Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 101 (1983)

Heft: 39

Sonstiges

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Umschau

Kommt das biotechnische Zeitalter?

(St.) Im H.C.-Egloff-Gedenkvortrag vor der SIA-Sektion Winterthur wies Prof. U. von Stockar von der ETH Lausanne zuerst auf die historische Bedeutung der Biotechnik hin. Bereits die alten Ägypter nutzten vor viertausend Jahren mikrobiologische Umwandlungen beim Backen von Brot oder zur Herstellung von Alkohol. Auch heute noch verwendet man in der Biotechnik hauptsächlich Protisten - Zellen, die sich nicht eindeutig Pflanzen oder Tieren zuordnen lassen. Sie produzieren in entsprechender Umgebung aus einem zugeführten Substrat mit Hilfe von zelleigenen Enzymen (Katalysatoren) ein bestimmtes Produkt, das dann gewonnen werden kann. Die Forscher bemühen sich gegenwärtig mit neuartigen Mutationen und auch zunehmend mit Gentechnik die Produktion zu steigern oder neue Prozesse ablaufen zu lassen. Für viele Fachleute wird die biotechnische die gegenwärtige elektronische Revolution ablösen.

Zu den Hauptanwendungsgebieten der Biotechnik gehört das Umwandeln von Biomasse in Protein für Futterzwecke oder als Nahrungszusatz für Menschen. Dabei können Eiweissanteile von über 50 Prozent erreicht werden. Wird der Energiehaushalt der Zellen (durch Oxidation oder Reduktion) einbezogen, so lassen sich energiespendende Reaktionen erzeugen. Praktisch genutzt wird dies beispielsweise bei Biogasanlagen. Auch die Energiegewinnung bei der Abwasserreinigung oder die Denitrifikation von Trinkwasser sind bekannte biotechnische Verfahren. Aufgrund der «milden» Umgebungsbedingungen (meistens Wasser als Lösungsmittel, niedrige Konzentrationen und Temperaturen von nur 30 bis 40 °C) eignet sich die Biotechnik ausgezeichnet zur Herstellung von empfindlicher Pharmazeutika. Seit der Entdeckung des Penicillins wurden bis heute über 90 verschiedene Antibiotika gefunden und grosstechnisch hergestellt.

Was wird uns die biotechnische Revolution bringen? Forschungsanstrengungen erstrekken sich vor allem auf die Gentechnik zur Nutzung der Fermente im Innern der Zellen. Ziel ist unter anderem die schnellere und billigere Herstellung von komplexen Stoffen wie Insulin und Interferon. Auch hofft man, neue Kulturen von leistungsfähigeren Pflanzen – oder Tierzellen zu finden. Schliesslich könnte aus Abfallzellulose grosstechnisch Energie gewonnen werden – als willkommene Entlastung der nicht erneuerbaren fossilen Energieträger.

Erfreulicherweise ist die Grundlagenforschung gerade in der Schweiz weit fortgeschritten. Einige international anerkannte Gruppen arbeiten an unseren Hochschulen und Instituten und schaffen so eine gute Basis für die Schweizer Wirtschaft.

Am Schluss entstand eine rege Diskussion. Ein Zuhörer erwähnte die weltweite Knappheit von Zellulose und verwies auf Brasilien, wo aus Zuckerrohr Autotreibstoff statt Nahrung gewonnen wird. Möglicherweise erwächst zudem der Menschheit eine grosse Bedrohung durch missbräuchliche Genmanipulation für kriegerische Zwecke.

Bus auf dem ersten Streckenabschnitt des O-Bahn-Trassees nordöstlich von Adelaide (Australien)

Spurgeführte Omnibusse

(pd). Das bislang grösste Projekt der von Mercedes-Benz entwickelten O-Bahn ist in Adelaide (Australien) im Bau. Der erste Streckenabschnitt wurde vor kurzem vom australischen Verkehrsminister Roy Abbott für den Probe- und Demonstrationsverkehr freigegeben. Ein weiteres Teilstück, das auch den Fluss Torrens überquert, wurde im April 1983 in Betrieb genommen. Ab 1986 wird dem öffentlichen Personenverkehr in Adelaide das O-Bahn-Trassee für spurgeführte Omnibusse in geplantem Umfang zur Verfügung stehen. Rund 90 Mercedes-Benz-Omnibusse verbinden dann die 12 km entfernt liegenden Vororte im Nordosten von Adelaide mit der City sehr viel kostengünstiger, als dies mit der ursprünglich geplanten Schienenbahn der Fall wäre.

