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Lehren und Lernen an der Ingenieurschule

HTL
Entwicklung am Beispiel von Sickerströmungen

Von Robert Schmidt, Horw

Sickerströmungen, wie sie im Grundbau vorkommen, konnten früher mit graphischen
Methoden genügend genau gelöst werden. Die Resultate haben sich mit den billig gewordenen,
leistungsfähigen Rechnern numerisch noch verfeinern lassen. Bei der Grundwasserbewirt-
schaftung sind aber heute technische Probleme aufgetaucht, die kompliziertere physikalische

Zusammenhänge aufweisen und deren Lösungen mit der Finite-Elemente-Methode zu
berechnen sind. Inwieweit diese Aufgaben aus der Praxis in den Lehrstoff einer Höheren
Technischen Lehranstalt (HTL) aufgenommen worden sind, zeigt der Autor in vorliegendem
Artikel, dem er Gedanken zum Lehren und Lernen an der Ingenieurschule anfügt.

Einleitung

Das Zentralschweizmmche Technikum
ist vor 25 Jahren gegründet worden. Die
während dieser Zeitspanne vor sich
gegangene Entwicklung des Grundbaues
in Theorie und Praxis hat auch in der
Ausbildung notwendigerweise
Veränderungen gebracht. Auf der einen Seite
steht die enorme Vermehrung der
Kenntnisse in der Bodenmechanik, was
theoretische Grundlagen, was Materialprüfung

in Feld und Labor von Boden
als Baugrund und Baustoff und was
Berechnungsmethoden anbelangt; auf der
andern Seite wurde in der Bauindustrie
eine Vielzahl von neuen Grundbaugeräten

und Grundbaumethoden für die
Baustelle entwickelt.

Dem Dozenten an einer Ingenieurschule
HTL stellt sich ein erstes Problem: Er

muss aus der Überfülle von theoretischem

und praktischem W&sen die
minimale, aber wesentliche Auswahl treffen.

Dann ist das zweite Problem zu
bewältigen, nämlich das anspruchsvoller
gewordene Wissen dem Studenten zu
vermitteln.

Am Beispiel «Sickerströmungen» sollen

die zunehmenden Ansprüche aufgezeigt

werden, die der schwieriger und
umfangreicher gewordene Stoff an den
Lehrer als Vermmler und an den
Studenten als Lernenden stellt. Danach
soll diskutiert werden, wie man mit diesen

Ansprüchen einigermassen zu Rande

kommt.

Theoretischer Ansatz für die
mathematische Behandlung von
Sickerströmungen

Die Erfah ru ng zeigt, dass für Strömungen

von Wasser durch ein Medium mit
zusammenhängenden Poren - also z.B.
eine Grundwasserströmung durch
einen durchlässigen Boden - das Gesetz
von Darcy

(1) v=k-J
eine gute Annäherung ist.

Dabei bedeutet v die Filtergeschwindigkeit
und Jdas hydraulische Gefälle; k

wird als DurcHSssigkeitsbeiwert
bezeichnet und hängt von den
Eigenschaften des porösen Mediums und von
denjenigen der Flüssigkeit ab. Das
Gesetz von Darcy kann anhand eines
eindimensionalen Strömungsmodells auf
empirischem Weg gewonnen werden.

Für ebene Sickerströmungen erweitert
man das Gesetz von Darcy in einer
x-z-Ebeneso:

(2) vx= kx- Jx

(3) vz=kz-Jz

(4)
dh

Jx dx

(5)
dh

Jz dz

Dabei stehen die Indizes x, z für die x-
bzw. z-Richtung; h ist die hydraulische
Druckhöhe im Punkt (.Y,jra~des
durchströmten porösen Mediums.

Setzt man die Kontinuifflsbedingung
voraus und nimmt man an, dass die
Flüssigkeit nicht zusammendrückbar
ist und dass weder Quellen noch Senken

vorhanden sind, so folgt aus der
Bilanz über ein Einheitsbodenelement -
dass nämlich die in das Einheitsbodenelement

eintretende Wassermenge der
austretenden gleichzusetzen ist - die
partielle Differentialgleichung

dVx_ ,2li
dx dz

(6) ^ + ^T=0
Ersetzt man weiter vx und vz durch die
entsprechenden Beziehungen von Darcy,

so erhält man die Gleichung

d2h d2h
(7) Kf dx' + h dz2 -0
Für isotrope und homogene Durchläs-
sigkeitsverhältnisse des Mediums mit
zusammenhängenden Poren vereinfacht

sich die obige Gleichung auf

"The problem of our time is the control of
quantity—of births, energy, knowledge. We
cannot assimilate. much less organize it in
some meaningful pattern."

Lewis Mumford, [1]

(8)
d2h d2h

0

also auf die Laplace-Gleichung, die
bekannte Grundgleichung der Potentialtheorie.

