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Rechnergestützte Laborarbeiten im
Bereiche der Mechanik

Von Peter Ritter, Horw
In der Einleitung wird am Beispiel eines aus Stäben bestehenden mechanischen Modelies der
Unterschied hervorgehoben zwischen dem konventionellen Vorgehen und den auf die
Möglichkeiten des Computers ausgerichteten Methoden. Numerisch zu lösende Differentialgleichungssysteme

erlauben die Berechnung mechanischer Systeme, welche einer geschlossenen
Lösung nicht zugänglich sind. Das Beschreiten dieser neuen Wege stellt eine Herausforderung

an den heutigen und künftigen Ingenieur dar.
Das Berechnungsmodell für das Finite Stabelement und das daraus aufgebaute Stabsystem
wird mathematisch beschrieben, und die Lösungswege mit Hilfe von Übertragungs- und Stei-
figkeitsmatrizen werden aufgezeigt. Schwingende Stabsysteme erfordern eine Erweiterung
des Berechnungsmodells. Dafür eignen sich Trägheitsmatrizen, welche am Finiten Stabelement

herzuleiten sind. Die Überlagerung des Steifigkeits- und Trägheitseinflusses erfolgt in
geschlossener Form am Stabelement und wird durch eine numerische Matrizenmethode auf
den Teilstab erweitert. Die Lösung des Eigenwertproblems für die resultierende Koeffizientenmatrix

des Systems geschieht durch Probieren nach herkömmlichen iterativen Methoden.

Die Anwendung der beschriebenen Methoden an drei sehr unterschiedlichen Stabsystemen -
im Rahmen von schulischen Laborversuchen - erlaubt eine Kontrolle der Computerberechnungen

hinsichtlichWirksamkeit und Innovationsgehalt.

Einleitung

Rechenanlagen am Technikum

Seit dem Jahre 1964 kann an unserer
Schule, die seit 25 Jahren besteht, mit
einer periodisch erneuerten Rechenanlage

gearbeitet werden. Die gegenwärtig
installierte Anlage ist die vierte innerhalb

dieser Zeitspanne. Die Speicherkapazität

der zugehörigen Computer-Zentraleinheiten

haben sich dabei um den
Faktor 100 vergrössert. Externe Speicher

stehen heute für eine praktisch
unbeschränkte Datenmenge zur Verfügung.

Eine dezentrale Peripherie mit
Bildschirmterminals erlaubt den
Zugriff auf die Rechenanlage vom Labor
aus.

Dem Ingenieur eröffnen sich dadurch
neue Möglichkeiten und neue Wege.
Ihre Erschliessung stösst auf Schwierigkeiten,

deren Umfang überraschend
gross ist. Das Ausmass und die Zahl der
Schwierigkeiten hängen mit den besonderen

Anforderungen zusammen, die
an eine genügende Ausbildung zu stellen

sind. Sie können durch Schlagworte
nicht überwunden werden. Im folgenden

wird versucht, besondere Merkmale

rechnergestütxSir Ingenieurarbeit zu
beleuchten.

Problembeschreibung: Mechanisches
Modell

Der Stab spielt als einfacher Festkörper
in der technischen Mechanik eine überaus

wichtige Rolle: Man denke etwa an
Stab-Tragwerke in der Statik, an Biegeträger

in der Festigkeitslehre oder an
schwingende Schaufeln oder rotierende
Wellen in der Dynamik. Das elastische

Biegeverhalten des Stabes lässt sich
mathematisch durch eine einzige
Differentialgleichung beschreiben, und zwar
sowohl für den ruhenden wie auch für
den schwingenden Zustand. Ihre
Lösung durch Integration in geschlossener
Form gilt als klassisches Schulbeispiel
und kann bei vielen praktischen
Anwendungen als brauchbare Annäherung

der Wirklichkeit betrachtet werden.

Sobald nun aber ein aus vielen Teilstäben

mit unterschiedlicher Geometrie
oder Elastizität zusammengesetzterStab
betrachtet wird, versagen die geschlossenen

Methoden. Es müssen neue Wege
beschritten werden, welche dank den
neuen Möglichkeiten des Computers
offen stehen.

Die Beschreibung eines mechanischen
Systems erfordert eine sehr differenzierte

Betrachtungsweise von gleichzeitig
auftretenden mechanischen

Zusammenhängen. Sie findet die ihr angemessene

Darstellung durch lineare
Differentialgleichungssysteme mit einer genü-
gend grossen Anzahl von Freiheitsgraden

als Systemkoordinaten. Die hohen
Anforderungen an das Abstraktionsvermögen

des Ingenieurs und der grosse
numerische Aufwand machen es

zunehmend schwieriger, die Qualität der
Resultate zutreffend zu beurteilen.

