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Angewandte Mechanik in Industrie und Hochschule I11*

Zur Bestimmung der dynamischen
Steifigkeitsmatrix eines unendlichen

Gebietes

Von John P. Wolf, Ziirich

In der dynamischen Analyse der Bodenstruktur Interaktion wird der Boden als unendliches
Gebiet betrachtet, das nicht mittels einer endlichen Anzahl von Finiten Elementen mit endli-
chen Abmessungen modelliert werden kann. Der einzufiihrende fiktive Rand wiirde Wellen
reflektieren. Auch kiinstlich erzeugte Materialdimpfung erlaubt es nicht, mit einer vertret-
baren Anzahl von Finiten Elementen auszukommen. Die Randelement-Methode eignet sich
gut, um ein unendliches Gebiet zu modellieren. Die Diskretisierung beschrinkt sich dabei
auf die Kontaktfliche Boden-Struktur. Als praktische Anwendung wird die dynamische Ana-
lyse des Reaktorgebdudes des KKW Angra 2, auf Pfihlen gelagert, besprochen.

In the dynamic analysis of soil-structure interaction the soil is regarded as an unbounded do-
main which cannot be modelled with a finite number of finite elements. The fictitious bound-
ary, which would have to be introduced, would reflect waves. Also introducing material damp-
ing artificially does not allow a model to be established with a reasonable number of finite ele-
ments. The boundary-element method, however, is well suited to model an infinite domain.
The discretization is limited to the structure-soil interface. As a practical application the dy-
namic analysis of the reactor building of the NPP Angra 2, founded on piles, is discussed.

Aufgabenstellung

Die Aufgabenstellung der Analyse der
Bodenstruktur Interaktion ist in Bild 1
dargestellt. Die Erregung besteht ent-
weder aus einer zeitlich sich dndern-
den, an der Struktur angreifenden Last
oder aus einer Erdbebenbewegung, die
z. B. an der Oberflache des Bodens vor-
geschrieben ist. Gesucht ist die Bean-
spruchung der Struktur.

Die Modellierung der Struktur mit end-
lichen Abmessungen ist verhdltnismés-
sig einfach durchzufiithren. Die Bewe-
gungsdifferentialgleichungen der dis-
kretisierten Struktur werden aufge-
stellt, zu deren Losung leistungsfahige
Methoden zur Verfligung stehen. Im
allgemeinen kommt es zu einer Wech-
selbeziehung zwischen Struktur und
Boden, so dass dieser auch modelliert
werden muss. Der horizontal geschich-
tete Boden ist nun aber, im Gegensatz
zur Struktur, ein unendliches Gebiet.
Fiir statische Lasten kann ein fiktiver
Rand in geniigender Entfernung von
der Struktur, wo die Beanspruchung
vom praktischen Standpunkt aus abge-
klungen ist, eingefiihrt werden. Dies
fihrt zu einem endlichen Gebiet auch
fir den Boden, der dhnlich wie die
Struktur modelliert werden kann. Das
gesamte diskretisierte System, beste-
hend aus Struktur und Boden, kann
dann einfach erfasst werden. Fiir dyna-
mische Lasten kann dieses Vorgehen
aber nicht verwendet werden. Der fikti-
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ve Rand wiirde Wellen, die von der
Struktur herkommen, reflektieren, an-
statt sie durchzulassen. Sie konnten so-
mit nicht mehr ins Unendliche abstrah-
len. Diese Anforderung, das Unendli-
che zu modellieren, unterscheidet die
Bodendynamik von der Strukturdyna-
mik.

Im folgenden soll vorausgesetzt wer-
den, dass der Boden und die Struktur
sich (quasi) linear elastisch verhalten.
In diesem Fall ist es giinstig, die Bewe-
gungsdifferential-Gleichungen im Fre-
quenzbereich zu formulieren. Wird der
Boden als Substruktur erfasst, muss nur
seine sogenannte dynamische Steifig-
keitsmatrix, bezogen auf die Freiheits-
grade langs der Bodenstruktur Kontakt-
fliche, bestimmt werden, d. h. die Am-
plituden der Krifte in den Knoten in-
folge Einheitsamplituden der Verschie-
bungen flr die harmonische Erregung
mit der Frequenz o.

