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Schweizer Ingenieur und Architekt  48/83

Rechnergestiitzte Laborarbeiten im
Bereiche der Mechanik

Von Peter Ritter, Horw

In der Einleitung wird am Beispiel eines aus Stiben bestehenden mechanischen Modelles der
Unterschied hervorgehoben zwischen dem konventionellen Vorgehen und den auf die Mog-
lichkeiten des Computers ausgerichteten Methoden. Numerisch zu losende Differentialglei-
chungssysteme erlauben die Berechnung mechanischer Systeme, welche einer geschlossenen
Losung nicht zuginglich sind. Das Beschreiten dieser neuen Wege stellt eine Herausforde-
rung an den heutigen und kiinftigen Ingenieur dar.

Das Berechnungsmodell fiir das Finite Stabelement und das daraus aufgebaute Stabsystem
wird mathematisch beschrieben, und die Losungswege mit Hilfe von Ubertragungs- und Stei-
figkeitsmatrizen werden aufgezeigt. Schwingende Stabsysteme erfordern eine Erweiterung
des Berechnungsmodells. Dafiir eignen sich Trigheitsmatrizen, welche am Finiten Stabele-
ment herzuleiten sind. Die Uberlagerung des Steifigkeits- und Trigheitseinflusses erfolgt in
geschlossener Form am Stabelement und wird durch eine numerische Matrizenmethode auf
den Teilstab erweitert. Die Losung des Eigenwertproblems fiir die resultierende Koeffizien-
tenmatrix des Systems geschieht durch Probieren nach herkommlichen iterativen Metho-

den.

Die Anwendung der beschriebenen Methoden an drei sehr unterschiedlichen Stabsystemen -
im Rahmen von schulischen Laborversuchen - erlaubt eine Kontrolle der Computerberech-
nungen hinsichtlich Wirksamkeit und Innovationsgehalt.

Einleitung

Rechenanlagen am Technikum

Seit dem Jahre 1964 kann an unserer
Schule, die seit 25 Jahren besteht, mit
einer periodisch erneuerten Rechenanla-
ge gearbeitet werden. Die gegenwirtig
installierte Anlage ist die vierte inner-
halb dieser Zeitspanne. Die Speicherka-
pazitdt der zugehorigen Computer-Zen-
traleinheiten haben sich dabei um den
Faktor 100 vergrossert. Externe Spei-
cher stehen heute fiir eine praktisch un-
beschriankte Datenmenge zur Verfii-
gung. Eine dezentrale Peripherie mit
Bildschirmterminals erlaubt den Zu-
griff auf die Rechenanlage vom Labor
aus.

Dem Ingenieur erdffnen sich dadurch
neue Moglichkeiten und neue Wege.
Ihre Erschliessung stosst auf Schwierig-
keiten, deren Umfang liberraschend
gross ist. Das Ausmass und die Zahl der
Schwierigkeiten hdngen mit den beson-
deren Anforderungen zusammen, die
an eine geniigende Ausbildung zu stel-
len sind. Sie kénnen durch Schlagworte
nicht tiberwunden werden. Im folgen-
den wird versucht, besondere Merkma-
le rechnergestiitzter Ingenieurarbeit zu
beleuchten.

Problembeschreibung: Mechanisches
Modell

Der Stab spielt als einfacher Festkorper
in der technischen Mechanik eine tiber-
aus wichtige Rolle: Man denke etwa an
Stab-Tragwerke in der Statik, an Biege-
trager in der Festigkeitslehre oder an
schwingende Schaufeln oder rotierende
Wellen in der Dynamik. Das elastische

Biegeverhalten des Stabes lédsst sich ma-
thematisch durch eine einzige Differen-
tialgleichung beschreiben, und zwar so-
wohl fiir den ruhenden wie auch fiir
den schwingenden Zustand. Thre Lo-
sung durch Integration in geschlossener
Form gilt als klassisches Schulbeispiel
und kann bei vielen praktischen An-
wendungen als brauchbare Annéhe-
rung der Wirklichkeit betrachtet wer-
den.

Sobald nun aber ein aus vielen Teilsté-
ben mit unterschiedlicher Geometrie
oder Elastizitdt zusammengesetzter Stab
betrachtet wird, versagen die geschlos-
senen Methoden. Es miissen neue Wege
beschritten werden, welche dank den
neuen Moglichkeiten des Computers
offen stehen.

Die Beschreibung eines mechanischen
Systems erfordert eine sehr differen-
zierte Betrachtungsweise von gleichzei-
tig auftretenden mechanischen Zusam-
menhéngen. Sie findet die ihr angemes-
sene Darstellung durch lineare Differen-
tialgleichungssysteme mit einer genti-
gend grossen Anzahl von Freiheitsgra-
den als Systemkoordinaten. Die hohen
Anforderungen an das Abstraktions-
vermogen des Ingenieurs und der gros-
se numerische Aufwand machen es zu-
nehmend schwieriger, die Qualitét der
Resultate zutreffend zu beurteilen.

