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Lehren und Lernen an der Ingenieur-

schule HTL

Entwicklung am Beispiel von Sickerstromungen

Von Robert Schmidt, Horw

Sickerstromungen, wie sie im Grundbau vorkommen, konnten frither mit graphischen Me-
thoden geniigend genau gelost werden. Die Resultate haben sich mit den billig gewordenen,
leistungsfihigen Rechnern numerisch noch verfeinern lassen. Bei der Grundwasserbewirt-
schaftung sind aber heute technische Probleme aufgetaucht, die kompliziertere physikali-
sche Zusammenhinge aufweisen und deren Losungen mit der Finite-Elemente-Methode zu
berechnen sind. Inwieweit diese Aufgaben aus der Praxis in den Lehrstoff einer Hoheren
Technischen Lehranstalt (HTL) aufgenommen worden sind, zeigt der Autor in vorliegendem
Artikel, dem er Gedanken zum Lehren und Lernen an der Ingenieurschule anfiigt.

Einleitung

Das Zentralschweizerische Technikum
ist vor 25 Jahren gegriindet worden. Die
wihrend dieser Zeitspanne vor sich ge-
gangene Entwicklung des Grundbaues
in Theorie und Praxis hat auch in der
Ausbildung notwendigerweise Verin-
derungen gebracht. Auf der einen Seite
steht die enorme Vermehrung der
Kenntnisse in der Bodenmechanik, was
theoretische Grundlagen, was Material-
priifung in Feld und Labor von Boden
als Baugrund und Baustoff und was Be-
rechnungsmethoden anbelangt; auf der
andern Seite wurde in der Bauindustrie
eine Vielzahl von neuen Grundbauge-
riten und Grundbaumethoden fiir die
Baustelle entwickelt.

Dem Dozenten an einer Ingenieurschu-
le HTL stellt sich ein erstes Problem: Er
muss aus der Uberfiille von theoreti-
schem und praktischem Wissen die mi-
nimale, aber wesentliche Auswahl tref-
fen. Dann ist das zweite Problem zu be-
wiltigen, niamlich das anspruchsvoller
gewordene Wissen dem Studenten zu
vermitteln.

Am Beispiel «Sickerstromungen» sol-
len die zunehmenden Anspriiche aufge-
zeigt werden, die der schwieriger und
umfangreicher gewordene Stoff an den
Lehrer als Vermittler und an den Stu-
denten als Lernenden stellt. Danach
soll diskutiert werden, wie man mit die-
sen Anspriichen einigermassen zu Ran-
de kommt.

Theoretischer Ansatz fiir die
mathematische Behandlung von
Sickerstromungen

Die Erfahrung zeigt, dass fiir Strémun-
gen von Wasser durch ein Medium mit
zusammenhéngenden Poren - also z.B.
eine  Grundwasserstromung  durch
einen durchlissigen Boden - das Gesetz
von Darcy

(1) v=k-J

eine gute Anndherung ist.

Dabei bedeutet vdie Filtergeschwindig-
keit und J das hydraulische Gefille; k
wird als Durchlissigkeitsbeiwert be-
zeichnet und hdngt von den Eigen-
schaften des porésen Mediums und von
denjenigen der Fliissigkeit ab. Das Ge-
setz von Darcy kann anhand eines ein-
dimensionalen Strémungsmodells auf
empirischem Weg gewonnen werden.

Fiir ebene Sickerstromungen erweitert
man das Gesetz von Darcy in einer
x-z-Ebene so:

(2) Vo= k- Jx
(3) V: = k:' Jz
_ oh
(4) J.\'_ ox
_ ok
(5) J:_ aZ

Dabei stehen die Indizes x, z fiir die x-
bzw. z-Richtung; h ist die hydraulische
Druckhohe im Punkt (X, Z) des durch-
stromten pordsen Mediums.

Setzt man die Kontinuititsbedingung
voraus und nimmt man an, dass die
Flissigkeit nicht zusammendriickbar
ist und dass weder Quellen noch Sen-
ken vorhanden sind, so folgt aus der Bi-
lanz tber ein Einheitsbodenelement -
dass ndmlich die in das Einheitsboden-
element eintretende Wassermenge der
austretenden gleichzusetzen ist - die
partielle Differentialgleichung
OVy dV:

©) ax oz ~ 0

Ersetzt man weiter v, und v. durch die
entsprechenden Beziehungen von Dar-
cy, so erhilt man die Gleichung

0*h *h _
ox? 0z2 .

Fiir isotrope und homogene Durchlis-
sigkeitsverhiltnisse des Mediums mit
zusammenhidngenden Poren verein-
facht sich die obige Gleichung auf

(7) k.\' *

+ k.-

“The problem of our time is the control of
quantity—of births, energy, knowledge. We
cannot assimilate, much less organize it in
some meaningful pattern.”

Lewis Mumford, [1]

02h

®) ox? *
also auf die Laplace-Gleichung, die be-
kannte Grundgleichung der Potential-
theorie. Dieser Differentialgleichung
geniigt im allgemeinen als Losung eine
Potentialfunktion und eine Stromfunk-
tion, die orthogonal zueinander sind.