Stab mit exponentiell
zunehmender Fliche

Um zu belegen, dass es praktisch un-
moglich ist, den unendlich ausgedehn-
ten Boden mit einem endlichen Gebiet
von z. B. Finiten Elementen, das durch
einen fiktiven Rand begrenzt wird, ab-
zubilden, soll ein unendlich langer Stab
mit exponentiell zunehmender Fldche
untersucht werden. Dieser soll als gro-
bes Modell des als Halbraum betrachte-
ten Bodens verwendet werden (Bild 2).
Unter der Voraussetzung, dass die Kon-
taktfliche zwischen dem Boden und

Bild 1. Aufgabenstellung der Analyse der Boden-
struktur Interaktion

der Struktur an der Oberflache starr ist,
kann dieser Stab mit vertikaler Achse
und dem Elastizititsmodul E fir die
Abschitzung des dynamischen Steifig-
keitskoeffizienten S, in vertikaler Rich-
tung betrachtet werden.

(1) Py=Sywy

wobei P, und w, die Amplituden der
Last und der Verschiebung im Punkte 0
an der Oberfldche darstellen. Die mit
der Tiefe exponentiell zunehmende
Fliche A(z) trdgt der Lastausbreitung
im Boden Rechnung.

(D) Alz)=Ayers

Die Linge d stellt die Tiefe dar, bei der
die Flache gleich Ajeist.

Mittels der Annahmen der Stabstatik
kann! die Bewegungsdifferentialglei-
chung aufgestellt werden. Um den dy-
namischen Steifigkeits-Koeffizienten
des unendlich langen Stabes herzulei-
ten, wird nur die Welle, die in der Rich-
tung der positiven z-Achse, d.h. von der
Kontaktfliche zwischen Boden und
Struktur weg, sich fortpflanzt, zugelas-
sen. Dies fiihrt geméss[1] zu

EAy
d

Die Federkonstante k; und die Damp-
fungskonstante ¢; sind Funktionen der
dimensionslosen Frequenz a,

3) So= (ki + iagcr)

od
Cp

4) a=

wobei ¢, die Fortpflanzungsgeschwin-
digkeit darstellt. Das Bild 3 zeigt k, und
¢, als Funktion von q, Es ist bemer-
kenswert, dass fir a, < 0,5, ¢, = 0 sich
ergibt, d.h. es wird in diesem Frequenz-
bereich keine Energie abgestrahlt.

Aufgrund der gleichen Bewegungs-
differentialgleichung kann auch die
Steifigkeitsmatrix eines Stabes der Lan-
ge h (siche Bild 2) hergeleitet werden.
An der untern Begrenzung wird ein fik-
tiver Rand, der festgehalten wird, ein-
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Bild 2.  Stab mit exponentiell zunehmender Flache als grobes Modell des Bodens
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Bild 3. Dynamischer Steifigkeitskoeffizient
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gefithrt. In einem endlichen Stabele-
ment werden sich Wellen in beiden
Richtungen lings der Achse fortpflan-
zen. Um zu erreichen, dass die Ampli-
tuden der reflektierten Wellen, die sich
gegen die Kontaktfliche Bodenstruktur
zu bewegen, klein sind, muss Material-
dampfung eingefiihrt werden. S; kann
analog ausgedriickt werden als

e

d

k;, und ¢,;, berechnet aus der dynami-
schen Steifigkeitsmatrix des Stabes der
Linge h, sind Funktionen von g, und
vom Diampfungsmass & Fir h — oo,
wird k;, zu k; und ¢, zu ¢, konvergie-
ren. Um das Konvergenzverhalten zu
studieren, werden k,,/k, und ¢;,/c, als
Funktion der dimensionslosen Linge o
= h/d fir die angegebenen g, in den
Bildern 4 und 5 dargestellt (§ = 0,05).
Es ist offensichtlich, dass fiir einen ver-
niinftigen Abstand h des fiktiven Ran-
des die Approximation des dynami-
schen Steifigkeitskoeffizienten des end-
lichen Stabes an den des unendlichen
unbefriedigend bleibt. Daraus folgt,
dass die Modellierung des unendlichen

(5) So= (ki + iagc1y)

‘Bodens durch ein endliches Gebiet mit-

tels z.B. Finiter Elemente abzulehnen
ist.

