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Probabilistische Methoden bei
Stabilitéitsproblemen in der Geotechnik

Praktische Anwendung und Beispiele

Von Hans Georg Locher, Bern

Methoden der Wahrscheinlichkeitsrechnung sind fiir den Geotechnik-Ingenieur durchaus
brauchbar. In Erginzung zum gebriuchlichen Sicherheitsgrad ermoglichen sie eine zuverlis-
sigere Beurteilung der B6schungs- und Baugrubenstabilitit, indem sie weitere Resultate wie
z.B. die Bruchwahrscheinlichkeit ergeben. Im vorliegenden Artikel werden die mathemati-
schen Grundlagen und drei Anwendungsbeispiele gezeigt.

Einleitung

Seit ungefidhr einem Jahrzehnt werden
in der Geotechnik probabilistische Me-
thoden angewendet. Im Juni 1983 wird
in Florenz der 4. Kongress ICASP (In-
ternational Conference on Application
of Statics and Probability in Soil and
Structural Engineering) stattfinden, wo
die Geotechnik und deren Stabilitits-
probleme einen wichtigen Platz einneh-
men. Ferner sind zu diesem Thema ver-
schiedene Biicher erschienen [1-6].

Bisher wurde zur Beurteilung der Stabi-
litdit von B&schungen und Baugruben
allein auf den Sicherheitsgrad F gegen-
liber dem Auftreten eines Bruches
lings einer angenommenen Gleitfliche
abgestellt.

Fo X
12

wobei:

1r = mittlere Scherfestigkeit des
Bodens

t = wirkende Schubspannung

Da die Grdssen, die in diese Rechnung
eingehen - Raumgewicht, Reibungs-
winkel, Kohiésion, dussere Lasten, Stro-
mungsdriicke -, nicht genau bekannt
sind, sondern eine gewisse Streubreite
aufweisen, so hat auch das Resultat, die
Sicherheit F, eine Streuung.

Die Grosse der Streuung ist charakteri-
siert durch die Standardabweichung.
Uber die Form der statistischen Vertei-
lung miissen zweckentsprechende An-
nahmen getroffen werden. In der Natur
sind sehr viele zuféllig streuende Grds-
sen anndhernd nach der Gaussschen
Glockenkurve verteilt.

Ist die Verteilung angenommen, so
kann daraus die Wahrscheinlichkeit
des Eintretens des Bruches (Sicherheit
F=1) berechnet werden. Es ist nahelie-
gend, dass z.B. bei grosserer Streuung,
aber gleicher Sicherheit, eine grossere
Bruchwahrscheinlichkeit resultiert,
oder dass zur Erreichung einer gleichen

Bruchwahrscheinlichkeit bei grdsserer
Streuung wesentlich hohere Festigkei-
ten notig sind. Der Sicherheitsgrad al-
lein ist daher ein ungeniigendes Mass
zur Beurteilung des Verhaltens einer
Boschung.

Prof. M. E. Harr hat anldsslich eines
Kolloquiums an der EPFL im Januar
1982 die Methoden vorgestellt, die zu
dieser Art Beurteilung verwendet wer-
den konnen.

Im folgenden ist die grundlegende
Theorie der Wahrscheinlichkeitsrech-

Tabelle 1.  Eingabedaten fiir die Stabilitdtsrechnung

nung kurz dargestellt. Anschliessend
werden Methoden diskutiert, die erlau-
ben, aus den Streuungen der Grund-
grossen die Streuung des Sicherheitsgra-
des Fauf einfache Weise zu berechnen.
Sodann werden anhand von drei prakti-
schen Beispielen einige Schlussfolge-
rungen gezogen.

Bild 1 zeigt den prinzipiellen Rech-
nungsgang. Die Eingabegrissen werden
durch ihre Mittelwerte und Standard-
abweichungen charakterisiert. Zur
Vereinfachung wird in den Beispielen
bei allen variablen Grossen eine Wahr-
scheinlichkeitsverteilung nach der
Gaussschen Glockenkurve angenom-
men. Mit geringem rechnerischem
Mehraufwand koénnen jedoch andere
Verteilungen, wie z.B. die Betavertei-
lungen, verwendet werden.

