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Probabilistische Methoden bei
Stabilitätsproblemen in der Geotechnik
Praktische Anwendung und Beispiele

Von Hans Georg Locher, Bern

Methoden der Wahrscheinlichkeitsrechnung sind für den Geotechnik-Ingenieur durchaus
brauchbar. In Ergänzung zum gebräuchlichen Sicherheitsgrad ermöglichen sie eine zuverlässigere

Beurteilung der Böschungs- und Baugrubenstabilität, indem sie weitere Resultate wie
z.B. die Bruchwahrscheinlichkeit ergeben. Im vorliegenden Artikel werden die mathematischen

Grundlagen und drei Anwendungsbeispiele gezeigt.

Einleitung

Seit ungefähr einem Jahrzehnt werden
in der Geotechnik probabilistische
Methoden angewendet. Im Juni 1983 wird
in Florenz der 4. Kongress ICASP
(International Conference on Application
of Statics and Probability in Soil and
Structural Engineering) stattfinden, wo
die Geotechnik und deren Stabilitätsprobleme

einen wichtigen Platz einnehmen.

Ferner sind zu diesem Thema
verschiedene Bücher erschienen [1-6].

Bisher wurde zur Beurteilung der Stabilität

von Böschungen und Baugruben
allein auf den Sicherheitsgrad F gegenüber

dem Auftreten eines Bruches
längs einer angenommenen Gleitfläche
abgestellt.

iL
x

wobei:

Xf mittlere Scherfestigkeit des
Bodens

x wirkende Schubspannung

Da die Grössen, die in diese Rechnung
eingehen - Raumgewicht, Reibungswinkel,

Kohasion, äussere Lasten,
Strömungsdrücke -, nicht genau bekannt
sind, sondern eine gewisse Streubreite
aufweisen, so hat auch das Resultat, die
Sicherheit F, eine Streuung.

Die Grösse der Streuung ist charakterisiert

durch die Standardabweichung.
Über die Form der statistischen Verteilung

müssen zweckentsprechende
Annahmen getroffen werden. In der Natur
sind sehr viele zufällig streuende Grössen

annähernd nach der Gaussschen
Glockenkurve verteilt.

Ist die Verteilung angenommen, so
kann daraus die Wahrscheinlichkeit
des Eintretens des Bruches (Sicherheit
F ~ 1) berechnet werden. Es ist naheliegend,

dass z.B. bei grösserer Streuung,
aber gleicher Sicherheit, eine grössere
Bruchwahrscheinlichkeit resultiert,
oder dass zur Erreichung einer gleichen

Bruchwahrscheinlichkeit bei grösserer
Streuung wesentlich höhere Festigkeiten

nötig sind. Der Sicherheitsgrad
allein ist daher ein ungenügendes Mass
zur Beurteilung des Verhaltens einer
Böschung.

Prof. M. E. Harr hat anlässlich eines
Kolloquiums an der EPFL im Januar
1982 die Methoden vorgestellt, die zu
dieser Art Beurteilung verwendet werden

können.

Im folgenden ist die grundlegende
Theorie der Wahrscheinlichkeitsrech¬

nung kurz dargestellt. Anschliessend
werden Methoden diskutiert, die erlauben,

aus den Streuungen der Grund-
grössen die Streuung des Sicherheitsgrades

Fauf einfache Weise zu berechnen.
Sodann werden anhand von drei praktischen

Beispielen einige Schlussfolgerungen

gezogen.

Bild 1 zeigt den prinzipiellen
Rechnungsgang. Die Eingdbegrössen werden
durch ihre Mittelwerte und
Standardabweichungen charakterisiert. Zur
Vereinfachung wird in den Beispielen
bei allen variablen Grössen eine
Wahrscheinlichkeitsverteilung nach der
Gaussschen Glockenkurve angenommen.

Mit geringem rechnerischem
Mehraufwand können jedoch andere
Verteilungen, wie z.B. die Betaverteilungen,

verwendet werden.

Während die Kohasion im allgemeinen
eine grosse, der Reibungswinkel eine
mittlere Streuung aufweisen, variieren
die Nutzlasten und Raumgewichte
meist in so engem Rahmen, dass sie als
Konstante eingesetzt werden können.
Aus langjähriger Erfahrung gibt Harr
[1] die in Tabelle 1 aufgeführten
Variationskoeffizienten an.