Parallel durchgeführte Versuche im
Labor erlauben eine kritische Würdigung.
Die Wechselwirkung zwischen
Versuchsanordnung und Berechnungsmodell

erweist sich dabei als sehr hilfreich.
Die im letzten Abschnitt zu beschreibenden

Laborarbeiten umfassten
Seh wingungsversuche an Stabsystemen
sehr unterschiedlicher Struktur:

- Rahmenkonstruktion einer
Liftkabine

- Wellenstrang bzw. Modellrotor eines
Motorschiffes

- Metallschlauch bzw. Kompensator

Eine der hauptsächlichsten Herausforderungen

an den Ingenieur besteht heute

darin, diese neuen Wege auch
tatsächlich zu beschreiten. Eine erste
Schwierigkeit entsteht dadurch, dass

die theoretischen Zusammenhänge an
einem System zu formulieren sind,
wozu sich das mathematische Werkzeug

der Matrizenrechnung als notwendig

erweist. Eine zweite Schwierigkeit
ergibt sich daraus, dass der numerische
Aufwand zur Lösung des Problems die
Möglichkeiten eines Taschenrechners
übersteigt. Schliesslich liegt eine dritte
Schwierigkeit darin, dass der Lösungsweg

in die Form eines Rechenprogram-
mes gebracht werden muss. Dies erfordert

die Kenntnis einer Computersprache
sowie von Software-Entwicklungsregeln.

Diese Schwierigkeiten lassen sich unter
bestimmten Bedingungen umgehen,
indem man fertige Software-Pakete kauft
oder deren Benützungsrechte erwirbt,
welche die jeweiligen Problemlösungen
anbieten. Wenn diese Pakete und die
erforderlichen Eingabelisten durch
Hilfskräfte gehandhabt werden, welche
nur die Handgriffe zur Computer- oder
Terminalbedienung kennen, so ist die
Qualität der Ergebnisse nicht gewährleistet.

Ihre kritische Überprüfung
durch Ingenieure ist notwendig.

Software-Pakete - als selbständige
Produkte - werden ständig an Bedeutung
gewinnen, besonders in Verbindung
mit der Rationalisierung der Konstruk-
tions- und Zeichnertätigkeit (Computer
Aided Design). Die Mitwirkung bei der
Herstellung und Anwendung dieser
neuen Produkte gehört heute schon
zum Tätigkeitsfeld des Ingenieurs. Seine

Grundausbildung muss deshalb
entsprechend breiter angelegt werden.
Anhand von schulischen Arbeiten mit
Stabsystemen - in Verbindung mit
Laborversuchen - soll diese Problematik
illustriert werden.

Stab und Stabsystem

Berechnungsmodell für ruhende Stäbe

Die mathematische Beschreibung des

Finiten Stabelementes von der endlichen

Länge / erfolgt durch das System
von 5 Differentialgleichungen nach
Bild 1. Fall 1 erfasst das elastische
Verhalten nach der elementaren Biegetheorie,

während Fall 2 den Schubein fluss
und den Einfluss der Membrankraft
(Seil- und Knickeffekt) berücksichtigt.

135



Mechanik Schweizer Ingenieur und Architekt 48/83

M.f q konst. 1

X

Zustandsgrössen
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Bild 1. Differentialgleichungssysteme und Zustandsgrössen. E Elastizitätsmodul, I Flächenmoment des Querschnittes

Lösungsmethode

Ubertragungsmatrizen

Die Lösung des Systems von 5

Differentialgleichungen 1. Ordnung führt auf
Ubertragungsmatrizen, welche den
Zustand an der Seile i mit dem Zustand an
der Stelle (i + 1) verknüpfen. Im Falle 1

ist die Übertragungsmatrix als geschlossene

Lösung erhältlich. Im Falle 2 führt
eine Reihenentwicklung zum Ziel [1],
welche mit einem grossen numerischen

Aufwand ve rbunden ist,, |

Der Computer pMefert nach enSijpw».
chender Programmierung die numerische

Lösung dank guter Konvergenz
sehr rasch. Dafür erweist sich die
Herstellung eines Unterprogrammes (Sub-
routine) als zweckmässig.