Dieser Differentialgleichung
genügt im allgemeinen als Lösung eine
Potentialfunktion und eine Stromfunktion,

die orthogonal zueinander sind.

Graphische Lösung von
Sickerströmungsproblemen

Eine exakte mathematische Lösung der
Potentialgleichung kann bekanntlich
gefunden werden, indem man zu einer
bekannten Lösung «Potentialfunktion»

eine zugehörige «Stromfunktion»

sucht, die miteinander durch die
Cauchy-Riemannschen Differentialgleichungen

verknüpft sind.

Da dieses mathematische Niveau an der
Ingenieurschule HTL nicht erreicht
wird, beschränkt man sich darauf, dem
Studenten die Tatsachen

- eine Lösung «Stromfunktion»,
- eine Lösung «Potentialfunktion»

und die

- Orthogonalität der beiden Funktionen

mitzuteilen und für einen einfachen
Fall zu beweisen. So hat z.B. die
«Spundwand mit begrenzter Tiefe im
unendlichen durchlässigen isotropen
und homogenen Halbraum» die Lösungen

[2]:

Stromfunktion
x*

w i2«cosh2\|/ t2-sinh2\|/
1

Potentialfunktion:
x2 ,2

(10) mtL> cos'q) sin'tp
— 1

wobei

(11) \|/ arsinh-p

und

(12) (p are cos-f-

Die beiden Lösungsscharen sind in Bild
1 dargestellt.

Mit dem Parameter \|/ der Stromfunktion
kann eine Schar von Ellipsen, mit

<p. demjenigen der Potentialfunktion,
eine Schar von Hyperbeln erzeugt werden.

Die Ellipsen stellen die Slromli-
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Ellipsen als Lasungsscha
der Stromfunktion

Hyperbeln als Losungssenat
der Potentialfunktion

Bild 1. Ellipsen und Hyperbeln als orthogonale
Funktionen. Beispiel von zwei Lösungsscharen der
Potentialgleichung (nach Bölllng)

nien, die Hyperbeln die Äquipotentiallinien

des Strömungsproblems dar. t
bedeutet die Eintauchtiefe der Spundwand.

xs ist gleich dem horizontalen
Abstand des Schnittpunktes der jeweiligen

Stromlinie mit der x-Axe vom
Koordinatenursprung, zs ist gleich dem
äquivalenten Wert der jeweiligen
Potentiallinie auf der z-Axe.

Auf der Tatsache der Orthogonalität
aufbauend, wird nun der Student
angeleitet, wie man Stromliniennetze
graphisch konstruiert. Dazu können eine
Reihe von Regeln gelten; die Regeln
variieren etwas mit dem Problem. Man
kann bei einem Stomungsproblem,
dessen Ränder begrenzt sind, etwa fol-
gendermassen vorgehen (Bild 2, [3]):

- Bekannt sind (Bild 2a):
• Die höchste Äquipotentiallinie 1 -2
• Die tiefste Äquipotentiallinie 3-4

• Die kürzeste (bzw. obeiite bzw.
innerste) Stromlinie a-b-c-d-e-f

• Die längste (bzw. tiefste bzw.
äusserste) Stromlinie g-h

- Nun entschliesst man sich, entweder
die Zahl der Strömungskanäle oder
diejenige der Äquipotentialstufen
ganzzahlig zu wählen.

- An den Rändern des Strömungsbereiches

trägt man die dazu senkrecht
stehendeiraRichtungen von Stromlinien

bzw. Äquipotenttallinien ein
(Bild 2b).

- In einem Bereich, in dem die
Strömung ungefähr schichtparallel ist,
teilt man die Höhe in eine ganze Zahl
von gleich breitentÜtrömungskanä-
len ein (d, d, d), vgl. Bild 2c. (Wählt
man die Zahl der Äquipotentialstufen

ganzzahlig, so erfolgt das Vorgehen

analog).
- In den Bereichen, wo die Strömung

eingeschnürt wird, teilt man die
Durchflussbreite in progressiv
zunehmende Strömungskanalbreiten
ein, wobei die kleinsten Breiten den
grössten Krümmungsradien benachbart

sind (a, b, c), vgl. Bild 2c.

- Man zieht erste Stromlinien und
passt Äquipotentiallinien so ein, dass

sphärische Quadrate entstehen, die
man kontinuierlich korrigiert.

- Zur genaueren Analyse und Kontrolle
werden die Quadrate gevierteilt;

eine ebenso gute Kontrolle stammt
von Leliavsky, der davon ausgeht,
dass einem sphärischen Quadrat ein
Kreis einbeschrieben werden kann,
der alle vier Seiten berühren muss
(Bild 2d).

