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Angewandte Mechanik in Industrie und Hochschule III *

Zur Bestimmung der dynamischen
Steifigkeitsmatrix eines unendlichen
Gebietes
Von John P. Wolf, Zürich

In der dynamischen Analyse der Bodenstruktur Interaktion wird der Boden als unendliches
Gebiet betrachtet, das nicht mittels einer endlichen Anzahl von Finken Elementen mit endlichen

Abmessungen modelliert werden kann. Der einzuführende fiktive Rand würde Wellen
reflektieren. Auch künstlich erzeugte Materialdämpfung erlaubt es nicht, mit einer vertretbaren

Anzahl von Finiten Elementen auszukommen. Die Randelement-Methode eignet sich
gut, um ein unendliches Gebiet zu modellieren. Die Diskretisierung beschränkt sich dabei
auf die Kontaktfläche Boden-Struktur. Als praktische Anwendung wird die dynamische Analyse

des Reaktorgebäudes des KKW Angra 2, auf Pfählen gelagert, besprochen.

In the dynamic analysis of soil-structure interaction the soil is regarded as an unbounded do-
main which cannot be modelled with a finite number of finite elements. The fictitious boundary,

which would have to be introduced, wouid reflect waves. Also introducing material damp-
ing artificially does not allow a model to be established with a reasonable number of finite
elements. The boundary-element method, however, is well suited to model an infinite domain.
The discretization is limited to the structure-soil interface. As a practical application the
dynamic analysis of the reactor buiiding of the NPP Angra 2, founded on piles, is discussed.

Aufgabenstellung

Die Aufgabenstellung der Analyse der
Bodenstruktur Interaktion ist in Bild 1

dargestellt. Die Erregung besteht
entweder aus einer zeitlich sich ändernden,

an der Struktur angreifenden Last
oder aus einer Erdbebenbewegung, die
z. B. an der Oberfläche des Bodens
vorgeschrieben ist. Gesucht ist die
Beanspruchung der Struktur.

Die Modellierung der Struktur mit
endlichen Abmessungen ist verhältnismässig

einfach durchzuführen. Die
Bewegungsdifferentialgleichungen der dis-
kretisierten Struktur werden aufgestellt,

zu deren Lösung leistungsfähige
Methoden zur Verfügung stehen. Im
allgemeinen kommt es zu einer
Wechselbeziehung zwischen Struktur und
Boden, so dass dieser auch modelliert
werden muss. Der horizontal geschichtete

Boden ist nun aber, im Gegensatz
zur Struktur, ein unendliches Gebiet.
Für statische Lasten kann ein fiktiver
Rand in genügender Entfernung von
der Struktur, wo die Beanspruchung
vom praktischen Standpunkt aus
abgeklungen ist, eingeführt werden. Dies
führt zu einem endlichen Gebiet auch
für den Boden, der ähnlich wie die
Struktur modelliert werden kann. Das
gesamte diskretisierte System, bestehend

aus Struktur und Boden, kann
dann einfach erfasst werden. Für
dynamische Lasten kann dieses Vorgehen
aber nicht verwendet werdalh. Der f ikti-

* Vgl. Schweizer Ingenieur und Alchiieki. Heft
51/52: 1117-lffi, 1982; Hef*^ZW2-7, Heft 4:
42-46,1983

ve Rand würde Wellen, die von der
Struktur herkommen, reflektieren,
anstatt sie durchzulassen. Sie könnten
somit nicht mehr ins Unendliche abstrahlen.

Diese Anforderung, das Unendliche

zu modellieren, unterscheidet die
Bodendynamik von der Strukturdynamik.

Im folgenden soll vorausgesetzt werden,

dass der Boden und die Struktur
sich (quasi) linear elastisch verhalten.
In diesem Fall ist es günstig, die
Bewegungsdifferential-Gleichungen im
Frequenzbereich zu formulieren. Wird der
Boden als Substruktur erfasst, muss nur
seine sogenannte dynamische
Steifigkeitsmatrix, bezogen auf die Freiheitsgrade

längs der Bodenstruktur Kontaktfläche,

bestimmt werden, d. h. die
Amplituden der Kräfte in den Knoten
infolge Einheitsamplituden der Verschiebungen

für die harmonische Erregung
mit der Frequenz (ö.

