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Angewandte Mechanik in Industrie und Hochschule III *

Nichtlineare
Finite-EIement-Berechnungen und
Informatik
Von Edoardo Anderheggen, Zürich

Es werden einige Eigenschaften des neuen, am Institut für Informatik der ETH Zürich
entwickelten Computerprogramms FLOWERS erörtert, das u.a. zur Lösung eines breiten
Spektrums statischer und dynamischer nichtlinearer Probleme anwendbar ist. Im Vordergrund
steht dabei die Möglichkeit, den Ablauf des iterativen Rechenprozesses vom Bildschirmterminal

aus während der Programmausführung interaktiv zu steuern.

On discute certains criteres sur lesquels on a base, k l'institut d'informatique de l'EPF
Zürich, le developpement du nouveau Programme FLOWERS capable, entre autre, de traiter
toute une gamme de problemes statiques et dynamiques nonlineair. Ce Programme permet de

suivre et de diriger le proces iteratif en temps reel pendant l'execution du programme.

Some of the criteria which led to the development of the Computer program FLOWERS at the
Institute of Informatics of the Swiss Federal Institute of Technology in Zürich are discussed.

This program can be used for several different kinds of static and dynamic nonlinear analysis
based on the finite element method. It allows to control and steer the iteration process in real
time from a terminal during program execution.

Einleitung

Im vorliegenden Aufsatz geht es um
nichtlineare Finite-EIement-Berechnungen

aus der Sicht eines Informatikers,

der sich die Aufgabe gestellt hat,
dafür möglichst geeignete Hilfsmittel
in Form von Computerprogrammen
anderen Forschern, Studenten und
Ingenieuren zur Verfügung zu stellen. Es

geht also weder um spezifische Anwendungen

noch um die mathematischen
Modelle zur Lösung bestimmter
Probleme, sondern um die zur Entwicklung

dieser besonderen Art von Software

wegleitenden Kriterien.
Diese stellen jedoch nicht nur
Wunschvorstellungen dar, sondern bilden die
Grundlagen, die zur Entwicklung des

Computerprogramms FLOWERS am
Institut für Informatik der ETH Zürich
geführt haben. Allgemeine Informationen

über dieses Programmsystem sind
im «FLOWERS User's Manual» [1]
(eine zweite Auflage wird im Frühling
1983 erscheinen) sowie in einem weiteren,

in dieser selben Zeitschrift
demnächst veröffentlichten Artikel [2] zu
finden.

Hier wird man sich auf die besondere
Problematik der statischen und dynamischen

nichtlinearen Analyse von
Tragkonstruktionen beschränken, wobei die
ins Auge gefassten nichtlinearen Effekte

wie folgt klassifiziert werden können:

'Vgl. Schweizer Ingenieur und Architekt, Heft
51/52: 1117-1121, 1982; Heft 1/2: 2-7, Heft 4:
47-50,1983

1. Geometrische Nichtlinearitäten
(Stabilität, grosse Verschiebungen und
Rotationen, grosse Verzerrungen);

2. Materialbedingte Nichtlinearitäten
(nichtlinear-elastische, elasto-plasti-
sche und sonstige inelastische
Materialeigenschaften) ;

3. Langzeitphänomene (Kriechen);
4. Kontaktprobleme;
5. Verschiebungsabhängigkeit der

äusseren Lasten;
6. Nichtlineare viskose Dämpfungseffekte.

Es ist heute bekannt, dass alle diese
Effekte, einzeln oder kombiniert, bei
praktisch allen Arten von Tragwerken
mit der Methode der Finiten Elemente
(FEM), wenigstens prinzipiell, numerisch

erfasst werden können. Zudem
findet die FEM je länger je mehr auch
noch nichtkontinuumsmechanische
Anwendungen. Die Entwicklung der
dazu nötigen Software, vor allem wenn
man sich als Ziele Benützerfreundlich-
keit, Allgemeinheit, Anpassungsfähigkeit

und Portabilität setzt, ist jedoch
weder trivial noch als gelöstes Problem
zu betrachten. Wie aus den folgenden
Ausführungen klar werden dürfte,
verlangen zudem nichtlineare FE-Berech-
nungen von den Programmbenützern
viel Know-how und Erfahrung, so dass

Ausbildungsfragen auch sehr im
Vordergrund stehen. Daraus sowie aus der
wachsenden Bedeutung von nichtlinearen

Berechnungen in der Praxis des
Bau- und des Maschineningenieurwesens

ergeben sich die Gründe, die zum
FLOWERS-Programm geführt haben.
Einige Aspekte davon, beschränkt auf
nichtlineare festigkeitstheoretische sta¬

tische und dynamische Problemstellungen,

werden im folgenden erörtert.