Die Omnibusse werden mit der bewährten mechanischen Spurführung von Mercedes-Benz ausgerüstet, können aber auch ausserhalb des O-Bahn-Trassees auf der Strasse verkehren. Wie eine Voruntersuchung in Adelaide ergab, können dank der Flexibilität der Dual-Mode-Busse 80 Prozent der Fahrgäste ihr Ziel ohne Umsteigen erreichen. Bei der Schienenbahn wäre dies nur

für rund 13 Prozent der beförderten Personen möglich gewesen.

Weitere ausschlaggebende Kriterien für das O-Bahn-Projekt in Australien waren:

- Hohe Fahrbahnqualität in Zueblin-Fertigteilbauweise bei gleichzeitig niedrigen Unterhaltskosten;
- Maximale Sicherheit auch bei der geforderten Geschwindigkeit von 100 km/h im Begegnungsverkehr;
- Hoher Fahrkomfort;
- Geringe Geräuschemissionen;
- Landschaftliche Integration der schmalen O-Bahn-Spur;
- Schmale und niedrige Brückenkonstruk-

Darüber hinaus bietet das O-Bahn-Konzept die Möglichkeit, das Spurbussystem der ersten Ausbaustufe, in der Busse sowohl spurgeführt als auch handgelenkt verkehren, zusätzlich zu einem durchgehend spurgebundenen Verkehr mit Fahrzeugen hoher Kapazität und unterschiedlichen Antriebsarten zu erweitern, ohne die Vorteile des Spurbusbetriebes aufgeben zu müssen.

Kernspin-Tomographen für die medizinische Forschung

(dfg). Zum ersten Mal hat die Deutsche Forschungsgemeinschaft (DFG) für Forschungsprojekte an deutschen Hochschulen zwei Kernspin-Tomographen (NMR-Tomographen) bewilligt. Mit diesem neu entwickelten Gerät, dessen Hauptbestandteil ein grosser zylinderförmiger Elektromagnet ist, können Schnittbilder des menschlichen Körpers ohne gesundheitsbelastende Strahlen hergestellt werden. Die inneren Organe werden anhand von Signalen erkannt, die vom molekularen Aufbau und von der chemischen Umgebung der Wasserstoffatome ausgehen. Damit eröffnen sich der klinischen Forschung neue Möglichkeiten der Diagnostik, nachdem bereits in den vergangenen Jahren durch die Weiterentwicklung von Ultraschallmethoden und der Röntgen-Computer-Tomographie erhebliche Fortschritte bei der Erzeugung von Schnittbildern des menschlichen Körpers erzielt worden sind. Die Kernspin-Tomographie geht auf die seit Ende der vierziger Jahre in der Chemie als Analyse-

Verfahren erprobte Kernspin-Resonanz zu-

Derzeit kostet ein Kernspin-Tomograph rund 4 Mio. Mark. Eines der beiden von der DFG bewilligten Geräte soll den beiden Kölner Professoren Dr. Gerd Friedmann, Direktor der Radiologischen Universitätsklinik und Dr. Heinrich Kutzim, Direktor des Instituts für klinische und experimentelle Nuklearmedizin, für Forschungsvorhaben zur Verfügung gestellt werden, die gemeinsam mit acht weiteren Arbeitsgruppen aus der Universität Köln durchgeführt werden sollen. Im Mittelpunkt der Projekte steht dabei die Diagnostik und Therapie von Hirntumoren und zerebralen Durchblutungsstörungen sowie eine Funktionsanalyse des Herzens. Das zweite Gerät dient Forschungsarbeiten von Prof. Dr. Walter Frommhold. Direktor des Medizinischen Strahleninstituts der Universität Tübingen, und Dr. Karsten Voigt, Leiter der Abteilung für Neuroradiologie der Tübinger Universität. In sieben Arbeitsgruppen wollen Wissenschaftler der Universität Tübingen erforschen, welche diagnostischen Fortschritte mit Kernspin-Tomographen erzielt werden können.