Stab mit exponentiell
zunehmender Fläche

Um zu belegen, dass es praktisch
unmöglich ist, den unendlich ausgedehnten

Boden mit einem endlichen Gebiet
von z. B. Finiten Elementen, das durch
einen fiktiven Rand begrenzt wird,
abzubilden, soll ein unendlich langer Stab
mit exponentiell zunehmender Fläche
untersucht werden. Dieser soll als grobes

Modell des als Halbraum betrachteten

Bodens verwendet werden (Bild 2).
Unter der Voraussetzung, dass die
Kontaktfläche zwischen dem Boden und

WH\ft*=-

Bild 1. Aufgabenstellung der Analyse der
Bodenstruktur Interaktion

der Struktur an der Oberfläche starr ist,
kann dieser Stab mit vertikaler Achse
und dem Elastizitätsmodul E für die
Abschätzung des dynamischen Steifig-
keitskoeffizienten 50 in vertikaler Richtung

betrachtet werden.

(1) P0 Sow0

wobei P0 und w0 die Amplituden der
Last und der Verschiebung im Punkte 0

an der Oberfläche darstellen. Die mit
der Tiefe exponentiell zunehmende
Fläche A(z) trägt der Lastausbreitung
im Boden Rechnung.

(2) A(z)=A0e*/d

Die Länge d stellt die Tiefe dar, bei der
die Fläche gleich A0e ist.

Mittels der Annahmen der Stabstatik
kann' die Bewegungsdifferentialgleichung

aufgestellt werden. Um den
dynamischen Steifigkeits-Koeffizienten
des unendlich langen Stabes herzuleiten,

wird nur die Welle, die in der Richtung

der positiven z-Achse, d.h. von der
Kontaktfläche zwischen Boden und
Struktur weg, sich fortpflanzt, zugelassen.

Dies führt gemäss [1] zu

(3)
EAp

d (k\ + iao ci)

Die Federkonstante fc] und die
Dämpfungskonstante q sind Funktionen der
dimensionslosen Frequenz öq

(4) ao -—
Cp

wobei cp die Fortpflanzungsgeschwindigkeit
darstellt. Das Bild 3 zeigt k{ und

C] als Funktion von oq. Es ist
bemerkenswert, dass für Oq < 0,5, q 0 sich
ergibt, d.h. es wird in diesem Frequenzbereich

keine Energie abgestrahlt.

Aufgrund der gleichen
Bewegungsdifferentialgleichung kann auch die
Steifigkeitsmatrix eines Stabes der Länge

h (siehe Bild 2) hergeleitet werden.
An der untern Begrenzung wird ein
fiktiver Rand, der festgehalten wird, ein-

47



Angewandte Mechanik/Baustatik Schweizer Ingenieur und Architekt 4/83

¦ -i Ao 1 n 1

/

/
/
/
/
/

d /
/

/
/

/
/

Iwo l
\
\
\
\
\
\
\
\
\
\
\
\\ A jl

1 I
/ i \

1 i N

1 i 1*
FIKTIVER RAND

/
i
z

x Ao e\

Bild2. Stab mit exponentiell zunehmender Fläche als grobes Modell des Bodens

a)

tÖ"1 2 3 5 10° 2 3 S

DIMENSIONSLOSE FREQUENZ a„

b)

10-' 2 3 5 10" 2 3 5
DIMENSIONSLOSE FREQUENZ a„

Bild 3. Dynamischer Steifigkeitskoeffizient

D.B
b)

^

tÖ° 2 3 5 10' 2 3 5 10*
DIMENSIONSLOSE LflENGE a 1 h/d

0.4

10° 2 3 5 W 2 3 5 tu2
DIMENSIONSLOSE LHENGE a h/d

geführt. In einem endlichen Stabelement

werden sich Wellen in beiden
Richtungen längs der Achse fortpflanzen.

Um zu erreichen, dass die Amplituden

der reflektierten Wellen, die sich
gegen die Kontaktfläche Bodenstruktur
zu bewegen, klein sind, muss
Materialdämpfung eingeführt werden. SQ kann
analog ausgedrückt werden als

(5) So-
EAo

(fcn + iaocii)

ku und Cn, berechnet aus der dynamischen

Steifigkeitsmatrix des Stabes der
Länge h, sind Funktionen von a0 und
vom Dämpfungsmass £. Für h — »,
wird ku zu fc, und c,, zu c, konvergieren.

Um das Konvergenzverhalten zu
studieren, werden ku/k{ und cn/C\ als
Funktion der dimensionslosen Länge a
•» h/d für die angegebenen a0 in den
Bildern 4 und 5 dargestellt (% - 0,05).
Es ist offensichtlich, dass für einen
vernünftigen Abstand h des fiktiven Randes

die Approximation des dynamischen

Steifigkeitskoeffizienten des
endlichen Stabes an den des unendlichen
unbefriedigend bleibt. Daraus folgt,
dass die Modellierung des unendlichen
Bodens durch ein endliches Gebiet mittels

z.B. Finiter Elemente abzulehnen
ist.