Parallel durchgefiihrte Versuche im La-
borerlauben eine kritische Wiirdigung.
Die Wechselwirkung zwischen Ver-
suchsanordnung und Berechnungsmo-
dell erweist sich dabei als sehr hilfreich.
Die im letzten Abschnitt zu beschrei-
benden Laborarbeiten  umfassten
Schwingungsversuche an Stabsystemen
sehr unterschiedlicher Struktur:

- Rahmenkonstruktion einer Lift-
kabine

- Wellenstrang bzw. Modellrotor eines
Motorschiffes

- Metallschlauch bzw. Kompensator

Eine der hauptsidchlichsten Herausfor-
derungen an den Ingenieur besteht heu-
te darin, diese neuen Wege auch tat-
sichlich zu beschreiten. Eine erste
Schwierigkeit entsteht dadurch, dass
die theoretischen Zusammenhdnge an
einem System zu formulieren sind,
wozu sich das mathematische Werk-
zeug der Matrizenrechnung als notwen-
dig erweist. Eine zweite Schwierigkeit
ergibt sich daraus, dass der numerische
Aufwand zur Losung des Problems die
Moglichkeiten eines Taschenrechners
libersteigt. Schliesslich liegt eine dritte
Schwierigkeit darin, dass der Losungs-
weg in die Form eines Rechenprogram-
mes gebracht werden muss. Dies erfor-
dert die Kenntnis einer Computerspra-
che sowie von Software-Entwicklungs-
regeln.

Diese Schwierigkeiten lassen sich unter
bestimmten Bedingungen umgehen, in-
dem man fertige Software-Pakete kauft
oder deren Beniitzungsrechte erwirbt,
welche die jeweiligen Problemldsungen
anbieten. Wenn diese Pakete und die
erforderlichen Eingabelisten durch
Hilfskréfte gehandhabt werden, welche
nur die Handgriffe zur Computer- oder
Terminalbedienung kennen, so ist die
Qualitdt der Ergebnisse nicht gewdhr-
leistet. Thre kritische Uberpriifung
durch Ingenieure ist notwendig.

Software-Pakete - als selbstdndige Pro-
dukte - werden stdndig an Bedeutung
gewinnen, besonders in Verbindung
mit der Rationalisierung der Konstruk-
tions- und Zeichnertétigkeit (Computer
Aided Design). Die Mitwirkung bei der
Herstellung und Anwendung dieser
neuen Produkte gehdrt heute schon
zum Titigkeitsfeld des Ingenieurs. Sei-
ne Grundausbildung muss deshalb ent-
sprechend breiter angelegt werden. An-
hand von schulischen Arbeiten mit
Stabsystemen - in Verbindung mit La-
borversuchen - soll diese Problematik
illustriert werden.

Stab und Stabsystem

Berechnungsmodell fiir ruhende Stibe

Die mathematische Beschreibung des
Finiten Stabelementes von der endli-
chen Linge [ erfolgt durch das System
von S Differentialgleichungen nach
Bild 1. Fall 1 erfasst das elastische Ver-
halten nach der elementaren Biegetheo-
rie, wihrend Fall 2 den Schubeinfluss
und den Einfluss der Membrankraft
(Seil-und Knickeffekt) berticksichtigt.
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Bild 1. Differentialgleichungssysteme und Zustandsgrissen. E = Elastizitdtsmodul, I = Flichenmoment des Querschnittes

Lésungsmethode
Ubertragungsmatrizen

Die Losung des Systems von 5 Differen-
tialgleichungen 1. Ordnung fiihrt auf
Ubertragungsmatrizen, welche den Zu-
stand an der Selle i mit dem Zustand an
der Stelle (i + 1) verkniipfen. Im Falle 1
ist die Ubertragungsmatrix als geschlos-
sene Losungerhéltlich. Im Falle 2 fiihrt
eine Reihenentwicklung zum Ziel [1],
welche mit einem grossen numerischen
Aufwand verbunden ist.

Der Computer liefert nach entspre-
chender Programmierung die numeri-
sche Losung dank guter Konvergenz
sehr rasch. Dafiir erweist sich die Her-
stellung eines Unterprogrammes (Sub-
routine) als zweckmaéssig.

() lzhivy = [e"V]]z];

Reihenentwicklung fiir die Ubertra-
gungsmatrix:
(6) [U]l=[eV]=[E]+[A]l+

1 549 4 b
o i[A]“I"F ?[A]‘Il‘f
Gleichung (6) stellt die Losung des Dif-

ferentialgleichungssystems fiir den Stab
endlicher Lidnge dar, mit konstanter
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Geometrie und konstanten Materialei-
genschaften. Es handelt sich um das
elastische Verhalten des Finiten Ele-
mentes eines grosseren Systems, wenn
man von diesem endlichen Stabstiick
auf ein Stabsystem {ibergeht. Die einfa-
che Natur des Stabes, welche sich durch
die dominierende Lingsabmessung aus-
zeichnet, erlaubt, das Berechnungsmo-
dell fiir das Element einfach zu halten -
im Vergleich etwa zu einem Schalenele-
ment. Dank der Rechnerunterstiitzung
kann der Schubeinfluss und die Mem-
brankraftwirkung - in Form der Rei-
henentwicklung - beriicksichtigt wer-
den. Dies kann fiir einzelne praktische
Anwendungen von ausschlaggebender
Bedeutung sein, wie die Laborarbeiten
zeigen.