Wiéhrend die Kohésion im allgemeinen
eine grosse, der Reibungswinkel eine
mittlere Streuung aufweisen, variieren
die Nutzlasten und Raumgewichte
meist in so engem Rahmen, dass sie als
Konstante eingesetzt werden kdnnen.
Aus langjahriger Erfahrung gibt Harr
[1] die in Tabelle 1 aufgefiithrten Varia-
tionskoeffizienten an.

Grisse charaksrerisiert durch Variationskoeffizient
Mittel Standard- Bereich Mittel
abweichung % %
Raumgewicht Y Sy 05- 4 2
Reibungswinkel [0 Se 6 - 14 10
Kohision = Se 29 - 50 40
Nutzlast P Sp von Fall zu Fall
Bild 1. Berechnungsgang einer Stabilitdtsrechnung mit probabilistischer Auswertung
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\ | | |
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| fy(x)

| X

Bild 2. Direkte analytische Methode fiir die Be-
rechnung der Wahrscheinlichkeitsverteilung einer
Funktion

Die Berechnung der Sicherheit wird mit
einer der bekannten Berechnungsme-
thoden (Fellenius, Bishop, Janbu usw.)
durchgefiihrt, wobei aber neben dem
Mittelwert der Sicherheit F auch die
sich aus den Streuungen der Eingangs-
werte S, und S, ergebende Standardab-
weichung des Sicherheitsgrades Sy be-
rechnet werden soll. Mit Fund Sykann
anhand von Tabellen die Bruchwahr-
scheinlichkeit P[F £ 1,0] bestimmt wer-
den (siehe Harr[1]).

Prinzip der probabilistischen
Rechnungsmethode

Die Berechnung wird in drei Schritte
zerlegt, die auf Bild 1 schematisch dar-
gestellt sind:

1. Annahme der Wahrscheinlichkeits-
verteilung aller Eingabegrossen (Ko-
hésion, Reibungswinkel, Raumge-
wicht usw.) fiir die Berechnung.

2. Schitzung der Wahrscheinlichkeits-
verteilung der betrachteten Funk-
tion (Setzung, Tragfahigkeit eines
Fundaments, Sicherheitsgrad einer
Boschung).

3. Berechnung der Wahrscheinlich-
keit, dass diese Funktion einen Wert
annimmt, der kleiner (oder, je nach
Problem, grosser) als ein zulédssiger
Wert ist.

Wahrscheinlichkeitsverteilung der
Eingabegrossen

Grundsitzlich sind alle verwendeten
Grossen Zufallsvariablen. Um den Um-
fang der Berechnungen in verniinfti-
gem Rahmen zu halten, lohnt es sich
aber, nur diejenigen Grossen als varia-
bel zu betrachten, deren Streuung einen
massgebenden Einfluss auf das Resultat
hat. Grossen mit kleiner Streuung, wie
z.B. das Raumgewicht, kénnen meist
ohne Schaden konstant angenommen
werden.

Im Prinzip sollte die Streuung einer va-
riablen Grosse statistisch mit Hilfe
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einer betrdchtlichen Zahl von Messun-
gen bestimmt werden. In der Praxis ist
dies aber selten moglich. Man be-
schrinkt sich daher auf Schdtzungen
der Mittelwerte und Streuungen an-
hand der wenigen Laborresultate, der
personlichen Erfahrung und der Werte
aus der geotechnischen Literatur (Harr
[1], Recordon und Desponds [2]). Aus
langjahriger Erfahrung gefundene Va-
riationskoeffizienten nach Harr[1] sind
in Tabelle 1 zusammengestellt.

Fiir die Mittelwerte entspricht dieses
Vorgehen den bisherigen Gepflogen-
heiten. Fiir die Streuung ist es, wenn
auch mager, sicher besser als die will-
kiirliche Annahme, die Streuung sei
Null.

Wahrscheinlichkeitsverteilung der
betrachteten Funktion

Die Aufgabe ist, die Wahrscheinlich-
keitsverteilung einer Funktion

y=F(x1, X2, ...r Xn)

zu berechnen, wenn von den Variablen
x; die Wahrscheinlichkeitsverteilung
oder mindestens die ersten zwei Mo-
mente «Mittelwert» und «Varianz» be-
kannt sind. Die beiden folgenden Me-
thoden erlauben, diese Wahrscheinlich-
keitsverteilung direkt und vollstdndig
zu bestimmen.