Randelement-Methode

In der Finiten-Element-Methode erfiil-
len die gewdhlten Verschiebungsfunk-
tionen mit den unbekannten Koeffi-
zienten weder die Differentialgleichun-
gen noch im allgemeinen die Randbe-
dingungen genau. Dies fithrt dazu, dass
das gesamte Gebiet diskretisiert werden
muss, was, wenn es bis ins Unendliche
reicht, wo ebenfalls (Abstrahlungs-)
Randbedingungen zu erfassen sind,
problematisch ist. Werden die Verschie-
bungsfunktionen so gewihlt, dass sie

©° 3 3 3 102 ©° 2 3 5 ¢ 2 3 5 402 . . . .
DIMENSIONSLOSE LAENGE o = h/d DIMENSIONSLOSE LRENGE o = h/d die Differentialgleichungen genau er-
fiillen, wird die Diskretisierung auf den
Bild4. Konvergenz des dynamischen Steifigkeitskoeffizienten, niedriger Frequenzbereich
Bild 6. Grundsitzliches Vorgehen in der Randele-
ment-Methode
Bild5. Konvergenz des dvnamischen Steifigkeitskoeffizienten, hoher Frequenzbereich
o
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Bild 8. Diskretisiertes Pfahl-Boden-System

Bild7. Reaktorgebdude Angra 2.
Grundriss mit der Lage der Pfdhle

Ansicht und

Rand beschrinkt. Dies fiihrt zur Rand-
element-Methode.

Eine Formulierung dieser Randele-
ment-Methode soll anhand des Berech-
nungsvorganges der Steifigkeitsmatrize
des Bodens (Bild 1) anschaulich erldau-
tert werden. Fir den geschichteten
Halbraum (ohne Aushub) kann die Be-
anspruchung (Verschiebung, Spannun-
gen) infolge Einzellasten bestimmt wer-
den, wobei die Differentialgleichungen,
die Ubergangsbedingungen von Schicht
zu Schicht, die Randbedingungen an
der freien Oberfliche und die Abstrah-
lungsbedingungen im Unendlichen
genau erfiillt werden (Bild 6). Das Ver-
formungsbild u, das zur Bestimmung
einer bestimmten Kolonne der dynami-

Bild 9. Maximale Querkrdfte an den Pfahlkédpfen

schen Steifigkeitsmatrix dem geschich-
teten Halbraum aufgezwungen wird, ist
im Bild 6 angegeben. Es besteht aus
einer Einheitsamplitude einer Lage-
koordinate, wobei die andern ver-
schwinden. Dies soll durch Lasten P,
die nur an jenem Teil des Bodens an-
greifen, der spéter ausgehoben wird, er-
zeugt werden. Die Ubereinstimmung
wird nur im Sinne eines gewichteten
Mittels moglich sein. Die Belastung
fiihrt zu Spannungen o lings der Linie,
die nach dem Abhub auf der Kontakt-
fliche Bodenstruktur liegt. Diese kon-
nen zu den Amplituden der Knotenla-
sten Q aufintegriert werden, die die Ele-
mente der dynamischen Steifigkeitsma-
trix darstellen. Alle Berechnungen kon-
nen am geschichteten Halbraum ohne

Aushub durchgefiihrt werden. Nur die
Linie des Halbraumes, die spiter die
Kontaktfliche Bodenstruktur bildet,
wird diskretisiert.

Dynamische Steifigkeitsmatrizen von
Zylindern, eingebettet in einen ge-
schichteten Halbraum, sind mittels der
Randelement-Methode berechnet wor-
den [2].

Pfahlfundation des
KKW Angra 2

Als praktisches Beispiel einer Analysis
der Bodenstruktur Interaktion soll die
seismische Berechnung der Pfahlfunda-
tion des Reaktorgebdudes des Kern-
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kraftwerkes Angra 2 in Brasilien, die in
[3] aufgefiihrt ist, kurz gestreift werden.
Unterhalb der Fundamentplatte befin-
det sich der horizontal geschichtete Bo-
den mit einer Stirke von 35 m, der auf
Fels ruht. Die Fundation (Bild 7) be-
steht aus 202 Spitzenpfdhlen (146 mit
Durchmesser 1,3 m, 56 mit Durchmes-
ser 1,1 m) und 88 schwimmenden Pfih-
len mit einer Linge von 15m (80 mit
Durchmesser 1,8 m, acht mit Durch-
messer 1,3 m). Die Erdbebenbeschleu-
nigung von 0,1 g in horizontaler Rich-
tung wirkt auf der Hohe des Felsens. In-
folge der (approximativen) Symmetrie
kann die Berechnung auf einen Viertel

beschrinkt werden. Langs der Kontakt-
fliche zwischen den Pfdhlen und des
Bodens werden 556 Knoten eingefiihrt
(Bild 8), die auch die dynamische Stei-
figkeitsmatrix des Bodens festlegen. Als
Beispiel der Resultate werden im Bild 9
die maximalen Querkrifte an den
Pfahlkopfen dargestellt. Wie erwartet,
werden die Pfihle am Rande starker be-
lastet (1,26mal den Mittelwert) als die
im Zentrum (0,60mal den Mittelwert).