Die beschriebene Konstruktionsmethode
kann benutzt werden für die eine

Gruppe von Strömungsproblemen,

nämlich diejenige, bei der die
Strömung begrenzt ist, d.h. die Sättigungslinie

bekannt ist. Es gibt eine zweite
Gruppe von Problemen, bei der die
obere Sättigungslinie, d.h. die oberste
Stromlinie, nicht bekannt ist, also als
zusätzliche Unbekannte gesucht wer-

i^^pmuss. Dieses Problem stellt sich
etwa bei Sickerströmungen durch Dämme.

Um die oberste Stromlinie bzw. den
Hangwasserspiegel konstruieren zu
können, kann man bei einem homogenen

Damm von folgenden Voraussetzungen

ausgehen:

- Die äusserste (freie) Stromlinie
verbraucht im gleichen porösen Medium

für gleiche Potentialdifferenzen
gleichviel Höhe.

- Entsprechende Äquipotentiallinien
müssen die äusserste (freie) Stromlinie

auf der entsprechenden
topographischen Höhe schneiden.

- Man kann diesen beiden Bedingungen

genügen, indem man die äusserste

freie Stromlinie und die
Äquipotentiallinien auf einem Raster von
Höhenlinien zum Schnitt bringt.

Viele natürliche Böden stellen nahezu
horizontal geschichtete Sedimente dar;
dabei ist die Durchlässigkeit parallel
zur Sedimentationsebene oft um ein
Vielfaches grösser als diejenige senkrecht

dazu. Der wirkliche Boden wird
daher durch ein Modell ersetzt, das aus
einem porösen Medium besteht mit
einem Durchlässigkeitsbeiwert kH nach
Darcy in horizontaler Richtung und
einem solchen ky in vertikaler Richtung.

Man nennt solche porösen
Medien querisotrop. Um auch für einen
solchen Fall ein Stromliniennetz
konstruieren und dabei die Vorteile der Or-

Bild 2. Graphische Konstruktion eines Strömungsnetzes (nach Cedergren)

a)

-^- ' \ tiefste Äquipotentiallinie

höchste Äquipotentiallinie 1
© l © i—(3) \ ©

i m ig 1MM|
1 1 innerste

Stroml nie ©
90°i*1\'/:'9rM

0

b)

^H*90»! 90'^

90^90°

90v4 90*^1 Mg

p90*

^y^ '/A^/^yA^^i

b

Jrgb'')ri90°

WMjWWäV/#W!Wy//^^

d)

V*^^/'/'«5**?W'^>^^
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flx
-

i Ax
m

I

ti, hn

fO-2 poröses
Medium

3 M3-0 0 lo-

undurchlassiger Rand

Bild 3. Mascheneinteilung Bild 4. Potentialfunktion »=K (x, i) ild 5. Randwertproblem

thogonalität benutzen zu können, wird
der Massstab der Zeichnung in horizontaler

Richtung reduziert, indem alle
horizontalen Masse mit dem Wert
yky/kH multipliziert werden [4]. Hat
man das orthogonale (verzerrte) Netz
konstruiert, so können die Ingenieurfragen

gelöst werden, indem man bei
allfälligen Berechnungen den
Verzerrungsfaktor einführt, beispielsweise
wie folgt:
Die Sickerwassermenge betrug beim
homogenen isotropen porösen Medium

m
n

(13) Q=k-h
wobei h die hydraulische Druckhöhendifferenz

ist zwischenÄber- unf|Unter-
wasser, k der Durchlässigkeitsbeiwert
nach Darcy für ein homogenes isotropes

poröses Medium, m die Anzahl der
Strömungskanäle, n die Anzahl der
Potentialstufen.

Beim querisotropen Medium lautet die
Lösung:

(14) Q={k^Ty~-h- H
Ist ein solches Stromliniennetz einmal
konstruiert, so können damit die
üblichen Ingenieurfragen beantwortet werden,

wie diejenige nach Sickermenge,
Spitzengrad ient, Austrittsgradient,
Auftrieb etc.

Numerische Verfeinerung der
graphischen Lösungsmethode

Die graphische Lösungstechnik war
solange optimal, als die üMehen
Ingenieurberechnungen mit
Rechenschiebergenauigkeit erfolgten. Ein schneller
mechanischer Rechner, der Resultate
aus den vier Grundoperationen auf z.B.
8 Stellen lieferte, kostete um 1960 noch
um Fr. 4000.- und kam damit für den
Unterricht nicht in Betracht. Dies
änderte, als die elektronischen Kleinrechner

zu immer günstigeren Preisen auf
den Markt kamen. Damit konnte auch
die numerische Behandlung von
Differentialgleichungen in den Unterricht
eingebaut werden.

Die Potentialgleichung von Laplace

(8) f^ + f4 0
dx1 dz*

wird nun nicht mehr graphisch gelöst,
sondern kann numerisch besser
angenähert werden, indem man anstelle der
Differentialquotienten finite Differenzen

einführt [2]. Dabei geht das Verfahren

der sogenannten finiten Differenzen

davon aus, dass das Lösungsgebiet
durch einen orthogonalen Raster dis-
kretisiert werden kann. Ein Strömungsfeld

wird also in ein rechtwinkliges
Netz mit den Maschenweiten (Ax, Az)
eingeteilt (Bild 3).