2
-0
azZ=

Graphische Losung von
Sickerstromungsproblemen

Eine exakte mathematische Losung der
Potentialgleichung kann bekanntlich
gefunden werden, indem man zu einer
bekannten Losung «Potentialfunk-
tion» eine zugehorige «Stromfunk-
tion» sucht, die miteinander durch die
Cauchy-Riemannschen  Differential-
gleichungen verkniipft sind.

Da dieses mathematische Niveau an der
Ingenieurschule HTL nicht erreicht
wird, beschrinkt man sich darauf, dem
Studenten die Tatsachen

- eine Losung «Stromfunktion»,

- eine Losung «Potentialfunktion»
und die

- Orthogonalitdt der beiden Funktio-
nen

mitzuteilen und fiir einen einfachen
Fall zu beweisen. So hat z.B. die
«Spundwand mit begrenzter Tiefe im
unendlichen durchldssigen isotropen
und homogenen Halbraum» die Lésun-
gen [2]:

Stromfunktion:

X2 22 B
L 2. cosh?y T t2 . sinh?y -
Potentialfunktion:

o2 72

- ) = 5 ) =1
(10} 1%+ cos’@ t?.sin’ @
wobei

(11) y = arsinh %

und

(12) ¢ = arccos it‘

Die beiden Losungsscharen sind in Bild
| dargestellt.

Mit dem Parameter y der Stromfunk-
tion kann eine Schar von Ellipsen, mit
¢, demjenigen der Potentialfunktion,
eine Schar von Hyperbeln erzeugt wer-
den. Die Ellipsen stellen die Stromli-
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Ellipsen als Losungsschar
der Stromfunktion

\
Hyperbeln als Losungsschar
der Potentialfunktion

Bild 1. Ellipsen und Hyperbeln als orthogonale
Funktionen. Beispiel von zwei Ldsungsscharen der
Potentialgleichung (nach Bélling)

nien, die Hyperbeln die Aquipotential-
linien des Stréomungsproblems dar. ¢ be-
deutet die Eintauchtiefe der Spund-
wand. x, ist gleich dem horizontalen
Abstand des Schnittpunktes der jeweili-
gen Stromlinie mit der x-Axe vom
Koordinatenursprung, z; ist gleich dem
aquivalenten Wert der jeweiligen Po-
tentiallinie auf der z-Axe.

Auf der Tatsache der Orthogonalitét
aufbauend, wird nun der Student ange-
leitet, wie man Stromliniennetze gra-
phisch konstruiert. Dazu kdnnen eine
Reihe von Regeln gelten; die Regeln
variieren etwas mit dem Problem. Man
kann bei einem Stromungsproblem,
dessen Rinder begrenzt sind, etwa fol-
gendermassen vorgehen (Bild 2, [3]):

- Bekannt sind (Bild 2a):
- Die hochste Aquipotentiallinie /-2
. Die tiefste Aquipotentiallinie 3-4

. Die kiirzeste (bzw. oberste bzw.
innerste) Stromlinie a-b-c-d-e-

. Die lingste (bzw. tiefste bzw.
dusserste) Stromlinie g-h

- Nun entschliesst man sich, entweder
die Zahl der Stromungskanile oder
diejenige der Aquipotentialstufen
ganzzahlig zu wihlen.

- An den Rindern des Stromungsbe-
reiches triagt man die dazu senkrecht
stehenden Richtungen von Stromli-
nien bzw. Aquipotentiallinien ein
(Bild 2b).

- In einem Bereich, in dem die Stro-
mung ungefihr schichtparallel ist,
teilt man die Hohe in eine ganze Zahl
von gleich breiten Stromungskani-
len ein (d, d, d), vgl. Bild 2c. (Wihlt
man die Zahl der Aquipotentialstu-
fen ganzzahlig, so erfolgt das Vorge-
hen analog).

- In den Bereichen, wo die Strémung
eingeschniirt wird, teilt man die
Durchflussbreite in progressiv zu-
nehmende Stromungskanalbreiten
ein, wobei die kleinsten Breiten den
grossten Krimmungsradien benach-
bart sind (q, b, ¢), vgl. Bild 2c.

- Man zieht erste Stromlinien und
passt Aquipotentiallinien so ein, dass
sphérische Quadrate entstehen, die
man kontinuierlich korrigiert.

- Zur genaueren Analyse und Kontrol-
le werden die Quadrate gevierteilt;
eine ebenso gute Kontrolle stammt
von Leliavsky, der davon ausgeht,
dass einem sphérischen Quadrat ein
Kreis einbeschrieben werden kann,
der alle vier Seiten beriihren muss
(Bild 2d).