Über Finite Elemente

Auf die theoretischen Grundlagen der
FEM kann hier nicht eingegangen werden

(siehe z.B. [3] sowie unzählige andere

Veröffentlichungen). Eine ihrer
fundamentalen Eigenschaften, die für die
Strukturierung und die Arbeitsweise
von Computerprogrammen eine
zentrale Rolle spielt, soll aber im folgenden
erörtert werden.

Bei der Durchführung von FE-Berech-

nungen kann man zwischen
Verarbeitungsschritten, die das globale System,
und solchen, die jedes einzelne Element
betreffen, klar unterscheiden. In der
hiernach verwendeten Terminologie
werden die ersten von den «Systemroutinen»,

die zweiten von den «Elementroutinen»

durchgeführt. Ein Programm
wie FLOWERS besteht aus vielen
System- und Elementroutinen, die eng
zusammenarbeiten.

Aufgaben der Systemroutinen sind z.B.
das Lesen der Systemdaten, die Aufstellung

und Lösung der globalen
Gleichungssysteme oder die Datenverwaltung

auf Primär- und Sekundärspeicher.

Aufgabe der Elementroutinen ist
die Bereitstellung der numerischen
Koeffizienten, die das Verhalten jedes
einzelnen Elementes numerisch
beschreiben und die von den Systemroutinen

dann weiterverarbeitet werden.

Die Systemroutinen hängen vom
Lösungsverfahren, nicht vom Problemtyp
ab. So verlangen beispielsweise statische

und dynamische Berechnungen
auf globaler Systemebene eine völlig
verschiedene Behandlung und damit
andere Systemroutinen. Diese brauchen

aber z.B. zwischen einer Rahmen-
und einer Schalenberechnung nicht zu
unterscheiden, da sie die lokalen
Elementkoeffizienten, die sie einmal von
Rahmenelementroutinen, einmal von
Schalenelementroutinen übermittelt
erhalten, nach identischen Prozeduren
weiterverarbeiten. Dies macht es möglich,

FE-Programme zu schreiben, die
eine aus vielen Elementroutinen
bestehende und beliebig erweiterbare
Elementbibliothek besitzen und die somit
völlig verschiedenartige Probleme
behandeln können.

Die meisten grossen FE-Programme
arbeiten nach diesem Prinzip, so auch das

Programm FLOWERS, bei dem die
scharfe Trennung zwischen Systemroutinen

und Elementroutinen auch
deswegen wichtig ist, weil FLOWERS ein
Forschungsinstrument werden soll. Dies
bedingt nämlich, dass neue Element rou-
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tinen für besondere Problemarten,
Materialeigenschaften, Lasteneinwirkungen

usw. von fremden Programmierern

ohne Detailkenntnisse über die
Arbeitsweise der Systemroutinen leicht
hinzugefügt werden können.

Wichtig in diesem Zusammenhang
sowie auch zum prinzipiellen Verständnis
der Arbeitsweise des Programms
FLOWERS ist die Frage nach den Daten, die
zwischen System- und Elementroutinen
übertragen werden müssen. Man
betrachte einen vom Knotenverschiebungsparameter

definierten
Verschiebungszustand, bei dem das Gleichgewicht

zwischen internen Spannungen,
externen Lasten, Auflagerkräften
sowie, bei den dynamischen Problemen,
Massen- und Dämpfungskräften erfüllt
ist. Für ein Element e(e Elementindex)

ist dieser Zustand von den lokalen
Knotenverschiebungen aj bestimmt,
wobei der Index j (wie auch der unten
eingeführte Index i) über alle elementeigenen

Knotenverschiebungen geht.
Dieser Zustand wird um bestimmte für
das e-te Element mit Aaj bezeichnete
Knotenverschiebungsinkremente geändert.

In dem neuen, aus aj + Aaj
definierten Zustand, gelten unter Vernachlässigung

viskoser Dämpfungskräfte
die Beziehungen:

Il -fe (¦¦¦*)HR
- zZm'j.(ä} + Aäj)

j
BHHBI

dq,= - ^^(...aj + Aa^-da*

wobei mit qf die vom e-ten Element an
die angeschlossenen Knoten übertragenen

Knotenkräfte bezeichnet werden.
Die ff stellen den Anteil der
Elementknotenkräfte dar, die mit den internen
Elementspannungen das Gleichgewicht
(näherungsweise) erfüllen und die in
der Regel mit Hilfe virtueller
Arbeitsprinzipien bestimmt werden. Im
linearelastischen Fall gilt

ff* - Xkfj.(aj+Aapi
wobei die fcy-Koeffizienten die
linearelastische Steifigkeitsmatrix bilden. Die
Koeffizienten mfj bilden die hier und
im FLOWERS-Programm als zeit- und
verschiebungsunabhängig angenommene