- Direkte analytische Methode

In sehr einfachen Féllen ist es mog-
lich, aus dem mathematischen Aus-
druck fiir die Wahrscheinlichkeits-
verteilung f(x;) jeder Variablen die
Verteilung f(y ) der Funktion zu be-
rechnen (Benjamin and Cornell [3],
Ang and Tang [4]). Ein Beispiel zeigt
Bild 2:

Funktion: y=a-x+b
Tune: f(v) = —L_. ¢ [2=b
Verteilung: f (y) Ial f ( - )

- Numerische Simulation: Monte Car-
lo-Methode

Mit Computerhilfe wird eine grosse
Zahl von Berechnungen ausgefiihrt
(meist mehrere Hundert!). Fiir die
Eingabegrossen werden zuféllig ge-
withlte Werte verwendet, welche sta-
tistisch nach der entsprechenden
Verteilung streuen. An der grossen
Resultatzahl kann nun wieder stati-
stisch die Wahrscheinlichkeitsvertei-
lung bestimmt werden.

Beide Methoden setzen voraus, dass die
Wahrscheinlichkeitsverteilungen  der
Ausgangsgrossen  vollstdandig bekannt
sind. Die direkte Methode ist leider nur
fiir sehr einfache mathematische Funk-
tionen anwendbar, wihrend die Monte
Carlo-Methode ausserordentlich gros-
sen Rechenaufwand erfordert.

Im Gegensatz dazu bendtigen die bei-
den nachstehend beschriebenen Metho-
den nur die Kenntnis der ersten zwei
Momente, d.h. des Mittelwerts und der
Varianz, und sind somit allgemein und
mit wesentlich weniger Aufwand ver-
wendbar.

- Mit Taylor-Reihenentwicklungen

Mit Hilfe von Reihenentwicklungen
gelingt es, fiir einfachere mathemati-
sche Funktionen geschlossene For-
meln fiir Mittelwert und Standardab-
weichung der Funktion aufzustellen.
Die nachfolgenden Formeln entste-
hen, wenn in den Reihenentwicklun-
gen nur konstante, lineare und qua-
dratische Glieder berticksichtigt wer-
den:

Gegeben sei eine Funktion mit N un-
abhdngigen Variablen
Y= (%15 %25 <5, %N)

Bei jeder einzelnen Variablen be-
zeichnet man

als Mittelwert i, W, ... LN
als Standard-
abweichung S1, 82, ...SN

Fiir die Funktion ergibt sich dann:
- der Mittelwert y

- die Varianz S?

- die Standardabweichung S,

(la) y=F(w,p2, ... kn) +

N
13 |35 o]
< =1 i
o [faE )
(1) Si= X |5 -
=Ml !
(Ie) S,=+VS}?

Voraussetzung fiir die Anwendung
dieser Formeln ist, dass die Funktion
y bekannt und stetig ist und zweimal
abgeleitet werden kann.

Im folgenden Kapitel wird die An-
wendung dieser Formeln am Beispiel
1 gezeigt.

- Methode Rosenblueth

Die von Rosenblueth [6] entwickelte
Methode erlaubt, die ersten zwei Mo-
mente, d.h. Mittelwert und Varianz
einer Funktion y = F(x;), aus denje-
nigen der Variablen zu bestimmen,
auch wenn die Funktion nicht ableit-
bar, ja sogar, wenn sie nicht in ma-
thematischer Form bekannt ist. Sie
beruht auf der Idee, die Wahrschein-
lichkeitsverteilung einer kontinuier-
lichen Zufallsvariablen so durch die
konzentrierte Verteilung einer dis-
kreten Variablen P, und P_ zu erset-
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zen, dass die ersten zwei Momente B
dieser Variablen gleich herauskom- fy (X) b
men (Bild 3). Dies entspricht der in
der Statik gebrduchlichen Idee, eine Y(X)

verteilte Belastung durch zwei Kréfte
zu ersetzen, so dass die Resultierende
und die Drehmomente um einen fe-
sten Punkt die gleichen bleiben.

