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Ein Finite-Element-Modell für die
Erfassung der Interaktion zwischen
Schub, Normalkraft und Biegung
Von Gianni Bazzi, Zürich

Ein Finite-Element-Modell für die Erfassung der Interaktion zwischen Schub, Normalkraft
und Biegung bei der nichtlinearen Analyse von Tragwerken wird kurz erläutert. Anhand einiger

Anwendungsbeispiele werden die Eigenschaften des Elementes und sein Anwendungsbereich

diskutiert.

A finite element model for the interaction of bending moments and normal and shear forces
by the nonlinear analysis of structures is shortly presented. The properties and the applica-
tion field of the element are discussed by means of some examples.

On presente un element permettant la description de l'interaction entre le moment de flexion,
l'effort axial et l'effort tranchant dans l'analyse nonlineaire de structures du genie civil. Les
proprietes de l'element et son champs d'application sont discutees ä l'aide de quelques examples.

Einführung

Baustatische Berechnungen verlangen
oft die Anwendung numerischer
Algorithmen. Dabei ist es notwendig, durch
die Einführung geeigneter mathematischer

Modelle das Problem räumlich
und bei dynamischen Anwendungen
auch noch zeitlich zu diskretisieren
[1-5]. Die räumliche Diskretisierung
erfolgt meistens nach der Methode der
Finiten Elemente.

Die Diskretisation von Bauteilen, dessen

Verhalten durch die Interaktion
zwischen Schub, Normalkraft und
Biegung massgeblich geprägt ist, erfolgt oft
durch mehrdimensionale Elemente. Bei
Stahlbetonbauteilen wird der Beton
meistens durch multidimensionale iso-
parametrische Finite Elemente und die
einzelnen Armierungsstäbe durch ein
einaxiales Modell idealisiert.
Verbundprobleme werden in einzelnen Untersuchungen

durch separate nichtlineare
Feder-Elemente modelliert. Dieses
Vorgehen ist theoretisch untermauert und
auch im Konzept einfach, stösst aber
bei der Analyse von Tragwerken
realistischer Grösse bald an die Grenze des

tragbaren numerischen Aufwandes.

Die folgenden Herleitungen beschränken

sich auf den wichtigen Fall, wo das
Verhalten des Bauteiles im wesentlichen

von der Schubbeanspruchung
geprägt ist, wegen seiner geometrischen
Abmessungen aber eine Idealisierung
durch Balken-Elemente naheliegt. Die
Grundlage für die Entwicklung dieses
Elementes ist die erweiterte Balkentheorie:

Der Balkenquerschnitt bleibt eben.
aber nicht senkrecht zur Stabachse, so
dass Schiebungen auftreten können.
Diese Annahmen werden im folgenden
für Balken sowohl aus Stahl wie auch
aus Stahlbeton verallgemeinert. Eine
detaillierte Herleitung ist in [5] oder [8]
zu finden.

Das Finite-Element-Modell

Im Blick auf die Forderung, dass auch
Schiebungen auftreten können, ist es

von Vorteil, sog. natürliche
Verschiebungsansätze zu verwenden. Diese werden

im lokalen Koordinatensystem a^
formuliert. Die verwendeten
Starrkörper-Verschiebungs-Ansätze und die
Ansätze, die Zuständen konstanter Verzerrungen

entsprechen, sind in Bild 1

dargestellt.

Die Idealisierung der Querschnittsgurten
(Flanschen) kann mit exzentrisch

angeschlossenen einaxialen Elementen
(engl, «stringers») erfolgen und weist
somit keine besonderen Aspekte auf.
Das Verhalten des Steges soll dagegen
durch eine isotropische, mehraxiale, in-
krementale Stoffgleichung der Form

Act* Ae,
Ao,. BB Ae,.
ATsj- Ay.vv

beschrieben werden, wobei die Indizes
x und y eine Abkürzung für a i und a->

darstellen. Die Koeffizienten der Matrix

[DT] sind von der jeweils verwendeten

Stoffgleichung abhängig. Die
Verzerrungskomponenten Aev bzw. Ay.vv
lassen sich in einem beliebigen Punkt

des Steges aus Aes, Ay, bzw. AJk berechnen.

Für den Wert der
Verzerrungskomponenten Aev liefert dagegen die
klassische erweiterte Balkentheorie mit
Schubverzerrungen keine Information.
Zwei Grenzfälle sollen betrachtet werden.

Einerseits entspricht die Annahme
£,, 0 einem Zustand, bei dem jegliche
Verschiebung senkrecht zur Stabachse
verhindert wird. Andererseits
entspricht die Annahme ct.. 0 einem
Zustand, bei dem sich die Verschiebung
senkrecht zur Stabachse unbehindert
einstellen kann, damit die statische
Randbedingung ctv 0 erfüllt werden
kann. Die Anwendbarkeit beider
Hypothesen soll im folgenden für die
verschiedenen Eigenschaften von Stahl-
und Stahlbeton-Balken untersucht werden.