Elementmassenmatrix. Die pf
sind Lastkoeffizienten, die den Einfluss
von möglicherweise verschiebungsabhängigen,

im Element wirkenden externen

Lasten erfassen. Schliesslich bilden
die fcjy-Koeffizienten die sogenannte
tangente Steifigkeitsmatrix, welche die
aktuellen inkrementellen Beziehungen
zwischen infinitesimalen Elementkno¬

tenkräften und Elementknotenverschiebungen

angibt. Die konstanten mf.-
Koeffizienten sowie die vom momentanen

Verschiebungszi«|ind und oft von
der VerzerrungsgesoMchte abhängige
ffp keTlj- und pf-Koeffizienten müssen
von den Elementr©|ilinen bestimmt
und den Systemroutinen zur Weiterverarbeitung

ÜÄrmittelt werden. Alle Arten

von nichtlinearen Effekten (z.B.
auch bei Kontaktproblemen oder
verschiebungsabhängigen Lasten) sind mit
Hilfe entsprechender Elemente zu
behandeln. Die Systemroutinen müssen
ihrerseits die aktuellen Werte der aj- und
Aa.-Koeffizienten den Elementroutinen

übermitteln. Da in vielen Fällen
die Verformungsgeschichte eine Rolle
spielt, müssen zudem weitere
elementspezifische Daten, deren Umfang bei
grösseren Problemen sehr relevant sein
kann, auch noch übermittelt werden.
Diese Elementdaten werden von den
Elementroutinen erzeugt und verarbeitet,

müssen jedoch von den Systemroutinen

verwaltet werden.

Eine weitere wichtige Frage betrifft die
möglichen Lösungsprozeduren auf
Systemebene. Mit anderen Worten: Was
können die Systemroutinen mit den

von den Elementroutinen erhaltenen/f,
'4Sm&Tif und »»«-Koeffizienten anfangen?

FLOWERS kann heute statische
nichtlineare Analysen nach dem
modifizierten Newton-Raphson-Verfahren
(siehe z.B. [3]) sowie dynamische
nichtlineare Analysen wahlweise nach zwei
impliziten Algorithmen (Newmark-
und g-Methode siehe [4, 5]) sowie nach
dem expliziten Verfahren der zentralen
Differenzen (siehe z.B. [4]) durchführen.

Andere, ähnlich arbeitende
Algorithmen sind jedoch ohne weiteres
implementierbar. Der dafür nötige
Know-how dürfte allerdings grösser
sein als bei der Implementation neuer
Elementroutinen, da Eingriffe in die
Systemroutinen nötig sind.

Über statische nichtlineare
Analysen

Beim modifizierten Newton-Raphson-
Verfahren werden die äusseren Lasten,
der gegebenen Belastungsgeschichte
folgend, in Lastinkremente angebracht.
Ausgehend von einem bekannten
Gleichgewichtszustand werden iterativ
die Verschiebungsinkremente jeweils
gesucht, die dem nach dem Lastenin-
krement veränderten Gleichgewichtszustand

entsprechen. Dazu sind folgende

Schritte durchzuführen:

1. Vor dem ersten Schritt bzw. falls er¬

wünscht: Neubildung der globalen
tangenten Steifigkeitsmatrix für
den Schrittanfangszustand aus den

von den Elementroutinen übermittelten

fc^rKoeffizienten und
Dreieckszerlegung derselben.

2. Inkrement der äusseren Lasten
3. Bestimmung der dadurch

verursachten Verschiebungsinkremente
Aaj durch Lösung eines
entsprechenden globalen linearen
Gleichungssystems. Dabei wird als
Koeffizientenmatrix die zuletzt
gebildete und dreieckszerlegte
tangente Steifigkeitsmatrix verwendet.

4. Bestimmung der Elementknotenkräfte

q' -ff + »f durch die
Elementroutinen für den
Verschiebungszustand aj+ Aaj

5. Bestimmung der Residualknotenkräfte.

Diese entsprechen den
äusseren Knotenlasten, die zur Erfüllung

des Knotengleichgewichts
notwendig wären.

6. Kontrolle, ob Gleichgewicht und
damit Konvergenz erreicht ist. Dies
ist der Fall, wenn die Residualknotenkräfte

klein genug sind und die
Verschiebungen sich vom
vorhergehenden Iterationsschritt nicht
wesentlich geändert haben.

7. Ist Konvergenz erreicht, so werden
die Verschiebungen inkrementiert,
womit ein weiterer Lastschritt,
beginnend wahlweise vom Punkt 1.

oder 2., behandelt werden kann. Ist
Konvergenz nicht erreicht, dann:

8. Falls erwünscht: Neubildung der
tangenten Steifigkeitsmatrix für
den Verschiebungszustand ah- Aaj
und Dreieckszerlegung derselben.