In Bild 3 ist eine Wahrscheinlich-
keitsverteilung f(x) dargestellt. Thre
Resultierende ist = 1 (Gewissheit)
und liegt im Punkt X. Sie wird durch
zwei konzentrierte Wahrscheinlich-
keiten P_ und P, ersetzt. Rosen-
blueth stellte folgende 4 Gleichungen
auf:

P.+P.=1 (Gewissheit)
1. Moment (Mittelwert)
P—'X_+P+'x+=.\_’
2 Moment (Varianz)
(X2 = H2+ Py - (xy —X)2= 87

3. Moment

- (x- = \—')3 +Py . (.\'+ = .\-')3 =
=B - S3

(B; = Dissimetrie-Koeffizient)

Sie konnen aufgeldst werden, und es
ergeben sich folgende Formeln:

s’
(2a) P, =
%[
2
(2b)s =P = 1= Py
(2¢) xi= X% SeVP./ P
(2d) x-=x—-Sy-VP-/Ps

Im Fall einer symmetrischen Vertei-
lung wird das 3. Moment = 0, also
Bi = 0, und die Formeln (2) vereinfa-
chen sich wie folgt:

(3a) P.= P_= %
(Bb) Biy= T - 5e
Be) e =% =Sy

Wir kénnen nun dasselbe Konzept
auf die Verteilung einer Funktion
von Zufallsvariablen anwenden. Bild
4 zeigt als Beispiel eine Funktion mit
einer Variablen, die nicht einmal in
mathematischer Form bekannt sein
muss. Von den Punkten x_ und x,
aus konnen ohne weiteres, z.B. gra-
phisch, die Punkte y_ und y, konstru-
iert werden, woraus sich die Varianz
S? und die Standardabweichung S,
der Funktion y ergeben. Im nachfol-
genden Beispiel 3 wurde diese Me-
thode beniitzt, da nur der Reibungs-
winkel ¢ als variabel angenommen
wurde.

Bild 3. Methode Rosenblueth. Ersatz der kontinu-
ierlichen Wahrscheinlichkeitsverteilung durch zwei
diskrete Wahrscheinlichkeiten P, und P_

Y 1y
Y+/
L
| X X*
| '

X- X+

Bild4. Anwendung der Methode Rosenblueth auf
eine Funktion y (x) mit einer Variablen

Berechnungsmodell:

Fellenius, Bishop, Janbu, usw.

variabel: @ S konstant: P, S,y

®
(o Se

Randwerte Sicherheit F?
++ T+ S,T+S, Fli F2,
+= +8,0- 5, Fiy FE_
-+ =5.,5-S, F_. F2,
—= =85,5-S, F__ R

IF 3 P
F=L 9 sle s (lzf)z
4 F= % 4

Bild 5.

Fiir zwei Variable ergeben sich vier
Permutationen der Werte (X; = S)).
Bild 5 zeigt den Gang der Berech-
nung am Beispiel einer Stabilitdts-
rechnung, wobei die Kohésion ¢ und
der Reibungswinkel ¢ als Zufallsva-
riable, die iibrigen Grdssen als Kon-
stante betrachtet werden.

Fiir jede Kombination wird mit der
geeigneten  Rechenmethode ein
Sicherheitsfaktor F, ., F,_ usw. aus-
gerechnet. Nach Rosenblueth ist nun

F = Mittelwertder Fy,, Fs_ ...
usw.

Sr= Standardabweichung der
Fiy+ Fi_usw.

Wird mit Rechenprogrammen gear-
beitet, so ist es meist ein leichtes, die
Rechnung mehrmals durchzufiithren
und damit als zusétzliches Resultat
die Streuung des Sicherheitsgrades zu
erhalten.

Im nachfolgenden Beispiel 2 wurden
die Kohiésion ¢ und der Reibungs-
winkel ¢ als Variable betrachtet und
die Berechnung daher viermal
durchgefiihrt.