Die beschriebene Konstruktionsmetho-

de kann benutzt werden fiir die eine

Gruppe von Stromungsproblemen,

Bild2. Graphische Konstruktion eines Stromungsnetzes (nach Cedergren)

ndmlich diejenige, bei der die Stro-
mung begrenzt ist, d.h. die Sattigungsli-
nie bekannt ist. Es gibt eine zweite
Gruppe von Problemen, bei der die

obere Sittigungslinie, d.h. die oberste
Stromlinie, nicht bekannt ist, also als
zusétzliche Unbekannte gesucht wer-
den muss. Dieses Problem stellt sich
etwa bei Sickerstromungen durch Didm-

me.
Um die oberste Stromlinie bzw. den
Hangwasserspiegel ~konstruieren zu

kénnen, kann man bei einem homoge-
nen Damm von folgenden Vorausset-

zungen ausgehen:

- Die #usserste (freie) Stromlinie ver-

braucht im gleichen pordsen Medi-
um fiir gleiche Potentialdifferenzen
gleichviel Hohe.

Entsprechende Aquipotentiallinien
miissen die dusserste (freie) Stromli-
nie auf der entsprechenden topogra-
phischen Hohe schneiden.

Man kann diesen beiden Bedingun-
gen geniigen, indem man die dusser-
ste freie Stromlinie und die Aquipo-
tentiallinien auf einem Raster von
Hoéhenlinien zum Schnitt bringt.

Viele natiirliche Boden stellen nahezu
horizontal geschichtete Sedimente dar;
dabei ist die Durchléssigkeit parallel
zur Sedimentationsebene oft um ein
Vielfaches grosser als diejenige senk-
recht dazu. Der wirkliche Boden wird
daher durch ein Modell ersetzt, das aus
einem pordsen Medium besteht mit
einem Durchléssigkeitsbeiwert kj nach
Darcy in horizontaler Richtung und
einem solchen k, in vertikaler Rich-
tung. Man nennt solche pordsen Me-
dien querisotrop. Um auch fiir einen
solchen Fall ein Stromliniennetz kon-
struieren und dabei die Vorteile der Or-

hochste Aquipotentiallinie

tiefste Aquipotentiallinie

4
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Bild 3. Mascheneinteilung Bild 4. Potentialfunktionh = h(x, z) Bild 5. Randwertproblem

thogonalitidt benutzen zu konnen, wird
der Massstab der Zeichnung in horizon-
taler Richtung reduziert, indem alle
horizontalen Masse mit dem Wert
V' ky/ky multipliziert werden [4]. Hat
man das orthogonale (verzerrte) Netz
konstruiert, so konnen die Ingenieur-
fragen gelGst werden, indem man bei
allfdlligen Berechnungen den Verzer-
rungsfaktor einfithrt, beispielsweise
wie folgt:

Die Sickerwassermenge betrug beim
homogenen isotropen porésen Medium

(13) Q=k« h- =

wobei h die hydraulische Druckhdhen-
differenz ist zwischen Ober- und Unter-
wasser, k der Durchléssigkeitsbeiwert
nach Darcy fiir ein homogenes isotro-
pes pordses Medium, m die Anzahl der
Stromungskandle, n die Anzahl der Po-
tentialstufen.

Beim querisotropen Medium lautet die
Losung:

(14) 9=

Ist ein solches Stromliniennetz einmal
konstruiert, so konnen damit die iibli-
chen Ingenieurfragen beantwortet wer-
den, wie diejenige nach Sickermenge,
Spitzengradient, Austrittsgradient,
Auftrieb etc.

m

kH- k[/ - h
n

Numerische Verfeinerung der
graphischen Losungsmethode

Die graphische Lésungstechnik war so-
lange optimal, als die iiblichen Inge-
nieurberechnungen mit Rechenschie-
bergenauigkeit erfolgten. Ein schneller
mechanischer Rechner, der Resultate
aus den vier Grundoperationen auf z.B.
8 Stellen lieferte, kostete um 1960 noch
um Fr. 4000.- und kam damit fir den
Unterricht nicht in Betracht. Dies dn-
derte, als die elektronischen Kleinrech-
ner zu immer giinstigeren Preisen auf
den Markt kamen. Damit konnte auch
die numerische Behandlung von Diffe-
rentialgleichungen in den Unterricht
eingebaut werden.

Die Potentialgleichung von Laplace

=0

wird nun nicht mehr graphisch geldst,
sondern kann numerisch besser ange-
ndhert werden, indem man anstelle der
Differentialquotienten finite Differen-
zen einfiihrt [2]. Dabei geht das Verfah-
ren der sogenannten finiten Differen-
zen davon aus, dass das Losungsgebiet
durch einen orthogonalen Raster dis-
kretisiert werden kann. Ein Stromungs-
feld wird also in ein rechtwinkliges
Netz mit den Maschenweiten (Ax, Az)
eingeteilt (Bild 3).