Die Auswahl der Standorte für die beiden Geräte wurde durch eine Prüfungsgruppe unter 21 Bewerbern getroffen. Ziel der Förderung durch die Deutsche Forschungsge-

Schwefelsäurewolken in der Stratosphäre

(ad). Eine ausgedehnte neue Schicht aus winzigen Schwefelsäuretröpfchen, die in Höhen zwischen 29000 und 35000 m um die Erde zieht, entdeckten Wissenschaftler der Universität Wyoming in Laramie Ende Januar 1983 mit Hilfe einer Ballonsonde. Wie die Nationale Forschungsstiftung der USA (NSF) mitteilte, wurde mit einem am 1. Febr. 1983 aufgelassenen zweiten Ballon die vier Tage zuvor gemachte Entdeckung bestätigt. Der erste, mit 8400 m³ Helium gefüllte Ballon erfasste mit seinen Messinstrumenten u.a. Partikel zwischen einem Millionstel und zwei Zehntausendstel Millimetern Grösse, mit der zweiten Ballonsonde wurden Partikel bis zu zwei Millionstel Millimetern Durchmesser ermittelt. Die Dichte der Wolke, die eine Ausdehnung von mindestens 9000 km hat, ist mit etwa 500 Tröpfchen je Kubikzentimeter anzunehmen. Normalerweise werden in diesem Höhenbereich Konzentrationen von nur ein bis zwei Tröpfchen je Kubikzentimeter gemessen.

Wie Dr. David J. Hofmann und Dr. James M. Rosen, beide Professoren für Physik und Astronomie an der Universität Wyoming, im Zusammenhang mit ihrer Entdeckung berichten, sei die Schicht deshalb erst jetzt registriert worden, weil zum einen die Tröpfchen noch zu klein seien, um Laserlicht, mit dem von der Erde aus die Atmosphäre zur Feststellung von Aerosolen sondiert wird, zurückzustreuen. Zum anderen hätten sich die Wolken erst in allerjüngster Zeit gebildet

«Ausgangsstoff» war Schwefeldioxid, das beim Ausbruch des Vulkans El Chichon in Südostmexiko im April 1982 in riesigen Mengen bis in die Stratosphäre getragen wurde. Die Schwefeldioxidmassen aus der explosionsartigen Eruption zogen zunächst in Richtung der nördlichen Polarregion, wo sie, wie die Wissenschaftler vermuten, im September oder Oktober ankamen. In der Stratosphäre wird das Schwefeldioxid in Schwefelsäuredampf umgewandelt. Aus dem Dampf entstehen winzige Tröpfchen

Bayer stellt PCB-Produktion ein

(pd). Die Bayer AG stellt ihre bisherige Produktion an polychlorierten Biphenylen (PCB) im Laufe des Jahres 1983 ein. Diese Stoffe wurden bislang unter dem Handelsnamen Clophen® für bestimmte Anwendungsbereiche in der Elektroindustrie und im Bergbau hergestellt.

Mit dieser Entscheidung wird eine Zeit des Übergangs beendet, in der die bisherigen Verwender die systematische Umstellung auf Alternativprodukte durchführen konnten, die inzwischen für die einzelnen Teilbereiche der PCB-Verwendung entwickelt worden sind.

meinschaft ist die notwendige wissenschaftliche Absicherung der diagnostischen Möglichkeiten u. a. durch Vergleich mit anderen Methoden, wie z. B. Röntgen-Computer-Tomographie, Angiographie, Ultraschall und Nuklearmedizin (Emissions-Tomographie). Dabei werden auch die bereits vorhandenen Erfahrungen der Chemie mit der Kernspin-Spektroskopie genutzt.

von Schwefelsäure – ein Prozess, der durch die niedrigen Temperaturen im Winter intensiviert wird. Nach Meinung Hofmanns wurden dann die über der nördlichen Polarregion gebildeten Partikel mit den Luftmassen um die Erde transportiert. Die Auswirkungen der El Chichon-Eruption auf die Stratosphäre hinsichtlich des Austosses von Schwefeldioxid seien ungefähr vierzigmal grösser gewesen als die vom Ausbruch des Vulkans Mount St. Helens im Staat Washington im Jahr zuvor.

Partikelwolken in der Stratosphäre als Folge des Vulkanausbruchs in Mexiko hatte man bisher nur in knapp 26 000 m Höhe ermittelt. «Diese neuen Tröpfchenschwaden, die mit etwa 90 km je Stunde dahintreiben, wurden vermutlich erst jetzt gebildet», meint Hofmann. «Sie werden sich zu grösseren Partikeln zusammenballen, so dass die Dichte auf etwa 100 Tröpfchen je Kubikzentimeter zurückgeht. Allerdings bleibt die Konzentration gross genug, um die Schwaden auch künftig orten zu können. Angesichts der geringen Partikelgrösse werde es Jahre dauern, bis das Material in tiefere Luftschichten und schliesslich zur Erdoberfläche absinke. Vorläufig seien, wie Hofmann erklärte, von den Schwefelsäureschwaden in der Stratosphäre keine klimatischen Auswirkungen zu erwarten. Wenn die Tröpfchen aber verklumpen und z.B. um das Zehnfache grössere Partikel bilden, könnten sie «optisch aktiv» werden - d.h. sie könnten das Sonnenlicht streuen und bewirken, dass sich die Sonneneinstrahlung an der Erdoberfläche verringert. Gegenwärtig sei noch nicht abzuschätzen, wann damit zu rechnen sei und ob sie überhaupt grössere Partikel bilden. Jedoch bestehe die Möglichkeit, dass die Schwaden vorübergehend die Temperaturen absinken lassen. Sie werden zu überaus farbenprächtigen Sonnenuntergängen beitragen, weil sie auf Grund ihrer grossen Höhe noch lange Zeit nach dem Versinken der Sonne hinter dem Horizont ihr Licht reflektieren.