Im allgemeinen Fall einer Funktion
mit mehreren Variablen Y = F (x;,
X2, ..., X,;) missen 2" Permutationen
beriicksichtigt werden, und die allge-
meine Formel wird

X

(4a) ¥ =E[y]= Z [Pijk...n
I

* Vijk... n]

Anwendung der Methode Rosenblueth auf Stabilitdtsrechnungen (zwei Variable)

(4b) S? =E[y4 - (E[y])

wobei E [y] bzw. E[y?] die erwarteten
Werte von y bzw. y? bedeuten. Die
Glieder yjjc., sind die Punktabschét-
zungen von y, erhalten fiir alle Per-
mutationen der Punktabschidtzungen
jeder Einzelvariablen. Die Glieder
Py, sind die entsprechenden Wahr-
scheinlichkeiten.

Die beiden zuletzt genannten Metho-
den erlauben, Mittelwert und Varianz
einer untersuchten Funktion auf einfa-
che Weise zu bestimmen. Um die ge-
suchte Wahrscheinlichkeit zu berech-
nen, braucht es zusétzlich eine Annah-
me iiber die Form der Wahrscheinlich-
keitsverteilung.

Am einfachsten ist die Annahme einer
Normalverteilung oder Gaussschen Ver-
teilung. Sie steht zwar meist im Wider-
spruch mit der physikalischen Bedeu-
tung der Variablen, denn die Grossen
variieren bis = . Wenn die Variations-
koeffizienten relativ gering und die
Verteilungen einigermassen symme-
trisch sind, flihrt sie in der Praxis je-
doch trotzdem zu brauchbaren Resulta-
ten. In den drei Beispielen wurden
durchwegs Gausssche Verteilungen an-
genommen. Allgemeiner ist die Beta-
Verteilung (Typ I der Klassifikation
von Pearson, Harr[1]), welche sehr an-
passungsfiahig ist. Die Verteilungen
sind endlich begrenzt. Zu ihrer Bestim-
mung bendtigt man daher neben Mit-
telwert und Varianz auch die obere und
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untere Begrenzung. Diese kdnnen nach
einem oder mehreren der folgenden
Kriterien gewihlt werden:

- Definitionsbereich der Funktion im
physikalischen Sinn (z.B. die Kohé-
sion kann nicht kleiner als Null sein).

- Werte der Funktion, die sich aus den
Begrenzungswerten der Variablen er-
geben.

- Wahrscheinliche Begrenzungswerte
nach der Ungleichheit von Cheby-
shev oder Gauss. Meist fiihren diese
Kriterien dazu, dass die Grenzen in
einem Abstand von 3-4mal die Stan-
dardabweichung beidseitig des Mit-
telwerts angenommen werden.

Die Gausssche Verteilung ist ein Spe-
zialfall der Beta-Verteilungen.

Bild 6.  Miihle Quasseem. Saudi-Arabien. Getrei-
desilos der ersten Etappe und Maschinenhausbau-
grube der zweiten Etappe (Photo Baustelle)

Bild 7.

Berechnung der Wahrscheinlichkeit

Die Wahrscheinlichkeit, dass ein Ereig-
nis eintritt, ist, wie in Bild 1 angedeutet,
dargestellt durch die Fldche unterhalb
der Wahrscheinlichkeitsverteilung. Fir
die Gausssche Normalverteilung gibt es
dafiir Tabellen, z.B. in Harr [1]. Die
Beta-Verteilungen sind komplexer.
Kurventafeln fiir eine einfache Aus-
wertung sind ebenfalls in Harr [1] zu
finden. Ferner wurden Rechenpro-
gramme entwickelt, beispielsweise am
Erdbaulaboratorium der EPFL in Lau-
sanne (Bourdeau [7]).

Anwendungen

An drei Beispielen soll gezeigt werden,
wie man bei Stabilitdtsuntersuchungen
mit Hilfe der probabilistischen Metho-
den mit nur geringem Mehraufwand
wesentliche zusdtzliche Informationen
gewinnen kann.

Beispiel 1: Tiefe Baugrube fiir die
Miihle Quasseem, Saudiarabien

In einer Anlage von iiber 30 m hohen
Getreidesilos liegt, unmittelbar neben
den auf der Geldndeoberfldche fundier-
ten Silos, das Maschinenhaus mit einer
8 m tiefen Baugrube (Bild 6). Aus
Griinden des Bauprogramms konnte
mit dem Bau der Silos nicht gewartet
werden, bis das Maschinenhaus fertig-
gestellt und die Boschungen hinterfiillt
waren.