9. Belastung des Systems mit den
Residualknotenkräften als fiktive äussere

Knotenlasten und Bestimmung

entsprechender
Verschiebungsinkremente, wofür wieder die
Lösung eines globalen linearen
Gleichungssystems notwendig ist.
Als Koeffizientenmatrix wird die
zuletzt gebildete und dreieckzerlegte

tangente Steifigkeitsmatrix
verwendet.

10. Inkrement der Verschiebungen
und Fortsetzung des Iterationsprozesses

ab Punkt 4.

Diese kurze Zusammenfassung soll vor
allem zeigen, welche die für die Anwendung

des modifizierten Newton-Raph-
son-Verfahrens wichtigsten Steuerpara-
meteVsind, nämlich:

1. Wahl geeigneter Lastinkremente
2. Wahl geeigneter Toleranzgrenzen
3. Wahl geeigneter Strategien für die

Neubildung der tangenten
Steifigkeitsmatrix.

Wenn es darum geht, eine Traglast zu
bestimmen, was bei statischen nichtlinearen

Problemen meistens der Fall ist,
müssen die Lastinkremente in der
Nähe der vorerst unbekannten Traglast,

wo Gleichgewicht und damit Kon-
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vergenz nicht mehr möglich sind, reduziert

werden. Bei inelastischem
Materialverhalten ist zudem die erhaltene
Lösung eine Funktion der Belastungsgeschichte

und damit auch der Grösse
der Lastinkremente. Es ist daraus
ersichtlich, dass die Wahl und die in vielen

Fällen nötige laufende Anpassung
der Lastinkremente ein heikles
Problem darstellen können.

Eine weitere wichtige Frage ist die nach
der Spezifikation der Toleranzgrenzen,
aus denen das Programm KonvergfBäp
feststellen kann. Zulässige Residualknotenkräfte

bzw. zulässige Maximalwerte
entsprechender, geeignet gewählter
Vektornormen stellen natürliche
Toleranzgrenzen dar. Die Residualknotenkräfte

entsprechen nämlich einer zufälligen

Streuung der ohnehin oft relativ
willkürlich festgelegten äusseren
Lasten dar. Weitere mögliche Toleranzgrenzen

betreffen die relativen Ver-
schiebungsinkremente zwischen zwei
nachfolgenden Iterationsschritten.

Eine letzte wichtige Frage betrifft die
Strategien zur Neubildung der tangenten

Steifigkeitsmatrix, deren
Koeffizienten das jeweils aktuelle Tragverhalten

des Systems beschreiben. Allgemein
kann man dazu nur sagen, dasss eine
Neubildung vorteilhaft oder sogar nötig
ist, wenn das Tragverhalten sich
wesentlich geändert hat. Ist dies nicht der
Fall, so soll man mit der alten
Steifigkeitsmatrix weiterfahren, womit der
Iterationsprozess zwar langsamer
konvergiert, der für die Bildung und die
Dreieckszerlegung der tangenten
Steifigkeitsmatrix notwendige Rechenaufwand

jedoch erspart bleibt.

Bei gewissen Computerprogrammen
wurde versucht, die oben erwähnten
Steuerungsparameter, oder wenigstens
einige davon, durch automatische
Prozeduren vom Programm selbst mehr
oder weniger «optimal» festlegen zu
lassen mit dem Ziel, den Programmbe-
nützer von schwierigen Entscheidungen

möglichst zu befreien. Wie aus den
folgenden Ausführungen klar werden
dürfte, wäre dies jedoch nicht FLOW-
ERS-Philosophie.

Über dynamische nichtlineare
Analysen

Eine dynamisch nichtlineare Analyse
verlangt die direkte Lösung der nichtlinearen

Bewegungsdifferentialgleichungen
in kleinen Zeitschritten, ausgehend

von einem bekannten Anfangszustand.
Dafür kann man entweder implizite
Algorithmen verwenden, die in jedem
Zeitschrift die Lösung eines quasistatischen

nichtlinearen Problems und folg¬

lich iterative Lösungen eines linearen
Gleichungssystems sowie Konvergenzkontrollen

verlangen, oder explizite
Algorithmen, die ohne Lösung von
Gleichungssystemen und ohne Konvergenzkontrollen

zum Ziel führen (siehe z.B.
[4]).