Polychlorierte Biphenyle (PCB) hatten sich wegen ihrer sehr günstigen technischen Eigenschaften seit den 30er Jahren weltweit als Weichmacher, Zusatzmittel für Lacke, Hydraulikflüssigkeiten und Kühl- und Isolierflüssigkeiten der Elektrotechnik (Dielektrika) auf breiter Basis eingeführt. Hierzu trugen bei der Verwendung besonders ihre Unbrennbarkeit, ihre hohe Hitzebeständigkeit, ihr Lösungsverhalten und ihre hervorragenden dielektrischen Eigenschaften entscheidend bei.

Anfang der 70er Jahre stellte sich, insbesondere durch wesentlich verfeinerte analyti-

SIA-Fachgruppen

Fachgruppe für Architektur

Berichtigung einer Ankündigung

In Heft 37/1983 ist uns leider auf Seite 888 unter der Rubrik «SIA-Fachgruppen» ein bedauerlicher Fehler unterlaufen. Für die Fachgruppe für Architektur wurde auf den 29. September eine Herbstexkursion in den Kanton Thurgau mit Besichtigung von Bauten der Architekten René Antoniol und Kurt Huber angezeigt. Die herbstliche Fahrt hat natürlich längst stattgefunden - nämlich vor einem Jahr. Wir bitten unsere Leser um Entschuldigung für das Versehen.

sche Methoden, heraus, dass die PCB gerade infolge ihrer so vorteilhaften hohen Stabilität biologisch nur schwer abbaubar sind und sich wegen ihrer guten Fettlöslichkeit in pflanzlichen, tierischen und menschlichen Geweben über längere Zeit ablagern können. Dabei ist die Tatsache wichtig, dass die akute Toxizität der PCB gering ist. Wegen der Möglichkeit der Akkumulation der PCB, besonders im Fettgewebe höherer Lebewesen, nahmen Hersteller und Weiterverarbeiter einer Empfehlung der Oecd folgend - zu Beginn der 70er Jahre entscheidende Einschränkungen in der Anwendung der PCB vor: Sie wurden von diesem Zeitpunkt an nur noch im Bergbau als unbrennbare Hydrauliköle und in der Elektroindustrie in geschlossenen Systemen als Dielektrika in Transformatoren und Kondensatoren eingesetzt, da es für diese beiden Bereiche damals noch keine gleichwertigen Ersatzprodukte gab. In der Folgezeit ging die technische Entwicklung in die Richtung einer völligen Abkehr von den PCB.

Die Bayer AG zog aus dieser Situation Konsequenzen:

- Da sich gezeigt hatte, dass die unerwünschten Eigenschaften der PCB hauptsächlich von den stärker chlorierten Biphenylen herrührten, wurde der Chlorierungsgrad der PCB-Produkte, den Möglichkeiten der Verwender angepasst, schrittweise so weit wie möglich verringert, so dass die technische Spezifikation noch eingehalten, die biologische Abbaubarkeit der Verbindung jedoch beträchtlich verbessert wurde.
- Den Anwendern von Clophen wurde angeboten, nicht mehr verwendbares Produkt in der speziell für die schadlose Verbrennung von chlorhaltigen Verbindungen errichteten Verbrennungsanlage des Leverkusener Bayerwerkes umweltgerecht vernichten zu lassen.
- PCB-freie Alternativprodukte, insbesondere auf Silikon- und Kohlenwasserstoffbasis, wurden entwickelt.

Durch dieses Vorgehen wurde sichergestellt, dass die Entwicklung der Ersatzprodukte, die Konstruktion darauf ausgelegter Geräte und deren Einführung in der Praxis kontinuierlich im Einklang mit den bestehenden Gesetzen und dem Stand der Wissenschaft durchgeführt werden konnten. Im Laufe der vergangenen Jahre stieg dementsprechend der Verbrauch von Alternativprodukten laufend, während der des PCB dagegen deutlich zurückging.