Bild 7 zeigt einen Schnitt durch die
Baugrube. Der Untergrund besteht aus
einer 4 bis 6 m starken Schicht von
tiberkonsolidiertem Mergel. Dariiber
und darunter liegen stark verwitterte

Miihle Quasseem. Saudi-Arabien. Stabilitdt der Maschinenhausbaugrube

Kalksteine. Die Scherfestigkeit des
Mergels wurde mit einer Serie von 20
einfachen Druckversuchen gemessen,
aus welchen der Mittelwert ¢ und die
Standardabweichung S, berechnet wur-
den. Der Variationskoeffizient ist mit
31% hoch, aber nicht ungewdhnlich.
Fiir die Last p des leeren Silos wurden
giinstige und unglinstige Annahmen ge-
troffen.

Auf demselben Bild 7 ist die Berech-
nung mit einer einfachen geradlinigen
Bruchfliche dargestellt. Da die Formel
fiir die Sicherheit partielle Ableitungen
erlaubt, haben wir die Methode mit
Taylorreihen nach den Formeln (1) ver-
wendet.

Nach Harr[1] kann die Sicherheit einer
senkrechten Béschung wie folgt berech-
net werden:
Ayt Nip
F= Fui il

wobei ¢ die Kohiésion, p die Auflast auf
der Boschung, y das Raumgewicht des
Bodens und H die Béschungshdhe be-
deuten. Fir ¢ = 0 ist N, =~ 4. Werden ¢
und p als Variable mit den Standardab-
weichungen S, und S, betrachtet, so er-
geben sich folgende partielle Ableitun-

gen:
9F _1-Ns oF _ _ 1
oc y-H ap vy-H
?F  *F
oc2 apZ_O

Die Formeln (1) ergeben

- den Mittelwert F

- die Varianz S}

- die Standardabweichung Sr

Fe C- Ns—é

= +0

Sicherheir:

Standardabweichung:

(=0 — Ny=4)

Stabilitit des Erdkeils (ebene Gleitfliche)

Eingabe Mittel  Standard-
abweichung

Kohision ¢ [t/m? 16,8 5.3

Nutzlast p [t/m? 8 1

Raumgewicht y [t/m’] 2 konstant

Ny
Sr=\/(y.H'

Kalkstein

1,0-F _

z =

y =0479

P[F<1,01=0,5 — y = 0,021 oder 2,1%

= 1,775 + 0,004 = 1,33

Bruchwahrscheinlichkeit:

1,0=3.7

Nach Harr (Tabelle A-3) folgt:

138 el
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N NS 2 1 2
Sg= (Y—_H.s(.) + (—Y_H.sp)
SF= \/S,_z-

Die Streuung der Sicherheit Sp (siehe
Bild 7) ist praktisch vollstindig durch
die hohe Streuung der Kohédsion be-
dingt.

Trotz der hohen mittleren Sicherheit
von F = 3,7 gab die Baugrube doch zu
Bedenken Anlass, da sich aus der Streu-
ung von F eine Bruchwahrscheinlich-
keit von P[F < 1,0] = 2,1% ergab. Dies
gab Anlass dazu, den Bauvorgang ab-
zudndern und doch wenigstens das un-
terste Stockwerk des Maschinenhauses
vor dem Bau des Silos zu erstellen. Da-
mit konnte der Bauvorgang wesentlich
sicherer gestaltet werden.

Beispiel 2: Kriechhang bei der neuen
Lombachbriicke an der Habkernstrasse

Unterhalb des Dorfes Habkern bei In-
terlaken quert die Staatsstrasse den
Lombach auf einer neuen Briicke, wel-
che im selben Heft beschrieben wird [8].
Die stidliche Zufahrt der Briicke fiihrt
iiber einen Lehnenviadukt ldngs eines
Hanges, wo weichere Flyschgesteine
sich in einer langsamen Bewegung von
mehreren Zentimetern pro Jahr befin-
den (Bild 8).

Obwohl die Hanganschnitte geringfi-
gig sind, wurde versucht, mit Hilfe von
verankerten Schéichten die Stabilitits-
verhéltnisse zu verbessern.