Abspaltung des Ubertragungsvektors
[P] zufolge der Belastungsintensitdt q
Die Ubertragungsmatrix [U] kann wie
folgt in Teilmatrizen aufgeteilt werden:

Uy Uy | A

Un | P

Abkiirzungen fiir Verformungen:

MEXL

Abkiirzungen fiir Beanspruchungen:

%= 17

3 =| U

i+l i ' g

9) |z}ir1 =[U] [2}i+ [P] - qi

[Ui] - |P] sind feldweise (elementweise)
durch die Reihenentwicklung be-
stimmt. g;ist die feldweise (elementwei-
se) als konstant vorausgesetzte Bela-
stungsintensitét.

Fiir die Unterstiitzung der Laborarbei-
ten stand als Berechnungsmodell ein
einfach zusammenhdngendes Stabsy-
stem im Vordergrund. Das Stabsystem
ist durch sogenannte Knoten - d. h. rea-
le oder fiktive Lagerstellen - unterteilt,
an welchen Rand- oder Zwischenbedin-
gungen nach freier Wahl eingefiihrt
werden konnen, inklusive federnde La-
ger. Das vorangehend besprochene Fi-
nite Stabelement wird als Feld bezeich-
net. Als Teilstab wird der zwischen zwei
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Bild 2. Koeffizientenmatrix, gebildet mit 4 Teilstiiben, 5 Knoten, 10 Freiheitsgraden (Randbedingungen und dussere Belastungen sind vernachldssigt)

Knoten liegende Stabteil definiert. Er
setzt sich aus einer endlichen Anzahl
Feldern zusammen. Das Stabsystem
schliesslich besteht aus einer Anzahl
fluchtend angeordneter Teilstédbe.

Das elastische Verhalten eines Teilsta-
bes mit n-Feldern wird durch fortge-
setzte Multiplikation der zugehdrigen
Ubertragungsmatrizen erfasst:

(10) [zus1 = U +o.cs [U]+ s [UD [ 2h1 +
+kZ (([U,,]-...-[Uj]-...
=1

e U DIPY - @ ) 4 (Pl

nzizl

nzjzk+1
(1) n<j: (UI=[0]

Steifigkeitsmatrizen

Der Ubergang von Ubertragungsmatri-
zen auf Steifigkeitsmatrizen erlaubt,
das Anfangswertproblem in ein Rand-
wertproblem zu transformieren. Wah-
rend bei Ubertragungsmatrizen der Zu-
standsvektor sowohl die Verformungs-
wie die Beanspruchungskomponenten
enthilt, welche jeweils am gleichen
Rand des Stabes auftreten, findet bei
den Steifigkeitsmatrizen eine Separa-
tion statt: Die Beanspruchungskompo-
nenten an beiden Riandern werden mit
den Verformungskomponenten an bei-
den Réndern verkniipft. Bei den Uber-
tragungsmatrizen erfolgt die Verkniip-
fung des Zustandes von einem Rand
zum andern.

Die Verwendung von Steifigkeitsmatri-
zen steht bei der Finite-Element-Metho-
de (FEM)im Vordergrund. Die hier an-
gewandte Methode umfasst beide Arten
von Matrizen: Resultierende Ubertra-
gungsmatrizen und -vektoren beschrei-
ben das Verhalten der Teilstidbe. Steifig-
keitsmatrizen dienen zur Darstellung
des Systems. Sie erlauben, die gegensei-
tige Verkniipfung der Teilstdbe in den
Knoten - durch Superposition - zu for-

mulieren. Die Steifigkeitsmatrizen der
einzelnen Teilstibe werden durch
Transformation aus den resultierenden
Ubertragungsmatrizen gewonnen.

Gleichung (10) gilt fiir einen Teilstab
und kann wie folgt zusammengefasst
werden:

(12) {z}us1 = [Ullz}h +{Q]
[U] = resultierende Ubertragungsmatrix

|Q] = resultierender Ubertragungsvektor

Anstelle des Indexes 1 wird nun der In-
dex a geschrieben, welcher den Anfang
des Teilstiickes markieren soll, und an-
stelle des Indexes (n+1) der Index e,
welcher auf das Ende des Teilstabes
hinweisen soll. In Teilmatrizen aufge-
16st lautet nun Gleichung (12):

Bei Steifigkeitsmatrizen muss die Ver-
kniipfung von [FJ, | E} mit {£}, {f] erfol-
gen. Die Auflésung nach den beiden
erstgenannten Vektoren ergibt (14a),
(14b).