Balken aus Stahl

Die Annahme unbehinderter Verschiebungen

senkrecht zur Stabachse (ct„
0) erscheint für den Steg von Stahlträgern

meistens vernünftig. Der
Vergleich zwischen experimentellen und
berechneten Resultaten zeigt auch eine
gute Übereinstimmung. Die Beschreibung

des Stahlverhaltens erfolgt im
folgenden durch die bekannte Fliessbedingung

von Von Mises mit kinematischer
Verfestigung.

Balken aus Stahlbeton

Stahlbeton ist ein zusammengesetztes,
anisotropes Material. Würde man sein
Verhalten durch eine einzige anisotro-
pische Stoffgleichung beschreiben,
dann könnte meistens die Annahme ctv

0, wie für Stahl, verwendet werden.
Dies wäre aber mit grossen Schwierigkeiten

verbunden, weil auf Grund der
Anisotropie die gewohnte
Stoffgleichungsformulierung im Hauptspannungsraum

nicht mehr anwendbar ist.
Es ist dabei einfacher, das Verhalten
des Betons und das der Stahlarmierungen

separat durch je eine isotropische
Stoffgleichung zu beschreiben.

Bildl. Natürlkhe (modale) Verschiebungsansätze
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Bild 2. Zusätzliche innere Freiheitsgrade

Keine der zwei erwähnten Annahmen
e,. 0 und crv 0 scheint aber das effektive

Verhalten des Betons realistisch
beschreiben zu können. Gerade die
Behinderung (engl, «constraining»), die
von der Bügelarmierung auf den Beton
ausgeübt wird, stellt eine der
hauptsächlichen Aspekte in den Mechanismen

der Schubübertragung dar. In der
Tat wirkt die Bügelarmierung wie eine
elastisch-plastische Stützung für den
Beton im Steg. Der Einfluss der
Bügelarmierung wird «geschmiert» (und somit
kontinuierlich) entlang der Stabachse

angenommen.

Um die wesentlichen charakteristischen

Aspekte von Stoffgleichungen zu
zeigen, die vom hydrostatischen Druck
abhängig sind, soll im folgenden für
den Beton die bekannte Fliessbedingung

von Drucker-Prager verwendet
werden. Dieses Materialmodell stellt
nur eine erste Näherung für das effektive

Beton-Verhalten dar, gibt aber den
wesentlichen Aspekt der unterschiedlichen

Eigenschaften infolge Zug- und
Druck-Beanspruchung wieder. Falls
der Beton für den Bruch massgeben^^B
und sich in einem multiaxialen Druck-
Spannungszustand befindet, sowie für
die Beschreibung zyklischer Beanspru¬

chung, smdjplifferenziertere Formulierungen

notwendig.

Einführung innerer Freiheitsgrade

Eine Verallgemeinerung der klassischen

Balkenthöifie mit Schubverformung,

die, wie oben bereits erwähnt,
keine Information über die
Verzerrungskomponente senkrecht zur
Stabachse liefert, soll durch die Einführung
eines weiteren Verschiebungsansatzes

spSIpcht werden (Bild 2). Dieser siebte
Verschiebungsansatz entspricht einem
Verzerrungszustand e.., der über das

ganze Element konstant ist.

Zur Berechnung der Steifigkeitsmatrix
braucht man einen einzigen
Integrationspunkt entlang der Stabachse und
mehrere Integrationspunkte über die
Balkenhöhe. Die Anteile aus den als
exzentrisch angeschlossenen, einaxial
modellierten Flanschen werden separat
dazu addiert. Der zusätzliche siebte
Freiheitsgrad erhält nur Beiträge aus
dem Betonsteg und aus der geschmierten

Bügelarmierung des betreffenden
Elementes. Als internen Freiheitsgrad
kann er somit am Element-Niveau
eliminiert werden (siehe zum Beispiel [1,

2]), womit sowohl die reduzierte
Steifigkeitsmatrix als auch die Beziehung
zwischen den üblichen sechs äusseren
Verschiebungsinkrementen und A.W-)
erhalten wird. In der zur Zeit implementierten

Version wird bei jedem einzelnen

Element zuerst soweit iteriert, bis
das Gleichgewicht beim zusätzlichen
internen Freiheitsgrad erfüllt ist. Die
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Bild 3. Schubwand-Element

Bild 4. Analytische und berechnete Werte derDiagonal-Neigungen
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Steuerung der element-internen
Gleichgewichtsiterationen beeinflusst
allerdings in entscheidender Weise den

gesamten numerischen Aufwand.

Anwendungsbeispiele

Schubwand

Der Steg eines Stahlbetonträgers kann
oft als Schubwand idealisiert werden,
die eine reine Schubbeanspruchung
erfährt. Die Beschreibung dieses Zustan-
des durch ein Fachwerkmodell mit
variabler Neigung der Betondruckdiagonalen

(Bild 3) ist mehrmals diskutiert
worden [6] und bildet die theoretische
Grundlage der Richtlinie 34 zur
Schweizer Stahlbeton-Norm 162.