Der im Punkt 0 bekannte Funktionswert

von h wird in den Nachbarpunkten
1, 2, 3 und 4 durch Taylorsche Reihen

angenähert (Bild 4).

Es gilt dann

äöi yiH mm (Ax)2
(15) /ji /j0 + Ax. l-^-l +-L-2j *

d2ft
dx2

Ax
3!

d3?i

dx3

(16)/l3=fco-Ax.(-g)+-^f.

d2h
dx2

Ax
3!

d3ft
dx3

Subtrahiert man Gleichung (16) von
Gleichung (15), so erhält man

(17)
1dh

dx / 2Ax (h-h)-
(Ax)3 ((Ph

3! ' dx3

Vernachlässigt man (Ax)2 mit n ^ 2, so
ergibt sich

(18)
dh_

dx
1

2Ax (Ä1-A3)

Die Summe der Gleichungen (15) und
(16) ist

(19)
d2h
dx2 (Ax)f(hi + A3-2/J0)

der x-z-Ebene variable Funktion auf, so
erhält man

(20)
dh
dx / 2Ax

0

(Ä1-A3)

ilr l-w <**-*>

(22)

(23)

&h
dx'-1 (Ax)2

0 K '
(h + h-2 ho)

d2h

(Az)2T (h2 + A4 - 2 ho)

Die Gleichungen (22) und (23) kann
man nun in die Laplacesche
Potentialgleichung einführen, die dann lautet:

C24) Tra-vA + k^fcoH(Ax)
1

(Az)r(/l2+/j4-2Äo) 0

Wählt man einen quadratischen Raster
für das Strömungsfeld, so vereinfacht
sich die linearisierte Potentialgleichung
für innere Punkte des Rasters auf

(25) 4 h0 - h - h2 - h - tu 0

An den Rändern des Strömungsnetzes
werden die Kontinuitätsbedingungen
mit Hilfe des Gesetzes von Darcy
entsprechend von Geometrie und
Durchlässigkeit geändert (Bild 5). Für einen
Randpunkt am untern undurchlässigen
Rand ändert sich die Kontinuitätsbedingung

beispielsweise so:

Nach Darcy (1) ist v k • J, also

(26) q= v A-= k>J'A
Stellt man für das Element die Bilanz
auf, so lautet diese

(27) 93 — 0 qo — 2 + qo — 1

hp — h} Az
(28) 93-o- fc-

(29) 90-1-fc-

Ax 2

(hi - hö) Az
Ax

Stellt man die GBSichungen für eine in

/im 1 (fc * hÖ) A(30) qo — 2 - fc• w, "'? Ax
AZ

Setzt man noch Ax — Az, so erhält man

(31) 4/»0-fct-2fc-fc-0
1179
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Zur numerischen Lösung des Problems
geht man nun so vor, dass man wie
vorstehend beschrieben eine angenäherte
graphische Lösung in das Rasternetz
legt. Dann schätzt man die Druckhöhe
aufgrund der graphischen Lösung in
den einzelnen Rasterpunkten. Diese
ersten Werte werden in einem
Relaxationsverfahren mit der linearisierten
Potentialgleichung (25) solange variiert,

bifüiie gewünschte Genauigkeit
erreicht wird. Entsprechend der Punktlage

wird beim Ausgleich die linearisierte
Potentialgleichung für einen mittleren
oder einen Randpunkt verwendet.

Künftige Entwicklung

Für die klassischen Ingenieurprobleme
im Zusammenhang mit Sickerströmungen

genügten die oben angegebenen
Methoden. Sickerströmungen durch
Dämme, Sickerströmungen gegen
Baugruben oder gegen unterirdische
Hohlräume können mit der graphischen
Methode, allenfalls numerisch verfeinert,
ingenieurmässig genügend genau
erfasst werden. Sind die Strömungsnetze
einmal vorhanden, so können die
technischen Problemstelj^gen wie
Sickerwassermenge, Sickerströmungsdruck,
Spitzen- und Austrittsgradienten bzw.
Grundbruchgefahr, Auftrieb etc. bear-
beitet werden.

Die Problemstellungen im Zusammenhang

mit Sickerströmungen haben sich
im Laufe der Jahre geändert. Heute
sind es vor allem Fragen des
Grundwasserhaushaltes, die gelöst werden müssen,

diplzwar jetzt noch auf der
Forschungsebene behandelt werden, die
aber in wenigen Jahren zu den
Alltagsaufgaben des Ingenieurbüros gehören
werden. Vielerorts in unserem Lande
hat die Nutzung der erstklassigen
Grundwässer - also sauerstoffreich,
eisen- und manganarm, ohne weitere
Aufbereitung als TÄkwasser konsu-
mierbar - die Grenze der Grundwasserneubildung

erreicht. Darüber hinaus
wird die thermische Kapazität des

Grandjp&ssers genutzt, im Sommer zur
Kühlung, im Winter zur Heizung. Das
heute sich stellende Ingenieurproblem
besteht darin, ein GruÄwasservor-
kommen optimal zu bewirtschaften,
sowohl von der Grundwassermenge wie
von deren thermischer Kapazität her.