Der im Punkt 0 bekannte Funktions-
wert von h wird in den Nachbarpunk-
ten 1, 2, 3 und 4 durch Taylorsche Rei-

hen angendhert (Bild 4).
Es gilt dann
(15) hi=ho+ Ax- (d_h) A5,
* /o
Ax Y
3!
h (A \)

(16) hs= hy— Ax- (d—)
0

(), (5F) (—d"”) +

2 : 3

dx?J 3! dx* )
Subtrahiert man Gleichung (16) von
Gleichung (15), so erhélt man

dh) 1
(17) (H)D—m(’h—h@)—
(Ax)3. d3h
3! dx?3 ”

=

Vernachldssigt man (Ax)? mit n 2 2, so
ergibt sich

dh) _ 1 _
09) () = 2ax th=1)
Die Summe der Gleichungen (15) und
(16) ist

d’h
) (dxl) (A )2

Stellt man die Gleichungen fiir eine in

TA 2 (h] - h“ 2 h())

der x-z-Ebene variable Funktion auf, so
erhilt man

o (8] -

@1 (z—}z’);ﬁ(hz—m)

22) (g—x’;) T O+ by =2 o)
o

23) (ah)o (AZ), (s + ha—2 o)

Die Gleichungen (22) und (23) kann
man nun in die Laplacesche Potential-
gleichung einfithren, die dann lautet:

24) ml_x)z (hy+ by =2 ho) +

Y T (h7+h4 2h0)=

(A X
Wihlt man einen quadratischen Raster
fiir das Stromungsfeld, so vereinfacht
sich die linearisierte Potentialgleichung
fiir innere Punkte des Rasters auf

(25) 4}10—h1—h2—h3—h4 =0

An den Rédndern des Stromungsnetzes
werden die Kontinuitdtsbedingungen
mit Hilfe des Gesetzes von Darcy ent-
sprechend von Geometrie und Durch-
lassigkeit gedndert (Bild 5). Fiir einen
Randpunkt am untern undurchléssigen
Rand #ndert sich die Kontinuitétsbe-
dingung beispielsweise so:

Nach Darcy (1)ist v= k- J, also
26) g=v-A=k-J-A

Stellt man fiir das Element die Bilanz
auf, so lautet diese

27) @3 —~0=qo—2+ qo—
—p. = Az

(28) gs o= k- . 5
h—h Az
(29) (](]-l=k~7(1le 0)-7

(30) qo—a= k. LoD, 5y

Setzt man noch Ax = Az, so erhilt man
(31) 4]1()- h] -2 h] = h3 =0
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Zur numerischen Losung des Problems
geht man nun so vor, dass man wie vor-
stehend beschrieben eine angendherte
graphische Losung in das Rasternetz
legt. Dann schitzt man die Druckhdhe
aufgrund der graphischen Loésung in
den einzelnen Rasterpunkten. Diese er-
sten Werte werden in einem Relaxa-
tionsverfahren mit der linearisierten
Potentialgleichung (25) solange vari-
iert, bis die gewiinschte Genauigkeit er-
reicht wird. Entsprechend der Punktla-
ge wird beim Ausgleich die linearisierte
Potentialgleichung fiir einen mittleren
oder einen Randpunkt verwendet.

Kiinftige Entwicklung

Fiir die klassischen Ingenieurprobleme
im Zusammenhang mit Sickerstromun-
gen geniigten die oben angegebenen
Methoden. Sickerstromungen durch
Diamme, Sickerstromungen gegen Bau-
gruben oder gegen unterirdische Hohl-
rdume konnen mit der graphischen Me-
thode, allenfalls numerisch verfeinert,
ingenieurmissig geniigend genau er-
fasst werden. Sind die Strémungsnetze
einmal vorhanden, so konnen die tech-
nischen Problemstellungen wie Sicker-
wassermenge, Sickerstromungsdruck,
Spitzen- und Austrittsgradienten bzw.
Grundbruchgefahr, Auftrieb etc. bear-
beitet werden.

Die Problemstellungen im Zusammen-
hang mit Sickerstromungen haben sich
im Laufe der Jahre gedndert. Heute
sind es vor allem Fragen des Grundwas-
serhaushaltes, die geldst werden miis-
sen, die zwar jetzt noch auf der For-
schungsebene behandelt werden, die
aber in wenigen Jahren zu den Alltags-
aufgaben des Ingenieurbiiros gehoren
werden. Vielerorts in unserem Lande
hat die Nutzung der erstklassigen
Grundwisser - also sauerstoffreich,
eisen- und manganarm, ohne weitere
Aufbereitung als Trinkwasser konsu-
mierbar - die Grenze der Grundwasser-
neubildung erreicht. Dariiber hinaus
wird die thermische Kapazitit des
Grundwassers genutzt, im Sommer zur
Kiihlung, im Winter zur Heizung. Das
heute sich stellende Ingenieurproblem
besteht darin, ein Grundwasservor-
kommen optimal zu bewirtschaften, so-
wohl von der Grundwassermenge wie
von deren thermischer Kapazitit her.