Ra ndelement-Methode

In der Finiten-Element-Methode erfüllen

die gewählten Verschiebungsfunktionen

mit den unbekannten
Koeffizienten weder die Differentialgleichungen

noch im allgemeinen die
Randbedingungen genau. Dies führt dazu, dass
das gesamte Gebiet diskretisiert werden
muss, was, wenn es bis ins Unendliche
reicht, wo ebenfalls (Abstrahlungs-)
Randbedingungen zu erfassen sind,
problematisch ist» Werden die
Verschiebungsfunktionen so gewählt, dass sie
die Differentialgleichungen genau
erfüllen, wird die Diskretisierung auf den

Bild 4. Konvergenz des dynamischen Steifigkeitskoeffizienten. niedriger Frequenzbereich

Sild5. Konvergenz des dynamischen Steifigkeitskoeffizienten, hoher Frequenzbereich
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Bild 6. Grundsätzliches Vorgehen in der
Randelement-Methode
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Bild 8. Diskretisiertes Pfahl-Boden-System
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Bild 7. Reaktorgebäude Angra 2. Ansicht und
Grundriss mit der Lage der Pfähle

Bild 9. Maximale Querkräfte an den Pfahlköpfen

Rand beschränkt. Dies führt zur
Randelement-Methode.

Eine Formulierung dieser
Randelement-Methode soll anhand des

Berechnungsvorganges der Steifigkeitsmatrize
des Bodens (Bild 1) anschaulich erläutert

werden. Für den geschichteten
Halbraum (ohne Aushub) kann die
Beanspruchung (Verschiebung, Spannungen)

infolge Einzellasten bestimmt werden,

wobei die Differentialgleichungen,
die Übergangsbedingungen von Schicht
zu Schicht, die Randbedingungen an
der freien Oberfläche und die Abstrah-
lungsbedingungen im Unendlichen
genau erfüllt werden (Bild 6). Das
Verformungsbild u, das zur Bestimmung
einer bestimmten Kolonne der dynami¬

schen Steifigkeitsmatrix dem geschichteten

Halbraum aufgezwungen wird, ist
im Bild 6 angegeben. Es besteht aus
einer Einheitsamplitude einer
Lagekoordinate, wobei die andern
verschwinden. Dies soll durch Lasten P,
die nur an jenem Teil des Bodens
angreifen, der später ausgehoben wird,
erzeugt werden. Die Übereinstimmung
wird nur im Sinne eines gewichteten
Mittels möglich sein. Die Belastung
führt zu Spannungen a längs der Linie,
die nach dem Abhub auf der Kontaktfläche

Bodenstruktur liegt. Diese können

zu den Amplituden der Knotenlasten

Q aufintegriert werden, die die
Elemente der dynamischen Steifigkeitsmatrix

darstellen. Alle Berechnungen können

am geschichteten Halbraum ohne

Aushub durchgeführt werden. Nur die
Linie des Halbraumes, die später die
Kontaktfläche Bodenstruktur bildet,
wird diskretisiert.

Dynamische Steifigkeitsmatrizen von
Zylindern, eingebettet in einen
geschichteten Halbraum, sind mittels der
Randelement-Methode berechnet worden

[2].

Pfahifundation des
KKW Angra 2

Als praktisches Beispiel einer Analysis
der Bodenstruktur Interaktion soll die
seismische Berechnung der Pfahifundation

des Reaktorgebäudes des Kem-
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kraftwerkes Angra 2 in Brasilien, die in
[3] aufgeführt ist, kurz gestreift werden.
Unterhalb der Fundamentplatte befindet

sich der horizontal geschichtete
Boden mit einer Stärke von 35 m, der auf
Fels ruht. Die Fundation (Bild 7)
besteht aus 202 Spitzenpfählen (146 mit
Durchmesser 1,3 m, 56 mit Durchmesser

1,1 m) und 88 schwimmenden Pfählen

mit einer Länge von 15 m (80 mit
Durchmesser 1,8 m, acht mit Durchmesser

1,3 m). Die Erdbebenbeschleunigung

von 0,1 g in horizontaler Richtung

wirkt auf der Höhe des Felsens.
Infolge der (approximativen) Symmetrie
kann die Berechnung auf einen Viertel

beschränkt werden. Längs der Kontaktfläche

zwischen den Pfählen und des

Bodens werden 556 Knoten eingeführt
(Bild 8), die auch die dynamische
Steifigkeitsmatrix des Bodens festlegen. Als
Beispiel der Resultate werden im Bild 9

die maximalen Querkräfte an den
Pfahlköpfen dargestellt. Wie erwartet,
werden die Pfähle am Rande stärker
belastet (l,26mal den Mittelwert) als die
im Zentrum (0,60mal den Mittelwert).

Adresse des Verfassers: Dr. J.P. Wolf, Elektrowatt
Ingenieurunternehmung AG, Postfach, 8022
Zürich.