Bild 9 stellt die Untersuchungen an
einer der gepriiften Gleitflichen dar.
Da die Form der Gleitfliche wegen der
Felsverhéltnisse und der Anker unre-
gelmissig gewihlt wurde, haben wir die
Rechenmethode von Janbu verwendet.
Die Mittelwerte der Scherparameter ¢
und ¢ wurden dem geologischen Gut-
achten entnommen, die Streuungen ha-
ben wir nach den Angaben in Tabelle 1
geschitzt.

Die Berechnung der Sicherheit und de-
ren Streuung erfolgt geméss Bild 9 vier-

mal fir die Randwerte = S, und ¢ +
S. nach der Methode Rosenblueth.
Unter der Annahme, die Sicherheit
habe eine Wahrscheinlichkeitsvertei-
lung nach der Gaussschen Glockenkur-
ve, ergibt sich bei einem durchschnittli-
chen Sicherheitsgrad von F = 1,25 und
einer Standardabweichung von Sy =
0,15 eine Bruchwahrscheinlichkeit von
4,8%. Eine Nachrechnung mit einer
Beta-Verteilung ergab praktisch das
gleiche Resultat.

Fiir einen Kriechhang erstaunt dieses
Resultat keineswegs. Es zeigt, dass dem
Hang gegentiiber vorher eine etwas ver-
besserte Stabilitdt gegeben werden
konnte, dass aber die Kriechtendenz an-
dauern diirfte. Daraus wurden folgende
Schliisse gezogen:

- Die Vorspannanker missen nach-
stellbar sein, damit sie der Entwick-
lung angepasst werden konnen.

- Die Stiitzwand muss flexibel sein, um
die Bewegungen aufnehmen zu kon-
nen.

- Eine umfassende Messung und Kon-
trolle der Bewegungen und der Anker-
krifte sind notwendig.

Nach einem Jahr zeigte sich, dass die

Bewegungen der Fixpunkte oberhalb
der Wand von vorher etwa 10 cm/Jahr
auf wenige cm/Jahr zuriickgegangen
waren. Die Ankerkrifte wiesen Zunah-
men zwischen 0 und 22% auf, was der
Erwartung entspricht. Einzelne Anker
zeigten Zunahmen iiber 30%, so dass sie
auf die urspriingliche Ankerkraft abge-
lassen werden mussten. Die Beobach-
tungen des laufenden Jahres werden
zeigen, ob allenfalls zusétzliche Anker
notwendig sind.

Beispiel 3: Baugrube in Kriechhang

Fir eine Baugrube in einem Kriech-
hang in der Umgebung von Lausanne
ist eine verankerte Rithlwand geplant
(Bild 10). In Anbetracht des Stromungs-
druckes des Grundwassers liegt die Si-
cherheit des Hanges im heutigen Zu-
stand schon bei ~1. Durch die veran-
kerte Wand soll die Sicherheit lokal ver-
bessert werden.

Dem wahrscheinlichen Bruchmecha-
nismus der Wand entsprechen, je nach
gewihlter Ankerldnge, drei polygonale
Gleitflichen gemiss Bild 10. Zur Be-
rechnung eignet sich wiederum die Me-
thode von Janbu. Da die Kohésion ¢ =

Bild8. Neue Lombachbriicke Habkern. Blick auf Lehnenviadukt und Hangsicherung (Photo M. Dietrich)

Bild 9.  Kriechhang Habkernstrasse. Berechnung mit Programm Janbu und probabilistische Auswertung

Sicherheiten nach Janbu: Standardabweichung:
® c B F2
>
+ + 38,5 1.4 1,447 2,093 Sp= % 6,41 — (—_11- 5‘026)‘
+ - 38,5 1.4 1,363 1,858
- 4 31,5 0.6 1,150 1,322
= f= 31,5 0.6 1,066 1,136 =0,154
LXF=5026 ZXF*=6410
Sicherheit (Mittel):
SERErEt) F 1t Bruchwahrscheinlichkeit:
F= L5026 = 1,256 1.0 = 1,256
v : 5 4 z = = —]662
Bodenkennziffern Mittel Standard- 0,154
abweichung
=0.452
Kohision ¢ =1um® S, = 04t/m =t
Reibungswinkel @ = 35° So = 3,5° P[F<1] =05y =48%
Raumgewicht y = 22t¢/m' konstant
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Untersuchte Gleitfldchen