Das Bewirtschaftungsmodell in einem
unserer glazial geprigten Tiler wird
also einen Grundwasserleiter erfassen
miissen, der z.B. so beschaffen sein
kann:

Oberhalb eines infolge einer persistie-
renden glazialzeitlichen Eisrandlage

1180

entstandenen Mordnenkranzes liegt ein
See. Am talseitigen Fuss des Mordnen-
kranzes schliessen die fluvioglazialen
Schotter an, die mit zunehmendem Ab-
stand feinkdrniger und damit weniger
durchlissig werden. Der den See ent-
wissernde Fluss infiltriert streckenwei-
se in die fluvioglazialen Schotter, strek-
kenweise entwissert er sie. Talabwirts
staut der Morinenkranz einer fritheren
persistierenden Eisrandlage einen wei-
teren See. Der obere See gibt Grund-
wasser unter der Mordne hindurch in
die fluvioglazialen Schotter ab, der un-
tere nimmt Grundwasser aus dem Tal-
boden auf. Zusitzlich infiltrieren die
Biche der Talrinder sowie die Nieder-
schlidge auf dem Talboden. Ein System
von Grundwasserfassungen entnimmt
allenthalben Wasser.

Ein solches Modell wird mit der folgen-
denDifferentialgleichungbeschrieben([5]

2 AL oh\ _
(32) 55 (T.\-,\-- ax) 3 (T\'y' a—y) =
oh
S. W + Q

Darin bedeuten

T = k (h- a) = Transmissivitit

Q = flachenhafter vertikaler Zufluss

S = entwisserbares Porenvolumen

a = Hohe der undurchldssigen Schicht
k, h = wie oben

x, y = Koordinaten der Horizontalebene
t  =Zeit

Fiir die numerische Losung der Diffe-
rentialgleichung in einem geometrisch-
hydraulisch so stark wechselnden Ge-
biet eignet sich die Methode der finiten
Differenzen nicht mehr. Es existieren
hiefiir Ndherungslosungen, die mit der
Finite-Element-Methode arbeiten. Die
Funktionsansitze werden nur noch
iiber Teilbereiche, die finiten Elemente,
definiert. Die Approximationsfunktion
beschreibt den tatsidchlichen Verlauf
des Grundwasserspiegels, der eine be-
liebig gekriimmte Fldche sein kann, in
einem Teilbereich, z.B. in einem
Dreieck oder in einem Viereck mit
einer beliebig im Raum liegenden Ebe-
ne. Jede Ecke oder jeder Mittelpunkt
der Elementseiten, also 6 oder 8 pro
Element, stellen eine unbekannte Va-
riable dar, die mit dem Losungsalgo-
rithmus berechnet werden kann. Die
exakte Losung der Differentialglei-
chung - sofern sie moglich wire - miis-
ste die Wasserspiegellage in einem Ge-
biet als eine gekriimmte Fliche darstel-
len, die Losungsmethode mittels der fi-
niten Elemente liefert eine aus vielen
ebenen Dreiecken oder Vierecken zu-
sammengesetzte polyedrische Fliche,
wobei die Polygone alle an den Ecken
zusammenhiingen.

Nachdem dieses urspriinglich aus der
Elastostatik stammende Verfahren in
verschiedenen problemorientierten
Programmsprachen verwendet wird
(Bodenmechanik, Felsmechanik, Bau-
statik), wird es zu einer Aufgabe fiir die
Ingenieurschule HTL, dem Studenten
die Grundlagen der Finite-Element-
Methode nahezubringen. Dies wird
eine vermehrte Ausrichtung des mathe-
matischen Unterrichtes z.B. auf Matri-
zenrechnung bedingen.

Noch schwieriger wird es, wenn man
die Warmebewirtschaftung des Grund-
wassers ins Auge fasst. Uber einen Wir-
mepumpenkreislauf kann im Winter
dem Grundwasser Wirme entzogen
werden. Das abgekiihlte Wasser wird in
einem Versickerungsbrunnen in den
Grundwasserleiter zuriickgegeben; im
Sommer wird das kiithle Grundwasser
benutzt, um die bei Klimatisierung an-
fallende Wiarme abzufiihren; wéarmeres
Wasser wird dann in den Grundwasser-
leiter reinfiltriert.

Pelka gibt fiir das Zwei-Brunnen-
Speichersystem zur Wiarmespeicherung
in oberflichennahen Grundwéssern
folgende Differentialgleichung an [6]:
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Dabei sind

T = Temperatur

o = Dichte

¢ = spezifische Wiarmekapazitét

D = Tensor der effektiven
thermischen Dispersion
i, j, k = Laufindizes
B, W = Indizes fiir Boden bzw. Wasser

Dabei beschreibt

~
o

T
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die Wirme, die in einem Kontrollele-
ment aufgrund der zeitlichen Tempera-
turinderung gespeichert oder entnom-
men wird.

Der Ausdruck
0
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enthilt den konvektiven Wirmetrans-
port in der Grundwasserstrémung. Der
dritte Ausdruck
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beschreibt den Wirmeleitungsanteil des
Wirmetransports.
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Diese komplizierte Differentialglei-
chung kann fiir das praktische Inge-
nieurproblem herangezogen werden,
wieweit ein Entnahmebrunnen und ein
Versickerungsbrunnen  voneinander
entfernt sein miissen, damit sie sich ge-
genseitig nicht beeinflussen.