Das Bewirtschaftungsmodell in einem
unserer glazial geprägten Täler wird
also einen Grundwasserleiter erfassen
müssen, der z.B. so beschaffen sein
kann:

Oberhalb eines infolge einer persistierenden

glazialzeitlichen Eisrandlage

entstandenen Moränenkranzes liegt ein
See. Am talseitigen Fuss des Moränenkranzes

schliessen die fluvioglazialen
Schotter an, die mit zunehmendem
Abstand feinkörniger und damit weniger
durchlässig werden. Der den See

entwässernde Fluss infiltriert streckenweise

in die fluvioglazialen Schotter, strek-
kenweise entwässert er sie. Talabwärts
staut der Moränenkranz einer früheren
persistierenden Eisrandlage einen
weiteren See. Der obere See gibt Grundwasser

unter der Moräne hindurch in
die fluvioglazialen Schotter ab, der
untere nimmt Grundwasser aus dem
Talboden auf. Zusätzlich infiltrieren die
Bäche der Talränder sowie die Niederschläge

auf dem Talboden. Ein System

von Grundwasserfassungen entnimmt
allenthalben Wasser.

Ein solches Modell wird mit der folgenden

Differentialgleichungbeschrieben[5]

<*>M*"%rMT"-%
s'1t + e

Darin bedeuten

T fc (h- ä) Transmissivität
Q flächenhafter vertikaler Zufluss
S entwässerbares Porenvolumen
a Höhe der undurchlässigen Schicht
k,h wie oben
x, v Koordinaten der Horizontalebene
t Zeit

Für die numerische Lösung der
Differentialgleichung in einem geometrischhydraulisch

so stark wechselnden
Gebiet eignet sich die Methode der finiten
Differenzen nicht mehr. Es existieren
hiefür Näherungslösungen, die mit der
Finite-Element-Methode arbeiten. Die
Funktionsansätze werden nur noch
über Teilbereiche, die finiten Elemente,
definiert. Die Approximationsfunktion
beschreibt den tatsächlichen Verlauf
des Grundwasserspiegels, der eine
beliebig gekrümmte Fläche sein kann, in
einem Teilbereich, z.B. in einem
Dreieck oder in einem Viereck mit
einer beliebig im Raum liegenden Ebene.

Jede Ecke oder jeder Mittelpunkt
der Elementseiten, also 6 oder 8 pro
Element, stellen eine unbekannte
Variable dar, die mit dem Lösungsalgorithmus

berechnet werden kann. Die
exakte Lösung der Differentialgleichung

- sofern sie möglich wäre - musste

die Wasserspiegellage in einem
Gebiet als eine gekrümmte Fläche darstellen,

die Lösungsmethode mittels der
finiten Elemente liefert eine aus vielen
ebenen Dreiecken oder Vierecken
zusammengesetzte pol^ärische Fläche,
wobei die Polygone alle an den Ecken
zusammenhängen.

Nachdem dieses ursprünglich aus der
Elastostatik stammende Verfahren in
verschiedenen problemorientierten
Programmspraejpin verwendet wird
(Bodenmechanik, Felsmechanik,
Baustatik), wird es zu einer Aufgabe für die
Ingenieurschule HTL, dem Studenten
die Grundlagen der Finite-Element-
Methode nahezubringen. Dies wird
eine vermehrte Ausrichtung des
mathematischen Unterrichtes z.B. auf
Matrizenrechnung bedingen.

Noch schwjggiger wird es, wenn man
die Wärmebewirtschaftung des Grundwassers

ins Auge fasst. Über einen
Wärmepumpenkreislauf kann im Winter
dem Grundwasser Wärme entzogen
werden. Das abgekühlte Wasser wird in
einem Versickerungsbrunnen in den
Grundwasserleiter zurückgegeben; im
Sommer wird das kühle Grundwasser
benutzt, um die bei Klimatisierung
anfallende Wärme abzuführen; wärmeres
Wasser wird dann in den Grundwasserleiter

reinfiltriert.
Pelka gibt für das Zwei-Brunnen-
Speichersystem zur Wärmespeicherung
in oberflächennahen Grundwässern
folgende Differentialgleichung an [6]:

(33)

-^rr (Q.b • cB) + -r— (Qw cw- Vi• T) ¦

öt ÖX\

dxt
Du _9T

dxj

Dabei sind

T Temperatur
g Dichte
c spezifische Wärmekapazität
D Tensor der effektiven

thermischen Dispersion
i.j,k Laufindizes
B, W Indizes für Boden bzw. Wasser

Dabei beschreibt

9T
dt (qa- cB)

die Wärme, die in einem Kontrollele-
ment aufgrund der zeitlichen
Temperaturänderung gespeichert oder entnommen

wird.