Zitierte Literatur

[1] Wolf, J.P. und Weber, B. (1982): «On calcu¬

lating the dynamic-stiffness matrix of the
unbounded soil by cloning». Proceedings
International Symposium on Numerical
Models in Geomechanics, Zürich, A.A
Balkema (Rotterdam), pp. 486-494

[2] Apsel. R.J. (1979): «Dynamic Green's
Functions for Layered Media and Applications

to Boundary-Value Problems». Ph. D.
Dissertation, University of California, San
Diego

[3] Wolf, J.P., von Arx. G.A.. de Barros, F.C.P.
and Kakuba, M. (1981): «Seismic analysis
of the pile foundation of the reactor buil-
ding of the NPP Angra 2». Nuclear
Engineering and Design, Vol. 65, No. 3, pp.
329-341

Formation of the Solar System from a

potential-vortex-natured Nebula Disk
Part II: Disintegration ofthe swirling solar nebula
disk into vortices ofthe infant planets due to
selfexcited vibrations caused by the surface winds

By Yian N. Chen, Winterthur

Evaluation of the present orbits of the planets and the asteroid's leads to the discovery of the
primordial solar System as a potential-vortex-natured nebula disk. The winds on its surfaces caused

by the gravity of the infant sun, similar to the surface flows of a bath-tub vortex, would have in-
duced a tidal wave pattern in the disk due to a kind of the self-excited Vibration. This wave pattern
would have become u ns tab le owing to n on linear i 15, with the result of its disintegration into vortices

representing the primeval planets. It can be shown that the local values of the vorticity and the
coriolis acceleration of the nebula disk will then determine the angular momentum of the future
planet about its own axis. The orbits of the inner planets Mercury, Venus, earth and Mars, and

those of the asteroid's, divided by the various Kirkwood gaps, correspond then to the nodal circles

of the tidal-wave pattern, whilst the orbits of the outer planets Jupiter, Saturn, Uranus, Neptune
and Pinto correspond to the anti-nodal circles of this pattern. It can be further shown that this
difference in the orbital patterns and the density distribution of these planets are an expression
of the surface winds mentioned.

Exci ta t ion of the tidal waves in the
primordial gaseous disk of the
solar system

The primordial gaseous disk of the solar

system, as suggested In a prevlous chapter,
ls sketched In subflgure b of Flg. 11

corresponding to the present Position of the
planets and the asteroids (subflgure a). The
disk represents a potentlal vortex superim-
posed on a gravitatlon fleld of a great mass
M situated In the center of die disk. The
disk of a dense mass rotates In a space of

a rather small density. The followlng flow
model can be established from the fluid-
dynamic theory:
A profile of the swirl velocities such as

curve 1 can be supposed. In the boundary
layer between the disk and the Space, the
swirl veloclty vv ls much less than that in
the disk (v,»). The centrtfugal force ofthe
boundary layer can tiierefore not balance

the gravity ofthe central mass M. A radial
flow on die surface ofthe disk will be
generated, as denoted by 2 In the outer planet
fleld and by 2' In the Inner planet fleld.
On the other hand, the lnflow (3) from the

zenlthal dlrection will be generated by the
gravitatlon of the mass M. Thls lnflow,
which will be strongly accelerated by ap-
proachlng the central region, can be
compared with a jet directed on a wall (Sketch
in subflgure c).

In the central region (4), a very high pressure

will be generated due to impact on the
mass M. Thls high pressure center will
deflect the flow outward (5) to stream
withln a thin layer over the surface of the

gaseous disk. Due to strongly curved
stream lines (5), the gaseous disk will be

pressed tlghtly together in the region (6),
untll a deceleration 7 takes place over the
further Stretch 8. Thls outward flow will
form a toroldal ring vortex with the Inward
flow 2' below it, much the same as on the
bath-tub vortex (flows c and a' in Flg. 9).
Thls toroldal ring vortex will Increase the
Instabllity of the gaseous disk. However,
the outward flow outwelghs the Inward
flow, so that the effect of the latter on the
surface of the gaseous disk will be masked
by the former so far as their role as a
surface wind is concerned. Fig. 11 a shows
the Variation of the radial velocities.
The outward flow of the Inner fleld, will
meet the inward flow (2) ofthe outer fleld
at the posltlon of Jupiter (9). The Inward
flow needs a much longer way to reach the
same veloclty as that of the outward flow
in order to stop it. Therefore, Jupiter lies
much nearer to the sun than to the outer
edge of the gaseous disk.
The huge amount of gas carrled by these
two flows will be piled up there so that a

very thlck gas ring will be formed separat-
ing the outer field from uie inner one.
The wind over the surface of the Inner
fleld ls very strong at the beginning along
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