In der Literatur [7] wird z.B. die «break-
through-time» - also die Zeit, die eine
vom Versickerungsbrunnen ausgehen-
de Wirme- oder Kéltefront braucht, um
den Entnahmebrunnen zu erreichen
und damit zu stéren - mit

(2} ()] e A
6 = (3) ()| 1+ i

.m(

1—\1+4 4 )2]

1+V1+4 4
- 0
(35) A= 2nne He D« v
(36) %= (1-n)-0p-cg+n-0w- cw
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angegeben. Dies gilt fir v > 0, wobei v
die Grundwassergeschwindigkeit in
Richtung Versickerungsbrunnen-Ent-
nahmebrunnen ist, ¥, Volumen des Bo-
dens um den Versickerungsbrunnen,
worin das Wasser ausgetauscht wurde,
V- das entsprechende Volumen, worin
die Temperatur gedndert wurde. D ist
gleich dem Abstand Entnahmebrun-
nen-Versickerungsbrunnen, n gleich
der Porositdt, H gleich der Grundwas-
serleiterméchtigkeit, Q ist die injizierte
-Wassermenge pro Zeiteinheit.

Wenn 1 ldnger als die Sommersaison
(Kiithlung) oder die Wintersaison (Hei-
zung) gewdhlt wird, so beeinflussen
sich die Brunnen nicht.

Es stellt sich hier das Problem, das wir
so oft antreffen, dass fiir einen kompli-
zierten physikalischen Zusammen-
hang, der durch entsprechende Differ-
entialgleichungen beschrieben wird,
handliche Losungsformeln existieren,
die der Student mit seinen mathemati-
schen Voraussetzungen nicht zu kon-
trollieren imstande ist. Wie weit diirfen
wir ihn mit der bequemen Seilbahn auf
einen Gipfel fithren, dessen Normal-
route er zu Fuss zu besteigen nicht im-
stande ist?

Grundsitzliches zum Lehren und
Lernen an der Ingenieurschule
HTL

Am Anfang der europiischen Erwach-
senenbildung steht jener der Schule
Platons benachbarte Hain des Akade-
mos [8, 9]. Die in diesem Ambiente ge-
pflegte Unterrichtsmethode zeichnete
sich einmal dadurch aus - wenn man an

die grossen platonischen Dialoge denkt
-, dass die Studenten unter sich einen
betrdchtlichen intellektuellen Niveau-
unterschied aufwiesen, dass aber der
«Dumme» nicht in einer raschen Selek-
tion eliminiert wurde. Ein zweites
Merkmal war, dass der Lehrer keinen
Umweg scheute, um den Studenten
zum Ziel - der Erkenntnis iiber den
Lehrgegenstand - zu bringen. Als wich-
tigste Eigenart kann aber die Methode
des Gespréchs des Lehrers mit wenigen
Studenten genannt werden.

Mit «dem Dummen» meinen wir nicht
die thrakische Magd, die in ein Gelédch-
ter ausbricht, wie sie den philosophi-
schen Himmelsbetrachter in einen
Brunnen stiirzen sieht. Aber es beein-
druckt uns, dass Sokrates seine Lehrge-
spriache nicht nur mit dem formal be-
stechenden Nihilisten Protagoras und
mit dem durch Vielwisserei verbliffen-
den Hippiasfiihrt. Ein ganzer Dialog ist
dem langsam und zdhfliissig denken-
den Kriton gewidmet, der iiber weite
Strecken nur mit «ja» oder «nein»,
oder «so ist es» antworten kann; nicht
nur das, mit Kriton bespricht Sokrates
die wesentlichen Dinge vom Tod und
vom Leben, bevor er den Schierlingsbe-
cher nimmt. Hier wird eine Eigenart
platonischen Denkens sichtbar, nim-
lich dass am wenig begabten Kriton mit
seinen einsilbigen Ja-Nein-Antworten
die schopferische Fahigkeit des Lehrers
erst sich entziindet. Die Schwerféllig-
keit des Schiilers wird zum Katalysator,
an dem sich die glasklaren Ausfiihrun-
gen des Lehrers entwickeln.

Der zweite der oben erwidhnten Punkte
betrifft die Effizienz dieser Lehrmetho-
de. In den Dialogen wird immer wieder
klar, dass nicht das Ziel, sondern der
Weg das Wichtige ist. Die Frage ist na-
tirlich zu stellen, ob man bei der heuti-
gen Wissensmenge noch Zeit fiir so auf-
wendige Lehrspiele hat.

Nun ist allerdings die Wissensmenge so
angeschwollen, dass von einer saubern
Bewiltigung schon gar nicht mehr ge-
sprochen werden kann. Im Gegenteil:
Der Ingenieur HTL - der Hochschulin-
genieur nicht minder - wird in seiner
spitern Praxis noch und noch Daten
ibernehmen miissen: Materialkenn-
werte, statistische Werte, Zahlen aus
Rechnern und Resultate von problemo-
rientierten Programmsprachen, deren
Messung zu repetieren oder deren Ma-
thematik nachzuvollziehen ihm gar
nicht moglich ist.