Da beim Ubergang auf Steifigkeitsma-
trizen das Schnittufer am Ende des Teil-
stabes als diesem zugehdrig zu betrach-
ten ist - und nicht etwa das Schnittufer
des nichsten Elementes, wie bei Uber-
tragungsmatrizen, gemeint ist - hat bei
Gleichung (14b) ein Vorzeichenwech-
sel zu erfolgen, siehe (15).

5

(13)

>

Damit ist das Transformationsgeseiz be-
kannt. Die Teilmatrizen der Steifig-
keitsmatrix sind durch die Ubertra-
gungsmatrix bestimmt. Sie entstehen
als Matrizenprodukte, wobei [U;']
eine inverse Teilmatrix der Gesamtma-

trix [U] darstellt. Die Zusammenfas-

sung lautet:
E| |au]ce E
(16) ‘ Gilcn '+

[C] = Resultierende Steifigkeitsmatrix
des Teilstabes, symmetrisch

(17 [C1=[C]*

[ 17 bedeutet die transponierte Matrix

[D] = Resultierender Belastungsvektor
des Teilstabes zufolge der verteil-
ten Belastungsintensitét g;

Koeffizientenmatrix des Gesamtsystems

Steifigkeitsmatrizen erlauben die For-
mulierung von Gleichgewichtsbedin-
gungen an den Knoten, da die Knoten-
lasten in Abhédngigkeit von unbekann-
ten Teilstabverformungen ausgedriickt
werden konnen. Diese Methode heisst
deshalb auch Deformationsmethode.
Sie erlaubt das Einfiihren von sehr vie-
len Freiheitsgraden, wie es ein grosseres
System erfordert. Die Aussage, dass an
jedem Knoten Gleichgewicht bestehen
muss, fiihrt zu einem linearen Glei-
chungssystem, welches eine Abbildung
des mechanischen Systems darstellt.
Die zugehorige Koeffizientenmatrix
enthilt nur tiberlagerte Elemente derje-
nigen Steifigkeitsmatrizen, welche von
den unmittelbar angrenzenden Teilsté-
ben herrilihren.

Da entferntere Teilstdbe als die unmit-
telbar benachbarten keine Beitrdge an
das Knotengleichgewicht liefern, bleibt
die Matrix des Stabsystems nur
schwach besetzt, wenn viele einfach zu-
sammenhdngende Teilstibe auftreten
(vgl. Bild 2).

(14a) [£] =U;3' Uy Upy! Ja -U3'Q
— = . +
(14b) | R =Un Ui Up+ Uy | Uy U Lo —Un U3' Qi+ Qs
(15) i _ =U;3' Uy Uy /.:. ” -U3' Q
F, Uy, Ups! Uy = Uy =Uy U3 /. Up U3' Q=0
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Ndaherung:
Interpolationspolynom: w (x) = w(x)
Wi(x) = Hyj(x)y + Ha(x) o+ wi(x) vz + Hy(x)
Y4~ Wy 4
W2(x) = Z H; (x) Hi.(x) yi vk
Lk=1
4 1
2T =y Z mig Vivk my = J Hi(x) Hy (x)dx
i, k=1 0
Y3= W3
W 2T=o0pm’ M) =
,
% [ m
dT = dm —71— [0 w(x)]? ¥
2 =
I
2T = o?p J w2(x)dx M = Trégheitsmatrix my mys My Mgy
0 M My My My Ny Mn
dm My My Mz Mg
=57 = 0 A; Massenbelegung (konstant) m;, = Trigheitseinflusszahlen My Mg Mgz Mgy
) 7w owm o o»m owm [n™™Mn|Q
Q = quadratische Form
Bild 3. Interpolation der Schwingungsform: Tragheitseinflusszahlen als Elemente der Tragheitsmatrix

Berechnungsmodell fiir
schwingende Stibe

Grundlagen

Nach dem Prinzip von D’Alembert
muss die Tragheitswirkung der schwin-
genden Massen beriicksichtigt werden,
um die Gleichgewichtsbetrachtung in
den Knoten aufrechterhalten zu kon-
nen. Wenn es gelingt, diejenigen Kno-
tenlasten des zwischen zwei Knoten lie-
genden Teilstabes auszudriicken, wel-
che ausschliesslich auf Trigheitswir-
kung zuriickzufiihren sind, kann die
oben beschriebene Methode der Steifig-
keitsmatrizen einfach erweitert wer-
den. Das Verfahren lauft dann darauf
hinaus, eine Steifigkeitsmatrix und eine
Trdgheitsmatrix von gleicher dusserer
Form aufzubauen, bestehend aus unter-
schiedlichen Einflussgrossen als Matrix-
elemente [2].