Der Ausdruck

9

3x,- (qw cw Vf T)

enthält den konvektiven Wärmetransport

in der Grundwasserströmung. Der
dritte Ausdruck

9

dxi
Du

97/
dx,

beschreibt den Wärmeleitungsanteil des

Wärmetransports.
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Diese komplizierte Differentialgleichung
kann für das praktische

Ingenieurproblem herangezogen werden,
wieweit ein Entnahmebrunnen und ein
Versickerungsbrunnen voneinander
entfernt sein müssen, damit sie sich ge-
genseitig nicht beeinflussen.

In der Literatur [7] wird z.B. die «break-
through-time» - also die Zeit, die eine
vom Versickerungsbrunnen ausgehende

Wärme- oder Kältefront braucht, um
den Entnahmebrunnen zu erreichen
und damit zu stören - mit

(34) tB-
D

1 +
A

Vi+4 4

|» A

i-yi+4/4
l+Vl+4,4

Q
2% n • H • D ¦

(36)
Va _(!-«)• 6b- cb+ n-Qw • cy,

VT «• Qw Cw

angegeben. Dies gilt für v > 0, wobei v

die Grundwassergeschwindigkeit in
Richtung Versickerungsbrunnen-Ent-
nahmebrunnen ist, VA Volumen des
Bodens um den Versickerungsfiäinnen,
worin das WassesausgetauschMwurde,
VT das entsprechende Volumen, worin
die Temperatur geändert wurde. D ist
gleich dem Abstand Entnahmebrun-
nen-Versickerungsbrunnen, n gleich
der PorositiE H gleich der
Grundwasserleitermächtigkeit, Q ist die injizierte

-Wassermenge pro Zeiteinheit.

Wenn tB länger als die Sommersaison
(Kühlung) oder die Wintersaison
(Heizung) gewählt wird, so beeinflussen
sich die Brunnen nicht.

Es stellt sich hier das Problem, das wir
so oft antreffen, dass für einen komplizierten

physikalischen Zusammenhang,

der durch entsprechende
Differentialgleichungen beschrieben wird,
handliche Lösungsformeln existieren,
die der Student mit seinen mathematischen

Voraussetzungen nicht zu kon-
trollieren imstande ist. Wie weit dürfen
wir ihn mit der bequemen Seilbahn auf
einen Gipfel führen, dessen Normal^'
route er zu Fuss zu besteigen nicht
imstande ist?

Grundsätzliches zum Lehren und
Lern» an der Ingenieurschule
HTL

Am Anfang der europäischen
Erwachsenenbildung steht jener der Schule
Piatons benachbarte Hain des Akade-
mos [8, 9]. Die in diesem Ambiente
gepflegte Unterrichtsmethode zeichnete
sich einmal dadurch aus - wenn man an

die grossen platonischen Dialoge denkt
-, dass die Studenten unter sich einen
beträchtlichen intellektuellen
Niveauunterschied aufwiesen, dass aber der
«Dumme» nicht in einer raschen Selektion

eliminiert wurde. Ein zweites
Merkmal war, dass der Lehrer keinen
Umweg scheute, um den Studenten
zum Ziel - der Erkenntnis über den
Lehrgegenstand - zu bringen. Als wichtigste

Eigenart kann aber die Methode
des Gesprächs des Lehrers mit wenigen
Studenten genannt werden.

Mit «dem Dummen» meinen wir nicht
die thrakische Magd, die in ein Gelächter

ausbricht, wie sie den philosophischen

Himmelsbetrachter in einen
Brunnen stürzen sieht. Aber es
beeindruckt uns, dass Sokrates seine Lehrgespräche

nicht nur mit dem formal
bestechenden Nihilisten Protagoras und
mit dem durch Vielwisserei verblüffenden

Hippiasführt. Ein ganzer DialogM
dem langsam und zähflüssig denkenden

Kriton gewidmet, der über weite
Strecken nur mit «ja» oder «nein»,
oder «so ist es» antworten kann; nicht
nur das, mit Kriton bespricht Sokrates
die wesentlichen Dinge vom Tod und
vom Leben, bevor er den Schierlingsbecher

nimmt. Hier wird eine Eigenart
platonischen Denkens sichtbar, nämlich

dass am wenig begabten Kriton mit
seinen einsilbigen Ja-Nein-Antworten

:)]^^i|chöpferische Fähigkeit des Lehrers
erst sich entzündet. Die Schwerfälligkeit

des Schülers wird zum Katalysator,
an dem sich die glasklaren Ausführungen

des Lehrers entwickeln.