Auf Details kann hier nicht eingegangen

werden. Es sei nur bemerkt, dass

bei den impliziten Algorithmen sich
sehr ähnliche Fragen wie bei der
modifizierten Newton-Raphson-Methode
stellen. Statt Lastinkremente hat man
hier Zeitschritte, deren Länge aber
nach wie vor mit grosser Sorgfalt zu
wählen ist. Würde man eine lineare
dynamische Analyse mit einem impliziten
Algorithmus lösen, dann sollte man als

Zeitschrittlänge einen Bruchteil der
kürzesten Eigenperiode aller
Eigenschwingungen wählen, die von den
äusseren Lasten erregt werden. Dies hilft
allerdings wenig bei nichtlinearen
Problemen, wo von Eigenschwingungen
nicht die Rede sein kann. Es wäre nur
denkbar und in gewissen Fällen schon
aus Vergleichsgründen angebracht,
zuerst für ein ähnliches lineares System
eine modale Analyse und erst dann eine
nichtlineare Analyse durchzuführen.
Bei den impliziten Algorithmen stellen
sich zudem auch noch die Fragen nach
der Festlegung von Toleranzgrenzen
sowie nach der Strategie für die Neubildung

der tangenten Steifigkeitsmatrix.
Schliesslich ist zu erwähnen, dass
meistens auch noch weitere Steuerparameter

festzulegen sind, die u.U. ebenfalls
einen wichtigen Einfluss auf die Endresultate

haben können (z.B. ß und y bei
der Newmarks-Methode [7], g bei der
Q-Methode [5], a bei der a-Methode [8]
usw.).

Bei den expliziten Algorithmen entfallen

die Fragen betreffend Toleranzen
und Neubildung der tangenten
Steifigkeitsmatrix. Um so heikler ist dafür die
Frage nach der Zeitschrittlänge, weil
die expliziten Algorithmen nur bedingt
stabil sind. Bei linearen Anwendungen
kann man zeigen, dass aus Stabilitätsgründen

(nicht aus Genauigkeitsgründen)
die Zeitschritte grössenordnungs-

mässig so lang wie die kürzeste
Eigenperiode des diskreten Systems, d.h. in
vielen Fällen ausserordentlich kurz
sein müssen. Wieder hilft dies jedoch
wenig bei nichtlinearen Anwendungen.

Ob implizite oder explizite Algorithmen

vorteilhafter sind, hängt vom
Problem ab (siehe z.B. [4]). Darauf kann
hier nicht eingegangen werden, es ist
jedoch zu bemerken, dass FLOWERS
beide Möglichkeiten bietet. Es ist sogar
möglich, die nichtlinearen
Bewegungsdifferentialgleichungen zeitlich gestaffelt

abwechslungsweise nach der einen
oder nach der anderen Methode zu lö¬

sen. Nach dem gleichen Prinzip ist es

möglich, zuerst eine statische Analyse
durchzuführen (z.B. um den Einfluss
ständiger Lasten zu berücksichtigen)
und erst dann dynamische Lasten (z.B.
infolge Erdbeben) anzubringen.
Schliesslich ist noch die Möglichkeit zu
erwähnen, sogenannte «Restart-Punkte»

im Laufe des Iterationsprozesses zu
setzen, die Zeitpunkten der Belastungsgeschichte

entsprechen, in denen die
Berechnung nachträglich wieder
angefangen werden kann. Dies erlaubt auf
einfache Art und Weise die Wiederholung

der Berechnungen für die gleiche
Zeitspanne der Belastungsgeschichte,
jedoch mit anderen Schrittlängen,
anderen Toleranzen, anderen Strategien
oder sogar anderen Lösungsalgorithmen,

was zur Beurteilung der Zuverlässigkeit

der erhaltenen Resultate wesentlich

beitragen kann.

Interaktive Steuerung des
Rechenablaufes

Aus den bisherigen Ausführungen
dürften schon einige wichtige
Eigenschaften des Programms FLOWERS
ersichtlich sein. Seine in bezug auf
nichtlineare Berechnungen wohl markanteste

Eigenschaft ist jedoch die Möglichkeit,

den Rechenablauf vom
Bildschirmterminal aus in Echtzeit zu
verfolgen und zu steuern.

Dazu sind einige Vorbereitungen
notwendig, die zuerst kurz beschrieben
werden sollen. Eine nichtlineare
Berechnung mit dem Programm FLOWERS

erfolgt in mehreren Schritten. Diese

entsprechen unabhängigen Programmen,

sogenannten Moduln, die
nacheinander ausgeführt werden. In einem
ersten, für lineare und nichtlineare
Probleme weitgehend identischen Schritt
werden die globalen System- und
Lastdaten (Knotenkoordinaten, Elementin-
zidenzen, Lastkoeffizienten usw.)
sowie, je nach verwendetem Elementtyp,
die dafür notwendigen elementspezifischen

Daten (z.B. Materialbeiwerte)
eingegeben. Auf diesen bestimmen die
Elementroutinen der linearen sowie
auch der meisten nichtlinearen
Elementtypen die Matrixkoeffizienten, die
zur Durchführung linearer statischer
und dynamischer Analysen notwendig
sind (lokale linear-elastische und
geometrische Steifigkeits-, Massen-, Last-
und Spannungsmatrizen). Bei den
nichtlinearen Elementen werden
zudem noch weitere, später benötigte Daten

ermittelt und gespeichert. Es ist hier
zu bemerken, dass es ohne weiteres
möglich ist, lineare und nichtlineare
Elemente zu mischen. Dies entspricht
der Annahme, dass die nichtlinearen
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Effekte auf gewissen Tragwerksteilen
konzentriert sind (z.B. bei Kontaktproblemen),

während sich die übrigen
Tragswerksteile linear verhalten. Weil
die linearen Elemente mit einem viel
kleineren Aufwand als die nichtlinearen

verbunden sind, kann damit die
Rechenzeit u.U. merklich reduziert werden.