Die Schwierigkeit besteht darin, die
Tragheitswirkung zu erfassen, ohne die
richtige Schwingungsform zu kennen.
Der Ausweg, welcher sich durch den
Ersatz der kontinuierlich verteilten
Masse durch Punktmassen ergibt, soll
hier nicht beschritten werden. Die
Wahl der Verformungen w und y an
beiden Riandern als lokale Koordinaten
des Finiten Stabelementes erlaubt, den
Verlauf der elastischen Linie innerhalb
dieses Elementes sehr genau durch ein
kubisches Interpolationspolynom zu
approximieren. Die vier Randkoordi-
naten bilden dabei notwendige und hin-
reichende Stiitzwerte. Dafiir eignen
sich Hermitesche Interpolationspolyno-
me [2].
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Der Aufbau der Trdgheitsmatrix ge-
schieht auf der Stufe des Feldes, d. h.
am Finiten Stabelement (vgl. Bild 3).
Die Addition der Steifigkeits- und Trag-
heitswirkung liefert den dynamischen
Gesamtzusammenhang an diesem
Feld, entsprechend dem Prinzip von
D’Alembert. Die zugehdrige Matrizen-
summe wird im Folgenden als Gesamt-
matrix des Feldes bezeichnet. Was jetzt
einzig noch fehlt, ist die Beriicksichti-
gung der lokalen Dampfung am Ele-
ment in Form einer Ddmpfungsmatrix.
Sie wurde bei den vorliegenden Arbei-
ten nicht erfasst.

Wihrend die genannten Verformungen
als lokale Koordinaten des Feldes die-
nen, werden zur Beschreibung des Sy-
stems globale Koordinaten verwendet.
Dafiir eignen sich die Randverformun-
gen der Teilstibe. Damit die lokalen
Koordinaten nicht mehr in Erschei-
nung treten, muss eine resultierende
Gesamtmatrix des Teilstabes gewonnen
werden, welche den dynamischen Ge-
samtzusammenhang am ganzen Teil-
stab liefert. Dies geschieht mit Hilfe
von Ubertragungsmatrizen. Durch
Transformation der Gesamtmatrix des
Feldes gelingt es, die Ubertragungsma-
trix zu ermitteln, welche den dynami-
schen Einfluss enthélt. Die fortgesetzte
feldweise Multiplikation dieser Uber-
tragungsmatrizen liefert die resultie-
rende Ubertragungsmatrix des Teilsta-
bes. Durch Riicktransformation in die
Form einer Steifigkeitsmatrix gewinnt
man schliesslich die Gesamtmatrix des
Teilstabes, welche den dynamischen
Gesamtzusammenhang mit Hilfe der
globalen Koordinaten ausdriickt.

Diese Methode erlaubt eine sehr feine
Strukturierung des Systems, ohne die
Zahl der Unbekannten zu erhdhen. Die
praktische Folge sind kleine lineare
Gleichungssysteme und maéssige An-
spriiche hinsichtlich Kapazitit der be-
notigten Zentralspeicher. Hingegen
sind grossere externe Speicher erforder-
lich, wenn die Zahl der Felder hoch ist.

Trigheitsmatrizen und Drehtriigheit

Die kinetische Energie eines Finiten
Stabelementes lasst sich mit Hilfe von
Matrizen als quadratische Form dar-
stellen (Bild 3). Die Matrizenelemente
der Trigheitsmatrix entstehen dann als
Integralausdriicke:

!

(18) mi= JH,— GV ()%
0

Sie enthalten in dieser Form Masszah-
len der kinetischen Energie zufolge
Auslenkungsamplitude aller Massen-
teilchen entlang der interpolierten
Schwingungsform.

Fir gewisse stabartige Federkorper -
wie etwa Metallschlduche - erweist sich
die Beriicksichtigung der Drehtrdgheit
bei der Schrigstellung der Material-
querschnitte als von ausschlaggebender
Bedeutung, wie die entsprechenden La-
borversuche zeigen.

Das Differential fiir den Drehanteil der
kinetischen Energie lautet:

(19) dT=d 0 % [y (x)]?
vy (x) = Amplitudenwert fiir den

harmonischen Zeitverlauf des
Querschnittneigungswinkels
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d B = lokales Massentridgheitsmoment

=dmil= —g%izdx

i = lokaler Tragheitsradius beziiglich der
Biegeachse

(20) dO=pi*dx
Niherung:
(21) y(x)=Ww'(x)
Damit lésst sich der Drehanteil als end-
liche Summe schreiben:
4

(22) 2T=w?pi? 2 ik Vi Vi, Wobeli
i k=1

1
@3) nu= jH; oV (AT

Mit den Hermiteschen Polynomen

(24) Hi(x)=1-3 : + 2 5=

[3

2 3
H(x)= (%—2 l‘ +%)1

2 x3
13

Hi(x)=3-"5-2

H4(x)—( }‘2 l‘;)z

x2) 1
7))

H.'(x)=( 6T+6

H; (x)=1- 4—7+3
H3'(.‘<)=( ),C )Ll
H(x)=~2F+3%;

lauten zum Beispiel die Matrixelemente

156 1 36

(25) m1|=lm, ny = l 30

Die Superposition zur resultierenden
Trégheitswirkung liefert zum Beispiel
fiir das erste Matrixelement:

I||=m2um” +(1)2].Li2n||
(26)

e (156, i 36
= opl (420+ I 30)

Transformation in Ubertragungs-
matrizen

Die Gesamtmatrix driickt das D’Alem-
bertsche Prinzip am Element aus:

27) |IC]= @?wI[T]| /] =|F]

Fiir [F| = |0| bildet ®’ den Eigenwert.