(5) I4-+1-[^J'](Z],
Reihenentwicklung für die Übertra-
gungsmatrix:
(6) [U] -[e'-4"] [E] + [A] 1 +

1

+ fl[A]2l*+j][A]>l*+

Gleichung (6) stellt die Lösung des

Differentialgleich ungssystems für den Stab
endlicher Länge dar, mit konstanter

Geometrie und konstanten
Materialeigenschaften. Es handelt sich um das
elastische Verhalten des|ßiniten
Elementes eines grösseren Systems, wenn
man von diesem endlichen Stabstück
auf ein Stabsystem übergeht. Die einfache

Natur des Stabes, welche sich durch
die dominierende Längsabmessung aus-
agßltnet, erlaubt, das Berechnungsmo-
.Iplfffür das Element einfach zu halten -
im Vergleich etwa zu einem Schalenelement.

Dank der Rechnerunterstützung
kann der Schubeinfluss und die
Membrankraftwirkung - in Form der Rei-
henentwickrarig - berücksichtigt werden.

Dies kann für einzelne praktische
Anwendungen von ausschlaggebender
Bedeutung sein, wie die Laborarbeiten
zeigen.

Abspaltung des Übertragungsvektors
/PJzufolge der Belasluttgsintensität q

Die Übertragungsmatrix [U] kann wie
folgt in Teilmatrizen aufgeteilt werden:

(7)

UM C/,2 />,

Uli Un h

1

0 0 1

Abkürzungen für Verformungen:

M];|=i/iflB
Abkürzungen für Beanspruchungen:

I Q I - IFI\m\ ' '

(8)
f f

— f. + P,

f i+l
F

(9) |zl,+ [U,] |z}i+|fl}.«,
[Ut] • \P,\ sind feldweise (elementweise)
durch die Reihenentwicklung
bestimmt, qiist die feldweise (elementweise)

als konstant vorausgesetzte
Belastungsintensität.

Für die Unterstützung der Laborarbeiten

stand als Berechnungsmodell ein
einfach zusammenhängendes Stabsystem

im Vordergrund. Das Stabsystem
ist durch sogenannte Knoten - d. h. reale

oder fiktive Lagerstellen - unterteilt,
an welchen Rand- oder Zwischenbedingungen

nach freier Wahl eingeführt
werden können, inklusive federnde
Lager. Das vorangehend besprochene Fi-
nite Stabe 1 ement wird als Feld bezeichnet.

Als Teilstab wird der zwischen zwei
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Bild 2. Koeffizientenmatrix, gebildet mit 4 Teilstäben. 5 Knoten. 10 Freiheitsgraden (Randbedingungen und äussere Belastungen sind vernachlässigt)

Knoten liegende Stabteil definiert. Er
setzt sich aus einer endlichen Anzahl
Feldern zusammen. Das Stabsystem
schliesslich besteht aus einer Anzahl
fluchtend angeordneter Teilstäbe.

Das elastische Verhalten eines Teilstabes

mit «-Feldern wird durch fortgesetzte

Multiplikation der zugehörigen
Ubertragungsmatrizen erfasst:

(10)|z|„+l=([l/J.....[fJJ.....[[/l])|z),+

+ S l([Un] 285.
¦[üfcnD{Al|-«k + lp-l«"

n^i^l
nZjZk+ 1

(11) n<j:[Uj] [0]

Steifigkeitsmatrizen

Der Übergang von Ubertragungsmatrizen
auf Steifigkeitsmatrizen erlaubt,

das Anfangswertproblem in ein
Randwertproblem zu transformieren. Während

bei Ubertragungsmatrizen der Zu-
standsvektor sowohl die Verformungs-
wie die Beanspruchungskomponenten
enthält, welche jeweils am gleichen
Rand des Stabes auftreten, findet bei
den Steifigkeitsmatrizen eine Separation

statt: Die Beanspruchungskomponenten

an beiden Rändern werden mit
den Verformungskomponenten an beiden

Rändern verknüpft. Bei den
Ubertragungsmatrizen erfolgt die Verknüpfung

des Zustandes von einem Rand
zum andern.

Die Verwendung von Steifigkeitsmatrizen
steht bei der Finite-Element-Metho-

de (FEM) im Vordergrund. Die hier
angewandte Methode umfasst beide Arten
von Matrizen: Resultierende
Ubertragungsmatrizen und -vektoren beschreiben

das Verhalten der Teilstäbe.
Steifigkeitsmatrizen dienen zur Darstellung
des Systems. Sie erlauben, die gegenseitige

Verknüpfung der Teilstäbe in den
Knoten - durch Superposition - zu for¬

mulieren. Die Steifigkeitsmatrizen der
einzelnen Teilstäbe werden durch
Transformation aus den resultierenden
Ubertragungsmatrizen gewonnen.