Nach diesem ersten Schritt ist es möglich

und in vielen Fällen empfehlenswert,

zuerst eine lineare Analyse
durchzuführen. Aus den dabei in numerischer

oder auch in graphischer Form
erhaltenen Resultaten (statische
Verschiebungen, Eigenfrequenzen und
Eigenvektoren, Spannungsverteilungen
usw.) kann man nämlich aufschlussreiche

Informationen für die nachfolgende
nichtlineare Analyse vor allem in be-

zug auf die Wahl der Zeitschritte und
der Toleranzgrenzen erhalten.

Bevor die eigentliche nichtlineare Analyse

anfangen kann, ist noch ein weiterer

Vorbereitungsschritt notwendig, bei
dem es um folgendes geht:

a. Spezifikation der erwünschten Ana-
lysistypen (statisch,- dynamisch
implizit nach verschiedenen Algorithmen,

dynamisch explizit). Dies ist
notwendig, weil die programminterne

Datenorganisation von den
möglichen Analysistypen abhängt.

b. Spezifikation der Belastungsgeschichte,

bestehend aus einem oder
mehreren mit unabhängigen
Zeitfunktionen multiplizierten Lastfällen

(bei statischen Problemen spielt
die Zeit die Rolle eines Lastparameters).

c. Nur bei dynamischen Analysen:
Spezifikation initialer Verschiebungen,
Geschwindigkeiten und Beschleunigungen

(diese können auch vom
Programm berechnet werden).

d. Nur bei dynamischen Analysen:
Spezifikation linearer Dämpfungskoeffizienten

(nichtlineare Dämpfungseffekte

sollen mittels entsprechender
Elemente erfasst werden).

e. Spezifikation der Vektornormen
(arithmetische Mittel, quadratische
Mittel oder Maximalwert) für
bestimmte Residualknotenkräfte oder
relative Verschiebungskomponenten,

welche für Konvergenzkontrollen
zu verwenden sind. Die

dazugehörigen numerischen Toleranzwerte
werden allerdings später spezifiziert.

f. Spezifikation der system- oder ele¬

mentbezogenen Variablen, deren
aktuelle numerische Werte im Laufe
des nachfolgenden Iterationsprozesses

auf dem Bildschirm erscheinen
können (Knotenverschiebungen,
Elementknotenkräfte, Elementspannungen,

Residualknotenkräfte,
Knotenlasten, Auflage reaktionen

usw.). Der Verlauf dieser Variablen
kann nachträglich von einem
speziellen Programmodul des FLOW-
ERS-Systems auch graphisch dargestellt

werden,
g. Spezifikation der system- oder ele¬

mentbezogenen Variablen, deren
aktuelle numerische Werte auf dem
Zeilendrucker ausgegeben werden
sollen.

Bei allen bisher erwähnten
Vorbereitungsschritten ist eine direkte Be-

nützerprogramm-Interaktion weder
möglich noch, unserer Ansicht nach,
notwendig (selbstverständlich können
und sollen aber auch beim FLOWERS-
Programm interaktive Vorlaufprogramme

zur Generierung der Elementmasche

verwendet werden). Ganz
anders liegen die Verhältnisse bei der
eigentlichen nichtlinearen Analyse,
deren Erfolg, wie man gesehen hat, von
der Wahl mehrerer, im voraus oft
schwer bestimmbarer Steuerungsparameter

abhängt.

Nach den erwähnten Vorbereitungsschritten

kommt man zur eigentlichen
nichtlinearen Analyse, die vom Pro-
grammbenützer mit Hilfe einer
gewöhnlichen alphanumerischen Bild-
schirmkonsole Schritt für Schritt
verfolgt und gesteuert werden kann. Während

der Berechnung schreibt das

Programm auf der Bildschirmkonsole (mit
24 Zeilen zu je 80 Zeichen) laufend
Informationen über den Fortgang des

Iterationsprozesses, bis die Programmausführung,

sei es zu vorgegebenen
Zeitpunkten, sei es, indem der Programm-
benützer einfach eine Taste drückt, am
Ende eines Iterationsschrittes unterbrochen

wird. Diese Unterbrechungen
können sowohl zur genauen Prüfung
der auf dem Bildschirm erscheinenden
Daten (diese ändern sich nämlich im
Laufe der Berechnung, vor allem bei
kleinen Problemen, manchmal blitzartig)

als auch zur Spezifikation folgender
Steuerungsparameter, wofür übersichtliche

«Menues» verwendet werden:

1. Änderung des Analysistyps (sta¬

tisch-dynamisch, implizit-explizit).
2. Festlegung der Anzahl und Länge

der zu berechnenden Zeitschritte
bis zur nächsten automatischen
Unterbrechung.