Nun ist aber das Eigenwertproblem am
System zu lésen. Deshalb wird die Ge-
samtmatrix [R] mit angenommenem
Eigenwert in eine Ubertragungsmatrix
[U] transformiert, welche die Verkniip-
fung mit allen Nachbarfeldern von Stab-
anfang bis Stabende erlaubt.

Erst nach der Riicktransformation der
resultierenden Ubertragungsmatrix zur
resultierenden Teilstab-Gesamtmatrix
und nach dem Zusammenfiigen zur
Koeffizientenmatrix des Systems kann
das Eigenwertproblem iterativ geldst
werden.

B Ry |Ri2

Ry | Raz

[R]=[Cl-w?unl[T]

Die Auflosung nach den beiden Vekto-
ren [f;] und {E} - letztere mit Vorzei-
chenwechsel aus bereits genannten
Griinden - ergibt:

(28)

-Riy Ry | R
= | RnR;5'R 2
_:}_{211- Ry R

Wie ein Vergleich mit Gleichung (15)
zeigt, gelten dieselben Rechenregeln
wie bei der Transformation der Uber-
tragungsmatrix in die Steifigkeitsma-
trix. Das heisst flir die Transformation
und die Riicktransformation kann das-
selbe Unterprogramm als Subroutine
verwendet werden.

Losung des Eigenwertproblems

Die Eigenwertgleichung (27) kann in
dieser allgemeinen Form nicht fiir den
Teilstab und auch nicht fiir das Ge-
samtsystem aufgestellt werden, da die
Verkniipfung von Steifigkeit und Trig-
heit auf der Stufe des Feldes erfolgt. Die
Gesamtmatrizen der Felder werden
rein numerisch transformiert, multipli-
ziert, riicktransformiert und superpo-
niert, wobei bei jedem Iterationsschritt
fir den Eigenwert die Rechnung zu
wiederholen ist.

Der Algorithmus besteht im iterativen
Aufsuchen der Eigenwerte als Nullstel-
len der Determinante der Koeffizien-
tenmatrix. Zur Berechnung der Deter-
minante wird das Verfahren von Chole-
sky [3] verwendet. Die Nullstelle wird
mit Hilfe der Regula Falsi ermittelt,
wobei als Kriterium zum Abbruch der
Iteration die geniigend gute Uberein-
stimmung zweier Nédherungswerte
dient.

Anschliessend wird der Eigenvektor
durch Losen des um einen Freiheits-
grad verminderten linearen Glei-
chungssystems berechnet. Aus den nun-
mehr bekannten Verformungen der

Liftkabine. Der Rahmen ist oben aufge-
hdngt und tragt die auf den untern Konsolen ela-
stisch abgestiitzte Kabine

Bild 4.

Teilstibe werden die zugehorigen Bela-
stungen ermittelt. Mit Hilfe der Uber-
tragungsmatrizen werden innerhalb
der Teilstdbe die Zustandsgrossen an
simtlichen Feldgrenzen berechnet.

Laborarbeiten

Programme «Swing-Krit» und «Flex»

Im Rahmen von schulischen Arbeiten
wurde seit 1971 das Programm Swing-
Krit [4] entwickelt. Es dient zur Berech-
nung der kritischen Drehzahlen von
Wellenstringen und Eigenfrequenzen
von Durchlauftrigern und Federkor-
pern. Damit kénnen schwingende Stab-
systeme mit maximal 10 Knoten, 9 Teil-
stiben und 180 Feldern berechnet wer-
den. Die Wirkung von Membran- und
Knickkréiften kann wahlweise beriick-
sichtigt werden.

Seit 1979 wurde die Version Flex daraus
abgeleitet und weiterentwickelt. Sie
dient zur Berechnung von statischen
Biege- und Knickproblemen an Durch-
lauftragern. Das ruhende Stabsystem
umfasst maximal 20 Knoten, 19 Teilsté-
be und 760 Felder.

Rahmen einer Liftkabine

Die Kabine ist in einer Rahmenkon-
struktion auf Gummi gelagert (Bild 4).
Der Rahmen besteht aus zwei vertika-
len Léngstrigern in Leichtbauweise,
welche durch ein massives Joch, an wel-
chem die Aufhingung erfolgt, horizon-
tal verbunden sind. Die elastische Lage-
rung erfolgt auf Konsolen am untern
Ende der Langstriger (Bild 4).
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Bild 7.