Der zweite der oben erwähnten Punkte
betrifft die Effizienz dieser Lehrmethode.

In den Dialogen wird immer wieder
klar, dass nicht das Ziel, sondern der
Weg das Wichtige ist. Die Frage ist
natürlich zu stellen, ob man bei der heutigen

Wissensmenge noch Zeit für so
aufwendige Lehrspiele hat.

ignjn ist allefrongs die Wissensmenge so
angeschwoljrai, dass von einer säubern
Bewältigung schon gar nicht mehr
gesprochen werden kann. Im Gegenteil:
Der Ingenieur HTL - der Hochschulingenieur

nicht minder - wird in seiner
spätem Praxis noch und noch Daten
übernehmen müssen: Materialkennwerte,

statistische Werte, Zahlen aus
Rechnern und Resultate von
problemorientierten Programmsprachen, deren
Messung zu repetieren oder deren
Mathematik nachzuvollziehen ihm gar
nicht möglich ist.

Dies kann schwerwiegende Konsequenzen
haben: Man denke z.B. daran, dass

die Mehrzahl von Planern die Zahlen
der Planungsziele Z| und Z^ bedenkenlos

übernommen hat, die zur bekannten

Überkapazität unserer Schulen,
Spitäler etc. geführt haben.

Zum Problem, Quantitäten richtig zu
beurteilen, kommt aber ein noch
wichtigeres hinzu: Qualitäten zu erfassen,
nämlich in der Wissensschwemme das
Wesentliche nicht zu übersehen. Dazu
ein zweites Beispiel: Ein bedeutender
Thermodynamiker an der ETH hatte
bereits in den 50er Jahren die Studenten

darauf hingewiesen, dass beim
damaligen Konsum wenige Generationen
die Erdölvorräte der Menschheit
verbrauchen würden, zu deren Bildung
Jahrmillionen erforderlich gewesen
waren. Obwohl also jeder Bauingenieur in
der Physikvorlesung die Differentialgleichung

der Absorption beim Durchgang

von Wärme, Licht etc. durch eine
Wand vorgeführt bekommen hatte,
vernachlässigten viele Jahrgänge von
Ingenieuren das Energieproblem der
Gebäudehülle, so dass der grössere Teil des

vor 1973 erstellten schweizerischen
Hochbauvolumens wärmetechnisch
falsch ausgelegt ist.

Die beiden Beispiele zeigen, dass eines
der wichtigsten Ausbildungsziele das
Vermitteln der Fähigkeit sein muss, mit
einfachen Rechenmethoden die Plausi-
bilität von zu übernehmenden Zahlen
überprüfen zu können, die Resultatmengen,

die aus den modernen Rechnern

herausfluten, kritisch sichten zu
können, überhaupt: kritisch denken zu
können.

Auf den Unterricht im Fache Grundbau

bezogen wird bei einem komplizierten

Strömungsproblem die Bilanz
von ein- und ausströmendem Wasser
immer noch aufgehen müssen - und die
raffinierteste erdbaumechanische
Berechnung wird am Schluss Gleichgewicht

zwischen Lasten und Sohlpressungen,

zwischen actio und reactio
zeigen müssen. Unterrichtsziel im Fache
Grundbau bleibt damit, auf Kosten der
Vollständigkeit und auf Kosten eines
sklavischen «Auf-dem-letzten- Stande-
des-Wissens-sein-Wollens» die Fähigkeit

zu vermitteln, selbständig ein
Grundbauproblem qualitativ analysieren

zu können und mit einfachen
vernünftigen Rechenmethoden die
wichtigsten für die Konstruktion erforderlichen

Grössen bestimmen zu können.
Ein kulturstratigraphisches Leitfossil
unserer Zeit dürfte wohl die Photokopie
sein, und es wird eines der Hauptanliegen

eines Dozenten an einer Ingenieurschule

sein, den Studenten dahingehend

zu erziehen, dass das, was schwarz
auf weiss auf einem A4 steht, nicht
getrost nach Hause getragen werden
kann. Wagners Zeiten sind vorbei.
Die Ingenieurschulen HTL gehören zu
den wenigen Schulen des tertiären
Bildungsbereiches, in denen wenigstens
die dritte platonische Randbedingung
noch erfüllt ist: Lehren und lernen ge-
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schieht zwischen einem Lehrer und
vergleichsweise wenigen Studenten (ca.
10-36). Zudem steht der Student nicht
in einem Heer von seinesgleichen einer
grösseren Gruppe von Spezialisten
gegenüber. An der Ingeniei^chule HTL
hat eine kleine Gruppe von Studenten
einige wenige Generalisten als Lehrer
vor sich, hat doch der Professor an der
Ingenieurschule HTL metp über einen
Bereich zu referieren, der an der
Hochschule von mehreren Instituten betreut
wird.