3. Spezifizierung bzw. Änderung der
Toleranzwerte für die vorher
spezifizierten Konvergenzkriterien (siehe

oben Punkt e) oder Aktivie-
rung/Desaktivierung derselben.
Auf dem Bildschirm werden dann
mit Hilfe von Balkendiagrammen
entsprechende prozentuelle Werte
laufend gezeigt (> 100% ~ Konvergenz

nicht erfüllt, < 100% ~
Konvergenz erfüllt), womit der
Programmbenutzer das Konvergenz¬

verhalten seines Systems mit einem
Blick beurteilen kann.

4. Spezifizierung der Strategie für die
Neubildung der tangenten
Steifigkeitsmatrix (z.B. alle «n»
Zeitschritte oder in jedem Zeitschritt
nach «n» erfolglosen Iterationen).

5. Spezifizierung der system- oder ele¬

mentbezogenen Variablen (siehe
oben Punkt f), deren am Ende der
drei letzten Iterationen berechneten

Werte auf dem Bildschirm
erscheinen sollen (höchstens 12 Variablen;

es wäre allerdings schwierig,
den zeitlichen Verlauf von mehr als
12 Variablen in Echtzeit zu verfolgen!).

6. Einmalige, momentane Ausgabe al¬

ler nach Punkt f definierten
System- und elementbezogenen
Variablen.

7. Einmalige, momentane Ausgabe
auf dem Bildschirm oder auf dem
Zeilendrucker von elementspezifischen

Detailinformationen für
bestimmte Elemente. Diese Art von
Ausgabe ist nicht Sache der
Systemroutinen, sondern der Elementroutinen,

die dafür speziell angerufen
werden. Der Programmierer von
Elementroutinen, der sonst an
strikte Konventionen gebunden ist,
hat damit die Möglichkeit, nach
eigener Darstellungsart aktuelle
elementspezifische Informationen
dem Programmbenützer mitzuteilen.

8. Spezifizierung sonstiger Daten, die
auf dem Zeilendrucker ausgegeben
werden sollen.

9. Rettung aller Knotenverschiebungen
der momentanen Systemkonfiguration.

Diese können nachträglich

von einem anderen Programmodul

des FLOWERS-Systems zur
graphischen Darstellung der
verformten Systemkonfiguration
verwendet werden. Es wäre denkbar,
aus mehreren solcher Bilder eine
Art Trickfilm über die
Verformungsgeschichte des Systems
herzustellen.

10. Spezifizierung bzw. Änderimg be¬

stimmter, je nach Elementtyp
speziell definierter Parameter, die von
den Elementroutinen dann verarbeitet

werden. Damit besteht nicht
nur die unter Punkt 7. erwähnte
Möglichkeit, dass die Elementroutinen

mit dem Programmbenützer
direkt kommunizieren, sondern
der umgekehrte Weg ist auch noch
offen.

11. Definition des aktuellen Zeitpunk¬
tes der Belastungsgeschichte als
möglicher «Restart-Punkt» bzw.
Wiederholung der Berechnungen
beginnend von einem früher
definierten Restart-Punkt.
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Schliesslich hat der Programmbenützer
nach jeder Unterbrechung die Möglichkeit,

entweder die Berechnung fortzusetzen

oder die Programmausführung
zu beenden. In diesem Fall hat er
Gelegenheit, gewisse Zwischenresultate, wie
oben erwähnt, in graphischer Form
auszugeben oder die gedruckten
Ausgaberesultate in Ruhe zu studieren und
später in einem weiteren Programmlauf

die Berechnungen von einem der
definierten Restart-Punkte fortzusetzen.