Versuchsstand mit Modellrotor fiir gleichzeitiges Schwingen und Knik-

Bild 5 (links). Untere Lagerstelle der Liftkabine.
Der Kraftfluss erfolgt durch das untere Gummiele-
ment und wird seitlich durch das L-Profil - als
Schubkraft - auf den Kraftsensor und die Kabine
iibertragen

Bild 6 (rechts). Frequenzgang der Kraftiibertra-
gung an der Lagerstelle gemdss Bild 5

B |l

¢ T swor
H

=1 |

ken. Weiche Lagerung in der Mitte; Kraftsensoren am Lagerbock. Pneumatikzy-
linder unten, mit Hebel zum Erzeugen der Knickkraft am Rotor
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Bild 8. Schwingungspriifstand fiir Metallschlduche
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Schaukel — Biegeschwingung

normale Biegeschwingung

Bild 9. Frequenzgang der Kraftiibertragung am Federkérper eines Metallschlauches. Die Pfeile geben die
Lage der mit dem Computer berechneten Eigenfrequenzen an

Der Laborversuch bestand darin, den
Frequenzgang der an der Abstiitzung
iibertragenen Krifte zu messen (Bild 5),
wenn die Seilaufhingung zum Schwin-
gen angeregt worden war. Das Ubertra-
gungsverhalten wird durch die Eigen-
frequenzen der Lingstriger erheblich
beeinflusst (Bild 6). Sie waren Gegen-
stand der Berechnung und Messung.
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Wellenstrang bzw. Modellrotor

Der Anlass zu dieser Untersuchung bil-
deten stérende Schwingungen an der
Antriebswelle des Motorschiffes Unter-
walden auf dem Vierwaldstittersee. Es
wurde ein einfacher Versuchsstand ge-
baut, mit welchem die Stabilitit eines
Modellrotors grundsitzlich untersucht

Bild 10. Schwingungsformen (schematisch).
Oben: Berechnete und gemessene Schwingungsform
des Metallschlauches. Unten: Theoretische Schwin-
gungsform bei elementarer Stabbiegung

werden konnte (Bild 7). Insbesondere
konnte eine axiale Druckkraft pneuma-
tisch erzeugt werden.

Die kritischen Drehzahlen sind von der
Axialkraft - d.h. vom Propellerschub
der Schiffswelle - stark abhangig. Mes-
sung und Computerrechnung stimmen
gut iberein.
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Ausserdem konnte beim mittleren wei-
chen Lager, mit welchem ein wasserge-
schmiertes Gummilager simuliert wur-
de, unter bestimmten Bedingungen ein
«Rattern» festgestellt werden, welches
mit ungefihr halber Drehfrequenz er-
folgt.

Metallschlauch

Gegenstand der Untersuchung war der
wellrohrformig ausgebildete Federkor-
per eines Metallschlauches. Zur Auf-
nahme von Dehnungen bei Rohrlei-
tungssystemen in der Haustechnik in
der Verfahrens- und Maschinentechnik
spielen diese weitverbreiteten Bauteile
eine wichtige Rolle. Sie werden héufig
auch als Schwingungs- und Korper-
schallddmpfer eingesetzt. Das Damp-
fungsverhalten ist durch die Eigenfre-
quenzen des Federkdrpers massgeblich
beeinflusst. Auf einem zu diesem Zwek-
ke entwickelten Priifstand konnen
Durchlaufanalysen des sinusfédrmig an-
geregten Priiflings durchgefiihrt wer-
den (Bild 8). Dabei wird der Frequenz-
gang der Kraftiibertragung gemessen.
Das elastische und das Tragheitsverhal-

ten des Federkorpers konnen durch das
Berechnungsmodell eines stabartigen
Systems von Federkdrpern simuliert
werden, wobei der Einfluss der Schub-
steifigkeit und der Drehtragheit be-
riicksichtigt wird.

Die vorstehend beschriebene und pro-
grammierte Berechnungsmethode er-
laubt, die Eigenfrequenzen zu berech-
nen. Dabei ergibt sich eine gute Uber-
einstimmung zwischen Rechnung und
Messung, und zwar bis zu Schwin-
gungszahlen hoherer Ordnung (Bild 9).
Die Interpretation der Eigenschwin-
gungsformen zeigt, dass der Federkor-
per eine von der herkdmmlichen Biege-
schwingung abweichende Schwingung
ausfiihrt (Bild 10). Wegen der gegen-
liber der geringen Biegesteifigkeit iiber-
wiegenden Drehtragheit des Quer-
schnittes entsteht eine charakteristische
Schaukelbewegung (Bild 10).

Die eigentlichen Stab-Biegeschwingun-
gen- deren Schwingungszahlen in den
einschlagigen Normen der Hersteller
dieser Produkte [5] zu finden sind -
scheinen bedeutungslos zu sein. Der
Einfluss der auf dem Federkoérper auf-

Niederschlagskarten fiir den Kanton

Ziirich

Von Dietmar Grebner und Christian Go6ldi, Ziirich

Fiir den Kanton Ziirich wurde 1936 und erneut im Jahr 1943 eine Karte mit den mittleren
Jahresniederschligen sowie 1933 bzw. 1943 eine Karte mit den grossten Tagesniederschligen
seit 1893 erarbeitet. Im vorliegenden Bericht wird eine neue Ausgabe dieser Karten erlidutert.
Sie entstanden anhand der Messperiode 1881-1979. Die Beschreibung gibt die Kriterien fiir
die Auswahl der verwendeten Stationen, die Behandlung liickenhafter Messreihen, Abschit-
zungen des Einflusses von Inhomogenititen und die Analysenmethode wieder. In der Diskus-
sion werden Hinweise fiir die Interpretation der Karten gegeben. Angaben iiber die Genauig-
keit der Messungen, die Abhéngigkeit der Niederschlagsmengen von der Orographie und vor
allem iiber die Bedeutung der Isolinien in der Karte der grossten Tagesniederschlige sollen

zur geeigneten Anwendung beitragen.