0 angenommen wurde, kann die Be-
rechnung der Streuung von F mit den
beiden Randwerten ¢ * S, vorgenom-
men werden. Die Methode Rosenblueth
vereinfacht sich dann wie folgt:

Reibungswinkel Sicherheit
Randwert

¢+ Stp = F,

[T = )
Mittelwert F= % (Fy + F-)
Standard- il vl
abweichung BEsm (B 25

Da die Reibungswinkel nicht genau be-
kannt sind, haben wir die Berechnung
mit verschiedenen Werten ausgefiihrt.
Bild 11 zeigt die Resultate in Abhdngig-
keit vom Reibungswinkel. Die Sicher-
heiten nehmen mit dem Reibungswin-
kel zu. Fir Gleitfliche 3 liegt sie zwi-
schen 1,2 und 1,5 (ausgezogene Linien).

Die gestrichelten Linien stellen die
Bruchwahrscheinlichkeit fiir die ver-
schiedenen gewdéhlten Reibungswinkel
mit einer Standardabweichung von
S, = 2° dar. Eine geringe Erhohung des
Reibungswinkels, z.B. von 24° auf 26°,
bringt eine Steigerung der Sicherheit
von etwa 10%, aber gleichzeitig redu-
ziert sich die Bruchwahrscheinlichkeit
um einen Faktor 10.

Wir folgern daraus, dass schon geringe
Unterschiede im Reibungswinkel fiir
die Beurteilung der Stabilitdt eine be-
triachtliche Rolle spielen, und dass sich
daher detaillierte Untersuchungen mit
Bestimmung des Reibungswinkels loh-
nen.

Bild 12 betrachtet die Sicherheit (ausge-
zogene Linien) und Bruchwahrschein-
lichkeit (gestrichelte Linien) in Abhin-
gigkeit von der Ankerldnge. Auch hier
ergibt sich die gleiche Schlussfolge-
rung: Eine Verldngerung der Anker um
beispielsweise 1,5 m erhoht die Sicher-
heit um etwa 10%, reduziert aber die
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cherheit und Bruchwahrscheinlichkeit in Abhdngig-
keit vom angenommenen Reibungswinkel

Bruchwahrscheinlichkeit um einen
Faktor 10. Langere Anker tragen daher
massgeblich zur Sicherheit bei.

Zusammenfassung und
Schlussfolgerung

Die Methoden der Wahrscheinlich-
keitsrechnung ermoglichen es, Stabili-
titsprobleme in der Geotechnik auf
eine neue Art zu untersuchen. In Ergin-
zung zum wie bisher bestimmten
Sicherheitsgrad Fwird aus den Streuun-
gen der Eingabewerte, vor allem des
Reibungswinkels ¢ und der Kohésion ¢,
die Streuung des Sicherheitsgrades be-
rechnet. Daraus kann dann, unter ge-
wissen Annahmen iiber die statistische
Verteilung dieser Streuung, die Wahr-
scheinlichkeit fiir den Bruch einer Bo-
schung berechnet werden. Mit den bei-
den Angaben

- Sicherheitsgrad
- Bruchwahrscheinlichkeit

kénnen Béschungen zuverldssiger beur-
teilt werden als mit der Sicherheit al-
lein.

Im vorliegenden Artikel wurden zwei
praktisch anwendbare Methoden ge-
zeigt, mit denen aus den Streuungen
der Eingabewerte auf die Streuung des
Sicherheitsgrades geschlossen werden
kann. Die eine davon, die Methode Ro-
senblueth, ist einfach zu handhaben
und fir jedes Problem geeignet. An-
schliessend wurden drei Beispiele vor-
gestellt, bei denen die Zusatzinforma-
tion der  Bruchwahrscheinlichkeit
einen wesentlichen Punkt fiir die Beur-
teilung darstellte.

Die Grosse der zuldssigen Bruchwahr-
scheinlichkeit héngt stark vom Pro-
blem ab. Im allgemeinen scheinen Wer-
te zwischen 0,1 und 1,0% sinnvoll. Ver-
bindliche Werte werden sich erst aus
einer verbreiteten Anwendung erge-
ben.

cherheit und Bruchwahrscheinlichkeit in Abhdngig-
keit von der Ankerlinge
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