Bei einer derartigen interaktiven
Arbeitsweise stellt sich sofort die Frage
nach den unterschiedlichen
Arbeitsgeschwindigkeiten des Computers und des

vor dem Bildschirm sitzenden Pro-
grammbenützers. Unproblematisch ist
der Fall, bei dem der Computer zu
schnell rechnet, da die Programmausführung

jederzeit mit einem Tastendruck

unterbrochen werden kann, um
den Bildschirminhalt in Ruhe
anzuschauen. Bei grösseren Problemen und
vor allem bei dynamischen Analysen,
die sehr viele Zeitschritte verlangen, ist
es aber durchaus denkbar, dass die Pro-
grammausführung unerträglich langsam

wird. Dies hängt selbstverständlich
auch von der Leistungsfähigkeit und
von der sonstigen Auslastung des
verwendeten Computers ab (das
Programm wird auf der DEC-10-Anlage
des Zentrums für Interaktives Rechnen
der ETHZ entwickelt). Weil das

Programm sich noch in der Testphase
befindet, sind unsere diesbezüglichen
Erfahrungen bis jetzt zwar ermutigend,
jedoch noch nicht ganz aussagekräftig.
Dazu aber zwei Bemerkungen. Die
Betriebssysteme aller moderner Computer
erlauben die interaktive Arbeitsweise
zu simulieren, in dem die vom
Programm erwarteten Eingabedaten nicht
von der Benützerkonsole, sondern von
einer früher vorbereiteten Datei gelesen

werden. Eine Programmausführung,
z.B. während der Nacht, ohne

physische Präsenz des Programmbenüt-
zers und nur mit Zeilendruckerausgabe
ist deswegen möglich.
Die zweite Bemerkung betrifft die Art
der Modellbildung, wenn es darum
geht, das nichtlineare Verhalten
bestimmter Tragkonstruktionen unter ex¬

tremen Lasteinwirkungen abzuklären.
Zu oft werden in der Praxis nichtlineare

Berechnungen mit einem
Rechenaufwand durchgeführt, der in keinem
Verhältnis mit den Unsicherheiten der
zu Grunde gelegten last- und
materialtechnischen Annahmen steht. Weil es
dabei meistens um das grundsätzliche,
globale Tragverhalten und folglich
eigentlich nur um grobe quantitative
Aussagen geht, sollte eher die Uber-
blickbarkeit des verwendeten
mathematischen Modells als dessen (oft
vorgetäuschte) Genauigkeit im Vordergrund

stehen. In vielen Fällen können
nämlich schon relativ einfache Modelle
zum Ziel führen, deren Wahl allerdings
ein tiefgreifendes Verständnis der
prinzipiellen Tragwirkung der untersuchten

Konstruktion verlangt. Das hier
beschriebene Programmsystem, das
seinen Benutzer zwingt, jeden einzelnen
Rechenschritt genau zu verfolgen, dürfte

diesbezüglich einen wesentlichen
Beitrag leisten können.

Schlussbemerkungen

Aus diesen Ausführungen sollten viele
der vom Programm FLOWERS gebotenen

Möglichkeiten ersichtlich sein.
Einige Fragen bleiben allerdings noch
offen. Die erste betrifft die nichtlinearen

Elemente, die dem Programmbenützer
zur Verfügung stehen, und damit

die konkreten Probleme, die sich lösen
lassen. Eine Reihe von nichtlinearen
Elementroutinen für Rahmen-,
Fachwerk-, Kontakt-, Platten- und
Schalenelemente wird z.Z. entwickelt. Andere
werden folgen, worauf an einer anderen

Stelle eingegangen werden soll.
Hier ist vor allem zu betonen, dass

FLOWERS ein beliebig erweiterbares
Forschungsinstrument werden soll, in
dem viele, vom Forscher mit sehr
verschiedenen Zielsetzungen entwickelte
Elemente aufgenommen werden können.

Dazu ist noch zu bemerken, dass
dies auch für manche nichtkontinu-
umsmechanischen, stationären und
instationären Feldprobleme, die sich
nach der FE-Methode behandeln
lassen, zutrifft.
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Eine weitere Frage betrifft die Verfügbarkeit

des Programms innerhalb und
ausserhalb der ETHZ. Für Lehrzwecke
wird FLOWERS bzw. dessen lineare
Programmteile seit zwei Jahren zu
Übungszwecken von den
Bauingenieurstudenten des 7. Semesters
verwendet. Es ist zudem geplant, das

Programm innerhalb einer an der Abteilung

für Informatik neu einzuführenden

Lehrveranstaltung einzusetzen.
Für Ingenieure aus der Praxis und für
Assistenten und Forscher der ETHZ
wird im Laufe des Sommersemesters
1983 der Fortbildungskurs «Lineare
und nichtlineare Finite-Element-Me-
thoden» durchgeführt. Dabei werden
die Kursteilnehmer neben der Behandlung

theoretischer Fragen die Möglichkeit

haben, das Programm FLOWERS
von Bildschirmterminals aus im Time-
Sharing-Betrieb bei der Lösung von
Übungsaufgaben zu verwenden.

Adresse des Verfassers: Prof. Dr. E. Anderheggen,
Institut für Informatik, ETH-Hönggerberg, 8093

Zürich.
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