Die Unmöglichkeit, Spezialist werden
zu können, und der Zwang, einen nur
teilweise in die Tiefe gehenden Überblick

über ein weites Fächerspektrum
immer wieder neu erarbeiten zu müssen,

können den Bauingenieur als Lehrer

an der Ingenieurschule HTL dazu
führen, Bauen als Aufgabe in einem
grössern Zusammenhang zu sehen: das

Zivilisatorische als einen Bereich der
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Zur Ästhetik von Talsperren

Von Harald Kreuzer, North Vancouver

Talsperren wirken monumental, allein schon in ihren Dimensionen. Als reine Funktionsbauteil,

bei welchen die Materialwahl und damit der Talsperrentyp aus wirtschaftlichen Gründen
meist vorausbestimmt sind, lassen sie der ästhetischen Gestaltung wenig massgebenden

Spielraum.
Anhand von Beispielen lassen sich jedoch die ästhetisch wirksamen Elemente klar aufzeigen.
Dominierend ist die Gliederung der sichtbaren Aussenfläche sowohl beim Angleichen an die

natürliche Umgebung als auch bei der Ausbildung als Kontrastelement. Bei so grossen
Dimensionen ist die Formensprache der Architektur nicht im gewohnten Sinn anwendbar.
Besondere Beachtung verlangt die ästhetische Gestaltung der heiklen Übergänge zur Umgebung

und der horizontalen obern Abschlusslinie.

Talsperren gehören zu den grössten
Bauwerken. Der grösste Damm, Tarbe-
la in Pakistan, mit einem Volumen von
120 Mio. Kubikmeter fasst 130mal die
Cheopspyramide oder ebenso oft eines
der höchsten Gebäude der Welt, den
Sears-Tower in Chicago. Auch in
Grand-Dixence, der höchsten Staumauer,

hat die Cheopspyramide und der
Sears-Tower noch etwa sechsmal Platz.

Talsperren sind monumental. Sie werden

vom Betrachter meü^bewusst
erlebt, während den Bauten unserer täglichen

Umgebung oft wenig Aufmerksamkeit

geschenkt wird. Trotzdem gibt
es nicht so etwas wie eine Talsperrenbaukunst.

Talsperren verändern
Lebensräume, sind Ziele des Massentourismus

und Aushängeschild
fortschrittsgläubiger Politiker, aber alle
Kriterien ihres Entstehens entbehren
der bau künstlerischen Gestaltung. Im
Vergleich zum Grossteil jegl icher
Bautätigkeit ist diese Abstinenz an ästhetischen

Gestaltungsmöglichkeiten bei

Talsperren einmalig, obwohl ihre
Dimensionen visuell so aufdringlich sind.
War man z. B. beim Bau des Opernhauses

von Sydney bereit, der Ästhetik ge-
genüber einem nüchternen Funktionalismus

eine beträchtliche Summe an
Mehrkosten zuzugestehen, so ist das im
Talsperrenbau nicht denkbar. Dieser
ketzerische Vergleich soll keineswegs
das eine oder andere Vorgehen verdammen,

sondern lediglich beispielhaft
zwei Extreme aufzeigen.

Einordnung in bestehende
Formtheorien

Talsperren sind reiner Funktionsbau.
Das Architekturdogma, wonach die
Form der Funktion folgt, gilt für sie in
erhöhtem Masse. Talsperren lassen sich
nur beschränkt mit den in der
Baukunst üblichen drei Kriterien der
funktionellen, technischen und ästhetischen
Aspekte beurteilen.

Das Funktionelle steht im Vordergrund
mit der Aufgabe, den Wasserdruck zu
beherrschen.

Dem Technischen, der Wahl der
Baumaterialien und damit des Talsperrentyps,

liegt eine etablierte Beispielsammlung

zugrunde, deren Freiheit wenig
Spielraum für die Formenwahl lässt.
Dämme sind im Rahmen der ästhetischen

Betrachtungsweise als Einheit
anzusehen. Unter den Staumauern hat
man die Wahl zwischen Gewichtsmauer,

Gewölbemauer und aufgelösten
Mauerformen. Abarten, wie sie vor
allem durch französische Ingenieure
erdacht wurden, gehören zu den - wenn
auch oft sehr reizvollen - Ausnahmen.
Diese Formenwahl wird dann noch in
den Rahmen eines strengen Kostendenkens

gezwängt.
Das Ästhetische schliesslich kann im
Talsperrenbau nur als Nebenprodukt
der beiden erstgenannten Kriterien in
Erscheinung treten, ist also die notge-

Bildl. Zielvolumen der Bautätigkeit in Würfelform.

Jede Achse entspricht einem Gestaltungskriterium:

dem Funktionellen (Z), dem Technischen (X)
und dem Ästhetischen (Y)

Tolsperren- Oplimum

Sau -+¦unsinn

^jp

I ort pour 1 ort
¦Y

100% Ästhetik
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