichen n-Berechnung ab-
weicht. Erreicht die Betonzugspannung den
Wert o}, = B, = 2.5 N/mm?, so halbiert sich
jewells der Rissabstand a, wobei die im Zwi-
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schenschnitt (1) wirkende Zugspannung o,
jetzt kleiner als B, ist.
Bemerkenswert ist die Tatsache, dass der mit ——
wachsendem Moment M sprunghaft sich 4n- 35:7:;7::?53‘;37"&9
dernde Rissabstand a masgebend die Riss- AT
breite w beeinflusst. Halbiert sich der Rissab- M
stand a, so reduziert sich die Rissbreite w M2
etwa auf die Hilfte. a) Momemeb—hz und zugehdrige Stahlspannung 0e2 :
Wie dargestellt, kann der Rissezustand eines S 12460 | e ooy e
Balkenabschnittes auch durch X, je 1,0 m, i) l | | i M2
d. h. Anzahl der Risse je 1,0 m mal Rissbrei- c I & [ b-h2
te w, beschrieben werden. Das aufgetragene 300 : °<’\ I TM% 1,50
Momenten-Kriimmungsdiagramm zeigt | N :
deutlich den Einfluss der Rissebildung. == I —— 1,00
I
100 { : I i 0,50
[o] I I (o]
Schlussfolgerungen o o1 02 o3 o4 o5 0,75 1,00 §(%) 1,5
b) Rissbreite w unter M = M2:

Durch Einbau des Rehmschen Verbund- %S
gesetzes in das bekannte n-Verfahren — J {Rissabatand a=ioirsy)
erhélt man ein Berechnungsmodell, mit |
dem u.a. der Rissabstand a, die Riss- Oif T
breite w und die Steifigkeit [E, - J] in 1 \o
einem Stahlbetonbalken bestimmt wer- ’ TN
den konnen (sogenanntes «erweitertes 02 :
n-Verfahren»). 5 |
Vergleiche mit Beobachtungen an Ver- } T s
suchsbalken zeigen, dass mit dem vor- o ) 3
geschlagenen Modell das Risseverhal- g1 T, e T e b R 8
ten im Gebrauchszustand zutreffend c) Biegesteifigkeit [Epy 3]
beschrieben wird. Zur Vereinfachung 10 | I
der Nachweise konnen mit dem Verfah- CEp-a] | | (Rissabstand a =0,7517)
ren auch Nachweis-Diagramme aufge- Ep b T T
stellt werden. Als Beispiel sind in Bild 5 06 | |
fiir den Zustand Rissmoment M = M, I : L —=F
sowohl die Eintraglange L, wie auch die o : e === ==
Rissbreite w und die Biegesteifigkeit [E, - | = joverterre)
- J]in Funktion von Bewehrungsgehalt Sl l
w und Stabdurchmesser d, aufgetragen. 9 I [
Auf Bild 6 sind analoge Diagramme fiir 1 R PRt o e el A

den Momentenbereich M > M, aufge-
tragen. Als Beispiel ist hier das beim
Rissabstand a = 0,75 L, grosstmogliche
Moment M = M, gewihlt. Bei M = M,
erreicht nadmlich die Betonzugspan-
nung o}, den Wert B,, und die zu a =
0,75 L, gehorende Rissbreite w wird
hier ein Maximum (siehe Bild 4). Wie
dargestellt, ist beim Rissabstand a =
0,75 Ly die Biegesteifigkeit [E, - J] nur
noch wenig grosser als nach dem n-Ver-
fahren.

Man kann zeigen, dass flir engere Riss-
abstdnde, d. h. fiir Momente M > M,,
die errechneten Rissbreiten eher klei-
ner sind als bei a = 0,75 L, so dass
man Bild 6 zur Beschreibung der grosst-
moglichen Werte fiir w verwenden
kann.

Die in Bild 5 und 6 als Beispiele aufge-
tragenen Diagramme leisten auch beim
Aufstellen einfacher Nachweisregeln
(z.B. zuldssige Stahlspannungen in
Funktion von pL und d,) gute Dienste.

Die Verwendung eines «geschlosse-

Bild 6.

Beanspruchung mit Moment M = M, (Berechnungsannahmen siehe Bild 5)
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