Adresse des Verfassers: Dr. J.P. Wolf, Elektrowatt
Ingenieurunternehmung AG, Postfach, 8022 Zu-
rich.

Formation of the Solar System from a
potential-vortex-natured Nebula Disk
Part I1: Disintegration of the swirling solar nebula

disk into vortices of the infant planets due to
selfexcited vibrations caused by the surface winds

By Yian N. Chen, Winterthur

Evaluation of the present orbits of the planets and the asteroid’s leads to the discovery of the pri-
mordial solar system as a potential-vortex-natured nebula disk. The winds on its surfaces caused
by the gravity of the infant sun, similar to the surface flows of a bath-tub vortex, would have in-
duced a tidal wave pattern in the disk due to a kind of the self-excited vibration. This wave pattern
would have become unstable owing to nonlinearity, with the result of its disintegration into vortices
representing the primeval planets. It can be shown that the local values of the vorticity and the
coriolis acceleration of the nebula disk will then determine the angular momentum of the future
planet about its own axis. The orbits of the inner planets Mercury, Venus, earth and Mars, and
those of the asteroid’s, divided by the various Kirkwood gaps, correspond then to the nodal circles
of the tidal-wave pattern, whilst the orbits of the outer planets Jupiter, Saturn, Uranus, Neptune
and Pluto correspond to the anti-nodal circles of this pattern. It can be further shown that this
difference in the orbital patterns and the density distribution of these planets are an expression

of the surface winds mentioned.

Excitation of the tidal waves in the
primordial gaseous disk of the
solar system

The primordial gaseous disk of the solar
system, as suggested in a previous chapter,
is sketched in subfigure b of Fig. 11 corre-
sponding to the present position of the
planets and the asteroids (subfigure a). The
disk represents a potential vortex superim-
posed on a gravitation field of a great mass
M situated in the center of the disk. The
disk of a dense mass rotates in a space of
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a rather small density. The following flow
model can be established from the fluid-
dynamic theory:

A profile of the swirl velocities such as
curve 1 can be supposed. In the boundary
layer between the disk and the space, the
swirl velocity v, is much less than that in
the disk (v,0). The centrifugal force of the
boundary layer can therefore not balance
the gravity of the central mass M. A radial
flow on the surface of the disk will be gene-
rated, as denoted by 2 in the outer planet
field and by 2’ in the inner planet field.
On the other hand, the inflow (3) from the
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zenithal direction will be generated by the
gravitation of the mass M. This inflow,
which will be strongly accelerated by ap-
proaching the central region, can be com-
pared with a jet directed on a wall (Sketch
in subfigure c).

In the central region (4), a very high pres-
sure will be generated due to impact on the
mass M. This high pressure center will
deflect the flow outward (5) to stream
within a thin layer over the surface of the
gaseous disk. Due to strongly curved
stream lines (5), the gaseous disk will be
pressed tightly together in the region (6),
until a deceleration 7 takes place over the
further stretch 8. This outward flow will
form a toroidal ring vortex with the inward
flow 2’ below it, much the same as on the
bath-tub vortex (flows ¢ and a’ in Fig. 9).
This toroidal ring vortex will increase the
instability of the gaseous disk. However,
the outward flow outweighs the inward
flow, so that the effect of the latter on the
surface of the gaseous disk will be masked
by the former so far as their role as a sur-
face wind is concerned. Fig. 11 a shows
the variation of the radial velocities.

The outward flow of the inner field, will
meet the inward flow (2) of the outer field
at the position of Jupiter (9). The inward
flow needs a much longer way to reach the
same velocity as that of the outward flow
in order to stop it. Therefore, Jupiter lies
much nearer to the sun than to the outer
edge of the gaseous disk.

The huge amount of gas carried by these
two flows will be piled up there so that a
very thick gas ring will be formed separat-
ing the outer field from the inner one.
The wind over the surface of the inner
field is very strong at the beginning along
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