Gleichung (10) gilt für einen Teilstab
und kann wie folgt zusammengefasst
werden:

(12) \z\n+x [U)\z\x + \Q\

[U] resultierende Übertragungsmatrix

[Q] resultierender Übertragungsvektor

Anstelle des Indexes 1 wird nun der
Index a geschrieben, welcher den Anfang
des Teilstückes markieren soll, und
anstelle des Indexes (n+1) der Index e,

welcher auf das Ende des Teilstabes
hinweisen soll. In Teilmatrizen aufgelöst

lautet nun Gleichung (12):

trix [U] darstellt. Die Zusammenfassunglautet:

(16)
F,

F.

Cn C|2 fa

f:
+

Ö2c2, C22

(13)
1

Fe ü
Un Un fa

Fj
+

öi

Ö2Uu Un

Bei Steifigkeitsmatrizen muss die
Verknüpfung von (i^),|ii) mit \fj\, [£) erfolgen.

Die Auflösung nach den beiden
erstgenannten Vektoren ergibt (14a),
(14b).

Da beim Übergang auf Steifigkeitsmatrizen

das Schnittufer am Ende des
Teilstabes als diesem zugehörig zu betrachten

ist - und nicht etwa das Schnittufer
des nächsten Elementes, wie bei
Ubertragungsmatrizen, gemeint ist - hat bei
Gleichung (14b) ein Vorzeichenwechsel

zu erfolgen, siehe (15).

Damit ist das Transformationsgesetzb^-
kannt. Die Teilmatrizen der Steifig-
keitsmatrix sind durch die
Übertragungsmatrix bestimmt. Sie entstehen
als Matrizenprodukte, wobei [l/if1]
eine inverse Teilmatrix der Gesamtma-

[C] Resultierende Steifigkeitsmatrix
des Teilstabes, symmetrisch

(17) [C] [C)T

[ ]r bedeutet die transponierte Matrix

(D) Resultierender Belastungsvektor
des Teilstabes zufolge der verteilten

Belastungsintensität q,

Koeffizientenmatrix des Gesamtsystems

Steifigkeitsmatrizen erlauben die
Formulierung von Gleichgewichtsbedingungen

an den Knoten, da die Knotenlasten

in Abhängigkeit von unbekannten

Teilstabverformungen ausgedrückt
werden können. Diese Methode heisst
deshalb auch Deformationsmethode.
Sie erlaubt das Einführen von sehr vielen

Freiheitsgraden, wie es ein grösseres
System erfordert. Die Aussage, dass an
jedem Knoten Gleichgewicht bestehen
muss, führt zu einem linearen
Gleichungssystem, welches eine Abbildung
des mechanischen Systems darstellt.
Die zugehörige Koeffizientenmatrix
enthält nur überlagerte Elemente derjenigen

Steifigkeitsmatrizen, welche von
den unmittelbar angrenzenden Teilstäben

herrühren.

Da entferntere Teilstäbe als die unmittelbar

benachbarten keine Beiträge an
das Knotengleichgewicht liefern, bleibt
die Matrix des Stabsystems nur
schwach besetzt, wenn viele einfach
zusammenhängende Teilstäbe auftreten
(vgl. Bild 2).

(14a) Fe

(14b) F

(15)
F,

-Un'Uu U^
||p üif1 Un + -Vn Un t/,j'

-Viä'Ün Uli'

UuUi^Uu-Un -Un UJ1

-Uü 'ft
-Un Ulf 'Si + Qj

-Ui 'ß.
Un Uli öi -Ö2
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Bild 3. Interpolation derSchwingungsform: Trägheitseinßusszahlen als Elemente der Trägheitsmatrix

Berechnungsmodell für
schwingende Stäbe

Grundlagen
Nach dem Prinzip von D'Alembert
muss die Trägheitswirkung der schwingenden

Massen berücksichtigt werden,
um die Gle^phgewichtsbetrachtung in
den Knoten aufrechterhalten zu können.

Wenn es gelingt, diejenigen
Knotenlasten des zwischen zwei Knoten
liegenden Teilstabes auszudrücken, welche

ausschliesslich auf Trägheitswirkung

zurückzuführen sind, kann die
oben beschriebene Methode der
Steifigkeitsmatrizen einfach erweitert werden.

Das Verfahren läuft dann darauf
hinaus, eine Steifigkeitsmatrix und eine
Trägheitsmatrix von gleicher äusserer
Form aufzubauen, bestehend aus
unterschiedlichen Einflussgrössen als
Matrixelemente [2].