Die theoretisch ermittelten Werte des

Neigungswinkels für verschiedene
Verhältnisse p/px der Bügel- zur Längsarmierung

sind in Bild 4 mit den
entsprechenden gerechneten Werten verglichen.

Die Analyse wurde an einem
einzigen Element durchgeführt, und der
Armierungsgehalt wurde so gewählt,
dass der Bruch immer durch das Fliessen

sowohl der Bügel als auch der
Längsarmierung eintritt.

Stahlrahmen

Vorbereitende Untersuchungen hatten
gezeigt, dass das Verhalten des
Stahlrahmens des Bildes 5a unter der
statischen Last P massgeblich von der
Schubbeanspruchung beeinflusst war.
Grosse Verschiebungseffekte infolge
der grossen plastischen Schiebungen im
Steg und damit verbundene Tragsystem-
umlagerungen waren zu erwarten, was
eine geometrisch und materialbedingte
nichtlineare Analyse notwendig machte.

In einer ersten Analyse erfolgte die
räumliche Diskretisation durch 25 iso-
parametrische zweidimensionale
Elemente für die Stege und 100 Fachwerkelemente

für die Flanschen der HEM-
140-Träger. Das Materialverhalten
wurde durch die Fliessbedingung von
V. Mises mit kinematischer Verfestigung

beschrieben. Wie in Bild 5b
ersichtlich ist, müsste aber die Berechnung

frühzeitig abgebrochen werden.
Das für die Konvergenz notwendige
Lastinkrement war so klein geworden,
dass der Aufwand für die Berechnung
unvernünftig wurde.

Die Berechnung konnte dann durch die
Verwendung des neu entwickelten FE-
Modells erfolgreich abgeschlossen werden.

Der numerische Aufwand beträgt
einen Bruchteil (weniger als 10

Prozent) desjenigen der vorhergehenden
Analyse. Die verschobene Konfigura-
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tion zeigt beim Erreichen der nominellen

Bruchspannung einen deutlichen
Knick unter der Last, und das Gesamtbild

ist durch starke Schiebungen
charakterisiert. Die Neigung der Träger
unter der Last beträgt etwa 1:2,8 womit
ein wesentlicher Teil der Last durch die
Membranwirkung aufgenommen wird.

Als Vergleich wurde noch eine dritte
Berechnung durchgeführt, bei der die
Struktur durch Momenten-Krüm-
mungs-Elemente diskretisiert wurde.
Diese Elemente berücksichtigen aber
nur das ungekoppelte Biege-Normal-
kraft-Verhalten und führen somit zu
einer massiven Überschätzung des
Systemwiderstandes.

Stahlbetonbalken

Eine Serie experimenteller Versuche an
zweifeldigen Stahlbetonbalken wurde
von Leonhard, Walther und Dilger in
Berlin durchgeführt [7]. Das Verhalten
des Balkens HH5 war massgeblich von
der Schubbeanspruchung bestimmt.
Der duktile Bruch wurde nach dem
Fliessen der Längs- und Schub-Armierung

erreicht. Das gemessene und das
berechnete Last-Durchbiegungs-Diagramm

sind in Bild 6b dargestellt. Dazu
ist in Bild 6a die verschobene Konfiguration

für eine Last P 140 kN gezeichnet.

Schlussbemerkungen

Das hier kurz dargestellte
Finite-Element-Modell ist in [5] und [8] ausführlicher

beschrieben. Die numerische
Verifikation sowie die erwähnten Berechnungen

wurden mit dem Computerpro-
gramm PIFF durchgeführt. Als ein
Instrument der Forschung hat dieses

Programm zur numerischen Analyse des
nichtlinearen Verhaltens von Tragwerken

unter statischen und dynamischen
Belastungen gedient. Dabei untersuchte
man unter anderem Seilkonstruktionen,

zyklisch belastete Stahlbetonträger,

Aufprallprobleme beim Sprengen
von Stahl- und Stahlbetonbrücken,
erdbebeninduzierte Interaktionen
zwischen nebeneinander stehenden
Hochhäusern, Koppelung von biegemoment-

a) b)
P[kN]

HEM-140 fv=360N/mmzü 540N/mm2 1S00r '
1

-P,8

VJfW T77wJP

142 850 850 [mm]

400 '000 \
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- M~x Element
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Bild 5. Stahlrahmen, System und Last-Durchbiegungs-Diagramm
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Bild 6. Verschiebungs- und Last-Durchbiegungs-Diagramm
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und schubresistenten Tragsystemen bei
Hochhäusern, Stabilitätsberechnung
von hohen Stahlbetonstützen von Brük-
ken und von Stahlstützen unter der
Berücksichtigung von Eigenspannungszu-
ständen, Interaktionseffekte infolge
Biegungs-, Normalkraft- und
Schub-Beanspruchung sowohl an Stahl- wie auch
an Stahlbeton-Trägern. Das hier disku¬

tierte Finite-Element-Modell wird
voraussichtlich demnächst auch Bestandteil

der Element-Bibliothek des neuen
Finite-Element-Programmsystems

FLOWERS [9] sein.
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