Dies kann schwerwiegende Konsequen-
zen haben: Man denke z.B. daran, dass
die Mehrzahl von Planern die Zahlen
der Planungsziele Z, und Z, bedenken-
los tibernommen hat, die zur bekann-
ten Uberkapazitit unserer Schulen, Spi-
tiler etc. gefiihrt haben.

Zum Problem, Quantitdten richtig zu
beurteilen, kommt aber ein noch wich-
tigeres hinzu: Qualitdten zu erfassen,
ndmlich in der Wissensschwemme das
Wesentliche nicht zu iibersehen. Dazu
ein zweites Beispiel: Ein bedeutender
Thermodynamiker an der ETH hatte
bereits in den SOer Jahren die Studen-
ten darauf hingewiesen, dass beim da-
maligen Konsum wenige Generationen
die Erddlvorrdte der Menschheit ver-
brauchen wiirden, zu deren Bildung
Jahrmillionen erforderlich gewesen wa-
ren. Obwohl also jeder Bauingenieur in
der Physikvorlesung die Differential-
gleichung der Absorption beim Durch-
gang von Wirme, Licht etc. durch eine
Wand vorgefiihrt bekommen hatte, ver-
nachléssigten viele Jahrgdnge von Inge-
nieuren das Energieproblem der Ge-
bdudehiille, so dass der grossere Teil des
vor 1973 erstellten schweizerischen
Hochbauvolumens wiarmetechnisch
falsch ausgelegt ist.

Die beiden Beispiele zeigen, dass eines
der wichtigsten Ausbildungsziele das
Vermitteln der Fahigkeit sein muss, mit
einfachen Rechenmethoden die Plausi-
bilitdt von zu tibernehmenden Zahlen
tberpriifen zu koénnen, die Resultat-
mengen, die aus den modernen Rech-
nern herausfluten, kritisch sichten zu
konnen, tiberhaupt: kritisch denken zu
konnen.

Auf den Unterricht im Fache Grund-
bau bezogen wird bei einem kompli-
zierten Stromungsproblem die Bilanz
von ein- und ausstromendem Wasser
immer noch aufgehen miissen - und die
raffinierteste erdbaumechanische Be-
rechnung wird am Schluss Gleichge-
wicht zwischen Lasten und Sohlpres-
sungen, zwischen actio und reactio zei-
gen miissen. Unterrichtsziel im Fache
Grundbau bleibt damit, auf Kosten der
Vollstandigkeit und auf Kosten eines
sklavischen «Auf-dem-letzten- Stande-
des-Wissens-sein-Wollens» die Fihig-
keit zu vermitteln, selbstindig ein
Grundbauproblem qualitativ analysie-
ren zu konnen und mit einfachen ver-
niinftigen Rechenmethoden die wich-
tigsten fiir die Konstruktion erforderli-
chen Gréssen bestimmen zu kdnnen.

Ein kulturstratigraphisches Leitfossil
unserer Zeit diirfte wohl die Photokopie
sein, und es wird eines der Hauptanlie-
gen eines Dozenten an einer Ingenieur-
schule sein, den Studenten dahinge-
hend zu erziehen, dass das, was schwarz
auf weiss auf einem A4 steht, nicht ge-
trost nach Hause getragen werden
kann. Wagners Zeiten sind vorbei.

Die Ingenieurschulen HTL gehdren zu
den wenigen Schulen des tertidiren Bil-
dungsbereiches, in denen wenigstens
die dritte platonische Randbedingung
noch erfillt ist: Lehren und lernen ge-
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schieht zwischen einem Lehrer und
vergleichsweise wenigen Studenten (ca.
10-36). Zudem steht der Student nicht
in einem Heer von seinesgleichen einer
grosseren Gruppe von Spezialisten ge-
geniiber. An der Ingenieurschule HTL
hat eine kleine Gruppe von Studenten
einige wenige Generalisten als Lehrer
vor sich, hat doch der Professor an der
Ingenieurschule HTL meist iiber einen
Bereich zu referieren, der an der Hoch-
schule von mehreren Instituten betreut
wird.

Die Unmoglichkeit, Spezialist werden
zu konnen, und der Zwang, einen nur
teilweise in die Tiefe gehenden Uber-
blick iiber ein weites Facherspektrum
immer wieder neu erarbeiten zu miis-
sen, konnen den Bauingenieur als Leh-
rer an der Ingenieurschule HTL dazu
fiihren, Bauen als Aufgabe in einem
grossern Zusammenhang zu sehen: das
Zivilisatorische als einen Bereich der
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Kultur. Bedeutet doch das Wort téxvn
(techne) nicht nur Handwerk, sondern
auch Kunst [10], etymologisch zusam-
menhingend mit tikto, Texelv (tikto,
tekein), was sowohl zeugen wie gebéren
bedeutet. Im Studenten sowohl die
Freude an der Bautechnik zu wecken,
als auch ihm das Bewusstsein mitzuge-

Zur Asthetik von Talsperren

Von Harald Kreuzer, North Vancouver

Talsperren wirken monumental, allein schon in ihren Dimensionen. Als reine Funktionsbau-
ten, bei welchen die Materialwahl und damit der Talsperrentyp aus wirtschaftlichen Griinden
meist vorausbestimmt sind, lassen sie der isthetischen Gestaltung wenig massgebenden

Spielraum.