Die Schwierigkeit besteht darin, die
Trägheitswirkung zu erfassen, ohne die
richtige Schwingungsform zu kennen.
Der Afpareg, welcher sich durch den
Ersatz der kontinuierlich verteilten
Masse durch Punktmassen ergibt, soll
hier nicht beschritten werden. Die
Wahl der Verformungen w und \y an
beiden Rändern als lokale Koordinaten
des Finiten Stabelementes erlaubt, den
Verlauf der elastischen Linie innerhalb
dieses Elementes sehr genau durch ein
kubisches Interpolationspolynom zu
approximieren. Die vier Randkoordinaten

bilden dabei notwendige und
hinreichende Stützwerte. Dafür eignen
sich Hermitesche Interpolationspolynome

[2].

Der Aufbau der Trägheitsmatrix
geschieht auf der Stufe des Feldes, d. h.
am Finiten Stabelement (vgl. Bild 3).
Die Addition der Steifigkeit- und
Trägheitswirkimg liefert den dynamischen
Gesamtzusammenhang an diesem
Feld, entsprechend dem Prinzip von
D'Alembert. Die zugehörige Matrizensumme

wird im Folgenden als Gesamtmatrix

des Feldes bezeichnet. Was jetzt
einzig noch fehlt, ist die Berücksichtigung

der lokalen Dämpfung am
Element in Form einer Dämpfungsmatrix.
Sie wurde bei den vorliegenden Arbeiten

nicht erfasst.

Während die genannten Verformungen
als lokale Koordinaten des Feldes
dienen, werden zur Beschreibung desiSjg;
stems globale Koordinaten verwendet.
Dafür eignen sich die Randverformun-
gjaKMer Tejptäbe. Damit die lokalen
Koordinaten nicht mehr in Erscheinung

treten, muss eine resultierende
Gesamtmatrix des Teilstabes gewonnen
werden, welche den dynamischen
Gesamtzusammenhang am ganzen Teilstab

liefert. Dies geschieht mit Hilfe
von Ubertragungsmatrizen. Durch
Transformation der Gesamtmatrix des
Feldes gelingt es, die Übertragungsmatrix

zu ermitteln, welche den dynamischen

Einfluss enthält. Die fortgesetzte
feldweise Multiplikation dieser
Ubertragungsmatrizen liefert die resultierende

Übertragungsmatrix des Teilstabes.

Durch Rücktransformation in die
Form einer Steifigkeitsmatrix gewinnt
man schliesslich die Gesamtmatrix des

Teilstabes, welche den dynamischen
Gesamtzusammenhang mit Hilfe der
globalen Koordinaten ausdrückt.

Diese Methode erlaubt eine sehr feine
Strukturierung des Systems, ohne die
Zahl der Unbekannten zu erhöhen. Die
praktische Folge sind kleine lineare
Gleichungssysteme und massige
Ansprüche hinsichtlich Kapazität der
benötigten Zentralspeicher. Hingegen
sind grössereiexterne Speicher erforderlich,

wenn die Zahl der Felder hoch ist.

Trägheitsmatrizen und Drehträgheit

Die kinetische Energie eines Finiten
Stabeleroentes lässt sich mit Hilfe von
Matrizen als quadratische Form
darstellen (Bild 3). Die Matrizenelemente
der Trägheitsmatrix entstehen dann als

Integralausdrücke:

(18) lll f Hi(x)Hk(x)dx
0

Sie enthalten in dieser Form Masszahlen

der kinetischen Energie zufolge
Auslenkungsamplitude aller Massenteilchen

entlang der interpolierten
Schwingungsform.

Für gewisse stabartige Federkörper -
wie etwa Metallschläuche - erweist sich
die Berücksichtigung der Drehträgheit
bei der Schrägstellung der
Materialquerschnitte als von ausschlaggebender
Bedeutung, wie die entsprechenden
Laborversuche zeigen.

Das Differential für den Drehanteil der
kinetischen Energie lautet:

(19) dT-d6y [o>v|/(x)]2

\|/ (.v) Amplitudenwert für den
harmonischen Zeitverlauf des

Querschnittneigungswinkels
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d 8 lokales Massenträgheitsmoment

dmdmr= s— i1axdx
i lokaler Trägheitsradius bezügüch der

Biegeachse

(20) d0 u.i2djc

Näherung:

(21) y(x)^w>(x)
Damit lässt sich der Drehanteil als
endliche Summe schreiben:

4

(22) 2T=<a2\ii2 2i «/*Jiy/i,wobei

(23) H \H\(x)HUx)dx
o

Mit den Hermiteschen Polynomen

(24) Hi(x) 1-3^ + 2^-

fU
"ha; J l2 | P

H4(x) (--£?*)<

H,' (x) (-6f + «-£)
1

/

|j (x)
0

1-4 T + 3^
6t_6^")t

H4'(x) -2-^ + 3^-

lauten zum Beispiel die Matrixelemente

(25) nfflm 156

420 '
1 36
/ 30

Die Superposition zur resultierenden
Trägheitswirkung liefert zum Beispiel
für das erste Matrixelement:

tu ar u. wn + co^u, ipfe
(26)

tu "»(O2^/
156 Üi6
420 /2 30

Transformation in Übertragungs-
matrizen

Die Gesamtmatrix drückt das D'Alem-
bertsche Prinzip am Element aus:

(27) [q-ö^u/m in-m

Nun ist aber das Eigenwertproblem am
System zu lösen. Deshalb wird die
Gesamtmatrix [R] mit angenommenem
Eigenwert in eine Übertragungsmatrix
[ U] transformiert, welche die Verknüpfung

mit allen Nachbarfeldern von
Stabanfang bis Stabende erlaubt.

Erst nach der Rücktransformation der
resultierenden Übertragungsmatrix zur
resultierenden Teilstab-GesamtmJ^M
und nach dem Zusammenfügen zur
Koeffizientenmatrix des Systems kann
das Eigenwertproblem iterativ gelöst
werden.

(28)
Fa

Fe li «11 «12 fa

fR2l «22

[«] [C]-<o2u/ [T]

Die Auflösung nach den beiden Vektoren

\fe\ und \Fe\ - letztere mit
Vorzeichenwechsel aus bereits genannten
Gründen - ergibt:

(29)

— Rn «n «li1

«22 «12~ «u
-«21

~«22 «12 '

Für [F\ ~ (0) bildet to2 den Eigenwert.

Wie ein Vergleich mit Gleichung (15)
zeigt, gelten dieselben Rechenregeln
wie bei der Transformation der
Übertragungsmatrix in die Steifigkeitsmatrix.

Das heisst für die Transformation
und die Rüi^transfonnation kann
dasselbe Unterprogramm als Subroutine
verwendet werden.

Lösung des Eigenwertproblems

Die Eigenwertgleichung (27) kann in
dieser allgemeinen Form nicht für den
Teilstab und auch nicht für das

Gesamtsystem aufgestellt werden, da die
Verknüpfung von Steifigkeit und
Trägheitauf der Stufe des Feldes erfolgt. Die
Gesamtmatrizen der Felder werden
rein numerisch transformiert, multipliziert,

rücktransformiert und superpo-
niert, wobei bei jedem Iterationsschritt
für den Eigenwert die Rechnung zu
wiederholen ist.

Der Algorithmus besteht im iterativen
Aufsuchen der Eigenwerte als Nullstellen

der Determinante der Koeffizientenmatrix.

Zur Berechnung der
Determinante wird das Verfahren von Chole-
sky [3] verwendet. Die Nullstelle wird
mit Hilfe der Regula Falsi ermittelt,
wobei als Kriterium zum Abbruch der
Iteration die genügend gute
Übereinstimmung zweier Näherungswerte
dient.
Anschliessend wird der Eigenvektor
durch Lösen des um einen Freiheitsgrad

verminderten linearen
Gleichungssystems berechnet. Aus den
nunmehr bekannten Verformungen der

n

¦« | ag

*l¥w
Bild 4. Liftkabine. Der Rahmen ist oben aufgehängt

und trägt die auf den untern Konsolen
elastisch abgestützte Kabine

Teilstäbe werden die zugehörigen
Belastungen ermittelt. Mit Hilfe der
Ubertragungsmatrizen werden innerhalb
der Teilstäbe die Zustandsgrössen an
sämtlichen Feldgrenzen berechnet.

Laborarbeiten

Programme «Swing-Krit» und «Flex»

Im Rahmen von schulischen Arbeiten
wurde seit 1971 das Programm Swing-
Krit [4] entwickelt. Es dient zur Berechnung

der kritischen Drehzahlen von
Wellensträngen und Eigenfrequenzen
von Durchlaufträgern und Federkörpern.

Damit können schwingende
Stabsysteme mit maximal 10 Knoten, 9
Teilstäben und 180 Feldern berechnet werden.

Die Wirkung von Membran- und
Knickkräften kann wahlweise berücksichtigt

werden.

Seit 1979 wurde die Version Flex daraus
abgeleitet und weiterentwickelt. Sie
dient zur Berechnung von statischen
Biege- und Knickproblemen an
Durchlaufträgern. Das ruhende Stabsystem
umfasst maximal 20 Knoten, 19 Teilstäbe

und 760 Felder.