Einleitung

Um Wasserbauanlagen mit geniigender
Sicherheit bemessen zu kénnen, ist un-
ter anderem die Kenntnis der lokalen
und regionalen Niederschlagsverhilt-
nisse von ausschlaggebender Bedeu-
tung, da der Niederschlag in seiner
rdumlichen und zeitlichen Verteilung
zu den wesentlichsten Faktoren fiir die
Grosse des Abflusses in den Gewdssern
ziahlt. Die erforderlichen Informatio-
nen setzen umfangreiche Messungen
und deren Auswertung nach verschie-
denen Gesichtspunkten voraus.

In der Schweiz werden gliicklicherweise
seit vielen Jahrzehnten, vor allem
durch die Schweizerische Meteorolo-
gische Anstalt (SMA), in einem dich-
ten Netz von Beobachtungsstationen
Niederschlagsmessungen durchgefiihrt.
Die meisten Messungen erfolgten mit
sogenannten Tagessammlern, in denen
die Summe der tdglichen Niederschlige
erfasst wird. Messungen mit Regen-
schreibern, die den Verlaufder Regener-
eignisse registrieren, wurden hingegen
nur an wenigen, ausgewihlten Statio-
nen durchgefiihrt.

Die Bemiihungen, dieses umfangreiche
Datenmaterial in geeigneter Form zu-

Literaturverzeichnis

[1] Haefeli, H.G.: «Zur Reihenentwicklung
der Lésungsfunktionen eines linearen zeit-
invarianten Gleichungssystems.» Die ho-
here technische Bildung am Zentral-
schweizerischen Technikum Luzern, Lu-
zern/Horw 1977

[2] Zurmiihl, R.: «Ein Matrizenverfahren zur

Behandlung von Biegeschwingungen nach

der Deformationsmethode». Ingenieur-Ar-

chiv XXXII. Band 1963

Zurmiihl, R.: Matrizen und ihre techni-

schen Anwendungen. 3. Aufl. Springer-

Verlag, 1961

Eggenberger, E.; Zampino, A.; von Holzen,

R.; Tanner, F.; Ritter, P.: «Kritische Dreh-

zahlen von Rotoren und Eigenfrequenzen

von Triagern (Programm Swing-Krit).»

Schulische Arbeiten 1971/73/76 am Zen-

tralschweizerischen Technikum Luzern

[5] Standards of the Expansion Joint Manufac-
turers, Inc. 5. Edition 1980 EJIMA, White
Plains, New York 10604

3

E

liegenden #usseren Umflechtung ist
Gegenstand von weiteren Untersu-
chungen.

Adresse des Verfassers: Prof. P. Ritter, dipl. Ing.
ETH, Vorsteher der Abteilung Maschinentechnik,
Zentralschweizerisches Technikum Luzern, 6048
Horw.

sammenzufassen und darzustellen und
damit dem Ingenieur gesicherte Grund-
lagen zur Projektierung und Bemes-
sung von Wasserbauten zur Verfiigung
zu stellen, gehen vor allem auf [Kropf,
1944 : Horler, 1960; Horler, Rhein, 1962]
zuriick.

Fir den Kanton Ziirich erstellte das
kantonale Meliorations- und Vermes-
sungsamtim Jahre 1933, gestiitzt auf 62
Messstationen, eine Karte der mittleren
Jahressummen und 1936, gestiitzt auf
56 Stationen, eine Karte der grossten
Tagesniederschldge seit 1893. Im Jahre
1943 erschienen fiir beide Karten Neu-
bearbeitungen, die auf 65 Messstatio-
nen basierten und die Messperiode von
1893 bis 1942 umfassten. In neuester
Zeit wurden von Zeller, Geigerund Rot-
lisberger [1977, 1978] neben anderen
auch fiir einige Stationen im Kanton
Ziirich und seiner niheren Umgebung
die Niederschlagsdaten, insbesondere
von 1901 bis 1970, extremwertstatistisch
ausgewertet und in Tabellen und Dia-
grammen dargestellt.

Zur weiteren Ergidnzung der vorhande-
nen Daten und Darstellungen erteilte
das Amt fiir Gewiisserschutz und Was-
serbau des Kantons Ziirich der Ver-
suchsanstalt fiir Wasserbau, Hydrologie
und Glaziologie der ETH Ziirich den
Auftrag, die Karten der mittleren Jah-
ressummen und der grdssten Tages-
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