Anhand von Beispielen lassen sich jedoch die dsthetisch wirksamen Elemente klar aufzeigen.
Dominierend ist die Gliederung der sichtbaren Aussenfliche sowohl beim Angleichen an die
natiirliche Umgebung als auch bei der Ausbildung als Kontrastelement. Bei so grossen Di-
mensionen ist die Formensprache der Architektur nicht im gewohnten Sinn anwendbar. Be-
sondere Beachtung verlangt die dsthetische Gestaltung der heiklen Ubergiinge zur Umge-
bung und der horizontalen obern Abschlusslinie.

Talsperren gehoren zu den grossten
Bauwerken. Der grosste Damm, Tarbe-
la in Pakistan, mit einem Volumen von
120 Mio. Kubikmeter fasst 130mal die
Cheopspyramide oder ebenso oft eines
der hochsten Gebdude der Welt, den
Sears-Tower in Chicago. Auch in
Grand-Dixence, der hochsten Staumau-
er, hat die Cheopspyramide und der
Sears-Tower noch etwa sechsmal Platz.

Talsperren sind monumental. Sie wer-
den vom Betrachter meist bewusst er-
lebt, wihrend den Bauten unserer tigli-
chen Umgebung oft wenig Aufmerk-
samkeit geschenkt wird. Trotzdem gibt
es nicht so etwas wie eine Talsperren-
baukunst. Talsperren verdndern Le-
bensrdume, sind Ziele des Massentou-
rismus und Aushédngeschild fort-
schrittsglaubiger Politiker, aber alle
Kriterien ihres Entstehens entbehren
der baukiinstlerischen Gestaltung. Im
Vergleich zum Grossteil jeglicher Bau-
tatigkeit ist diese Abstinenz an dstheti-
schen Gestaltungsmoglichkeiten bei
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Talsperren einmalig, obwohl ihre Di-
mensionen visuell so aufdringlich sind.
War man z. B. beim Bau des Opernhau-
ses von Sydney bereit, der Asthetik ge-
geniiber einem niichternen Funktiona-
lismus eine betrichtliche Summe an
Mehrkosten zuzugestehen, so ist das im
Talsperrenbau nicht denkbar. Dieser
ketzerische Vergleich soll keineswegs
das eine oder andere Vorgehen verdam-
men, sondern lediglich beispielhaft
zwei Extreme aufzeigen.

Einordnung in bestehende
Formtheorien

Talsperren sind reiner Funktionsbau.
Das Architekturdogma, wonach die
Form der Funktion folgt, gilt fiir sie in
erhohtem Masse. Talsperren lassen sich
nur beschrinkt mit den in der Bau-
kunst tiblichen drei Kriterien der funk-
tionellen, technischen und ésthetischen
Aspekte beurteilen.

ben, dass Kultur von colere, d.h. pfle-
gen kommt - das ist Auftrag des Leh-
rers.

Adresse des Verfassers: Prof. R. Schmidtdipl. Bau-
Ing./dipl. Ing.-Geol. ETH, Vorsteher der Abt. Tief-
bautechnik (Bauingenieurwesen) am Zentral-
schweizerischen Technikum Luzern (Ingenieur-
schule HTL), Technikumsstrasse, 6048 Horw.

Das Funktionelle steht im Vordergrund
mit der Aufgabe, den Wasserdruck zu
beherrschen.

Dem Technischen, der Wahl der Bau-
materialien und damit des Talsperren-
typs, liegt eine etablierte Beispielsamm-
lung zugrunde, deren Freiheit wenig
Spielraum fir die Formenwahl lésst.
Démme sind im Rahmen der &stheti-
schen Betrachtungsweise als Einheit an-
zusehen. Unter den Staumauern hat
man die Wahl zwischen Gewichtsmau-
er, Gewolbemauer und aufgeldsten
Mauerformen. Abarten, wie sie vor al-
lem durch franzosische Ingenieure er-
dacht wurden, gehoren zu den - wenn
auch oft sehr reizvollen - Ausnahmen.
Diese Formenwahl wird dann noch in
den Rahmen eines strengen Kostenden-
kens gezwingt.

Das Asthetische schliesslich kann im
Talsperrenbau nur als Nebenprodukt
der beiden erstgenannten Kriterien in
Erscheinung treten, ist also die notge-

Bild 1. Zielvolumen der Bautdtigkeit in Wiirfel-
form. Jede Achse entspricht einem Gestaltungskrite-
rium : dem Funktionellen (Z), dem Technischen (X)
und dem Asthetischen (Y)
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