Rahmen einer Liftkabine
Die Kabine ist in einer Rahmenkonstruktion

auf Gummi gelagert (Bild 4).
Der Rahmen besteht aus zwei vertikalen

Längsträgern in Leichtbauweise,
welche durch ein massives Joch, an
welchem die Aufhängung erfolgt, horizontal

verbunden sind. Die elastische Lagerung

erfolgt auf Konsolen am untern
Ende der Längsträger (Bild 4).
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Bild 5 (links). Untere Lagerslelle der Liftkabine.
Der Kraftfluss erfolgt durch das untere Gummielement

und wird seitlich durch das L-Profil - als

Schubkraft - auf den Kraftsensor und die Kabine
übertragen

Bild 6 (rechts). Frequenzgang der Kraftübertragung

an der Lagerstelle gemäss Bild 5

m

'illlM^T
r Mr

rTTTTT

10 20 50 100 200 500 H

"H ä^P^tir

Bild 7. Versuchsstand mit Modellrotorfür gleichzeitige^gfhwingen und Knik-
ken. Weiche Lagerung in der Mitte; Kraftsensoren am Lagerbock. Pneumaiikzy-

linder unten, mit Hebel zum Erzeugen der Knickkraft am Rotor

3lld 8. Schwingungsp rufstandfür Metallschläuche

JL
od h- ^- oo r-iüroip (Hz)
iß «- o) u> mmtoo) _ro j- o ^ tocjörn Berechnung^ ,— — — r\ir\ir\l

Broel & Kjcer
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Measunng Ob| | l.
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Blld 9. Frequenzgang der Kraftübertragung am Federkörper eines Metallschlauches. Die Pfeile geben die

Lage der mit dem Computer berechneten ElgenfrequenzenvBfpß

Der Laborversuch bestand darin, den
Frequenzgang der an der Abstützung
übertragenen Kräfte zu messen (Bild 5),
wenn die Seilaufhängung zum Schwingen

angeregt worden war. Das
Übertragungsverhalten wird durch die
Eigenfrequenzen der Längsträger erheblich
beeinflusst (Bild 6). Sie waren Gegenstand

der Berechnung und Messung.

Wellenstrang bzw. Modellrotor

Der Anlass zu dieser Untersuchung
bildeten störende Schwingungen an der
Antriebswelle des Motorschiffes
Unterwaiden auf dem Vierwaldstättersee. Es
wurde ein einfacher Versuchsstand
gebaut, mit welchem die Stabilität eines
Modellrotors grundsätzlich untersucht

Schaukel — Biegeschwingung

normale Biegeschwingung

Bild 10. Schwingungsformen (schematisch).
Oben: Berechnete und gemessene Schwingungsform
des Metallschlauches. Unten: Theoretische
Schwingungsform bei elementarer Stabbiegung

werden konnte (Bild 7). Insbesondere
konnte eine axiale Druckkraft pneumatisch

erzeugt werden.

Die kritischen Drehzahlen sind von der
Axialkraft - d.h. vom Propellerschub
der Schiffswelle - stark abhängig. Messung

und Computerrechnung stimmen
gut überein.
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Ausserdem konnte beim mittleren
weichen Lager, mit welchem ein wasserge-
schmiertes Gummilager simuliert wurde,

unter bestimmten Bedingungen ein
«Rattern» festgestellt werden, welches
mit ungefähr halber Drehfrequenz
erfolgt.

Metallschlauch

Gegenstand der Untersuchung war der
wellrohrförmig ausgebildete Federkörper

eines Metallschlauches. Zur
Aufnahme von Dehnungen bei Rohrlei-
tungssjsfemen in der Haustechnik in
der Verfahrens- und Maschinentecnnm*
spielen diese weitverbreitl|sen Bauteile
eine wichtige Rolle. Sie werden häufig
auch als Schwingungs- und
Körperschalldämpfer eingesetzt. Das
Dämpfungsverhalten ist durch die Eigenfrequenzen

des Federkörpers massgeblich
beeinflusst. Auf einem zu diesem Zwek-
ke entwickelten Prüfstand können
Durchlaufanalysen des sinusförmig
angeregten Prüflings durchgeführt werden

(Bild 8). Dabei wird der Frequenzgang

der Kraftübertragung gemessen.
Das elastische und das Trägheitsverhal¬

ten des Federkörpers können durch das

Berechnungsmodell eines stabartigen
Systems von Federkörpern simuliert
werden, wobei der Einfluss der Schub-
steifigkeit und der Drehträgheit
berücksichtigt wird.

Die vorstehend beschriebene und
programmierte Berechnungsmethode
erlaubt, die Eigenfrequenzen zu berechnen.

Dabei ergibt sich eine gute
Übereinstimmung zwischen Rechnung und
Messung, und zwar bis zu
Schwingungszahlen höherer Ordnung (Bild 9).
Die Interpretation der Eigenschwingungsformen

zeigt, dass der Federkörper

eine von der herkömmlichen
Biegeschwingung abweichende Schwingung
ausführt (Bild 10). Wegen der gegenüber

der geringen Biegesteifigkeit
überwiegenden Drehträgheit des
Querschnittes entsteht eine charakteristische
Schaukelbewegung(Bild 10).

Die eigentlichen Stab-Biegeschwingungen-
deren Schwingungszahlen in den

einschlägigen Normen der Hersteller
dieser Produkte [5] zu finden sind -
scheinen bedeutungslos zu sein. Der
Einfluss der auf dem Federkörper auf-
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Niederschlagskarten für den Kanton
Zürich

Von Dietmar Grebner und Christian Göldi, Zürich

Für den Kanton Zürich wurde 1936 und erneut im Jahr 1943 eine Karte mit den mittleren
Jahresniederschlägen sowie 1933 bzw. 1943 eine Karte mit den grössten Tagesniederschlägen
seit 1893 erarbeitet. Im vorliegenden Bericht wird eine neue Ausgabe dieser Karten erläutert.
Sie entstanden anhand der Messperiode 1881-1979. Die Beschreibung gibt die Kriterien für
die Auswahl der verwendeten Stationen, die Behandlung lückenhafter Messreihen, Abschätzungen

des Einflusses von Inhomogenitäten und die Analysenmethode wieder. In der Diskussion

werden Hinweise für die Interpretation der Karten gegeben. Angaben über die Genauigkeit

der Messungen, die Abhängigkeit der Niederschlagsmengen von der Urographie und vor
allem über die Bedeutung der Isolinien in der Karte der grössten Tagesniederschläge sollen
zur geeigneten Anwendung beitragen.

Einleitung

Um Wasserbauanlagen mit genügender
Sicherheit bemessen zu können, ist unter

anderem die Kenntnis der lokalen
und regionalen Niederschlagsverhältnisse

von ausschlaggebender Bedeutung,

da der Niederschlag in seiner
räumlichen und zeitlichen Verteilung
zu den wesentlichsten Faktoren für die
Grösse des Abflusses in den Gewässern
zählt. Die erforderlichen Informationen

setzen umfangreiche Messungen
und deren Auswertung nach verschiedenen

Gesichtspunkten voraus.

In der Schweizwerden glücklicherweise
seit vielen Jahrzehnten, vor allem
durch die Schweizerische Meteorologische

Anstalt (SMA), in einem dichten

Netz von Beobachtungsstationen
Niederschlagsmessungen durchgeführt.
Die meisten Messungen erfolgten mit
sogenannten Tagessammlern, in denen
die Summe der täglichen Niederschläge
erfasst wird. Messungen mit
Regenschreibern, die den Verlaufder Regenereignisse

registrieren, wurden hingegen
nur an wenigen, ausgewählten Stationen

durchgeführt.
Die Bemühungeil dieses umfangreiche
Datenmaterial in geeigneter Form zu¬

sammenzufassen und darzustellen und
damit dem Ingenieur gesicherte Grundlagen

zur Projektierung und Bemessung

von Wasserbauten zur Verfügung
zu stellen, gehen vor allem auf [Kropf
1944; Hörler, 1960; Hörler, Rhein, 1962]
zurück.

Für den Kanton Zürich erstellte das
kantonale Meliorations- und
Vermessungsamt im Jahre 1933, gestützt auf 62
Messstationen, eine Karte der mittleren
Jahressummen und 1936, gestützt auf
56 Stationen, eine Karte der grössten
Tagesniederschläge seit 1893. Im Jahre
1943 erschienen für beide Karten
Neubearbeitungen, die auf 65 Messstationen

basierten und die Messperiode von
1893 bis 1942 umfassten. In neuester
Zeit wurden von Zeller. Geigerund Röt-
lisberger [1977, 1978] neben anderen
auch für einige Stationen im Kanton
Zürich und seiner näheren Umgebung
die Niederschlagsdaten, insbesondere
von 1901 bis 1970, extremwertstatistisch
ausgewertet und in Tabellen und
Diagrammen dargestellt.

Zur weiteren Ergänzung der vorhandenen

Daten und Darstellungen erteilte
das Amt für Gewässerschutz und
Wasserbau des Kantons Zürich der
Versuchsanstaltfür Wasserbau, Hydrologie
und Glaziologie der ETH Zürich den
Auftrag, die Karten der mittleren
Jahressummen und der grössten Tages-
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