Tabelle 1. Eingabedaten fürdie Stabilitätsrechnung

Grösse charakterisiert durch Variationskoeffizient

Mittel Standard¬
abweichung

Bereich
%

Mittel
%

Raumgewicht

Reibungswinkel
Kohasion

Nutzlast

Y

c

P

Sy

s
Sc

Sp

0,5- 4

6-14
29 - 50

2

10

40

von Fall zu Fall

Bild 1. Berechnungsgang einerStabilitätsrechnung mit probabilistischerAuswertung

^L I

<f

Reibungswinkel cp Kohasion c Raumgewieht y Nutzlast p

Bruchwahrscheinlichkeil

P F* 1

SF

Sicherheit F
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Bild 2. Direkte analytische Methode für die
Berechnung der Wahrscheinlichkeitsverteilung einer
Funktion

Die Berechnung der Sicherheit wird mit
einer der bekannten Berechnungsmethoden

(Fellenius, Bishop, Janbu usw.)
durchgeführt, wobei aber neben dem
Mittelwert der Sicherheit F auch die
sich aus den Streuungen der Eingangswerte

Sy und Sc ergebende Standardabweichung

des Sicherheitsgrades SF
berechnet werden soll. Mit Fund 5Fkann
anhand von Tabellen .die Bruchwahr-
scheinlichkeit P[Fi 1,0] bestimmt werden

(siehe Harr[l]).

Prinzip der probabilistischen
Rechnungsmethode

Die Berechnung wird in drei Schritte
zerlegt, die auf Bild. 1 schematisch
dargestellt sind:

1. Annahme der Wahrscheinlichkeitsverteilung

aller Eingabegrössen
(Kohasion, Reibungswinkel, Raumgewicht

usw.) für die Berechnung.

2. Schätzung der Wahrscheinlichkeitsverteilung

der betrachteten Funktion

(Setzung, Tragfähigkeit eines
Fundaments, Sicherheitsgrad einer
Böschung).

3. Berechnung der Wahrscheinlichkeit,
dass diese Funktion einen Wert

annimmt, der kleiner (oder, je nach
Problem, grösser) als ein zulässiger
Wert ist.

Wahrscheinlichkeitsverteilung der
Eingabegrössen

Grundsätzlich sind alle verwendeten
Grössen Zufallsvariablen. Um den Umfang

der Berechnungen in vernünftigem

Rahmen zu halten, lohnt es sich
aber, nur diejenigen Grössen als variabel

zu betrachten, deren Streuung einen
massgebenden Einfluss auf das Resultat
hat. Grössen mit kleiner Streuung, wie
z.B. das Raumgewicht, können meist
ohne Schaden konstant angenommen
werden.

Im Prinzip sollte die Streuung einer
variablen Grösse statistisch mit Hilfe

einer beträchtlichen Zahl von Messungen

bestimmt werden. In der Praxis ist
dies aber selten möglich. Man
beschränkt sich daher auf Schätzungen
der Mittelwerte und Streuungen
anhand der wenigen Laborresultate, der
persönlichen Erfahrung und der Werte
aus der geotechnischen Literatur (Harr
[1], Recordon und Desponds [2]). Aus
langjähriger Erfahrung gefundene
Variationskoeffizienten nach Harr [1] sind
in Tabelle 1 zusammengestellt.

Für die Mittelwerte entspricht dieses

Vorgehen den bisherigen Gepflogenheiten.

Für die Streuung ist es, wenn
auch mager, sicher besser als die
willkürliche Annahme, die Streuung sei

Null.

Wahrscheinlichkeitsverteilung der
betrachteten Funktion

Die Aufgabe ist, die Wahrscheinlichkeitsverteilung

einer Funktion

v F(xi,x2,...,x„)

zu berechnen, wenn von den Variablen
X; die Wahrscheinlichkeitsverteilung
oder mindestens die ersten zwei
Momente «Mittelwert» und «Varianz»
bekannt sind. Die beiden folgenden
Methoden erlauben, diese Wahrscheinlichkeitsverteilung

direkt und vollständig
zu bestimmen.

- Direkte analytische Methode

In sehr einfachen Fällen ist es möglich,

aus dem mathematischen
Ausdruck für die Wahrscheinlichkeitsverteilung

i(xj) jeder Variablen die
Verteilung i(y) der Funktion zu
berechnen (Benjamin and Cornell [3],

Ang and Tang [4]). Ein Beispiel zeigt
Bild 2:

Funktion: v= a x+ b

Verteilung: f (y) H • f (JL-^° \a\ \ a

- Numerische Simulation: Monte Car-
lo-Methode

Mit Computerhilfe wird eine grosse
Zahl von Berechnungen ausgeführt
(meist mehrere Hundert!). Für die
Eingabegrössen werden zufällig
gewählte Werte verwendet, welche
statistisch nach der entsprechenden
Verteilung streuen. An der grossen
Resultatzahl kann nun wieder
statistisch die Wahrscheinlichkeitsverteilung

bestimmt werden.

Beide Methoden setzen voraus, dass die
Wahrscheinlichkeitsverteilungen der
Ausgangsgrössen vollständig bekannt
sind. Die direkte Methode ist leider nur
für sehr einfache mathematische
Funktionen anwendbar, während die Monte
Carlo-Methode ausserordentlich grossen

Rechenaufwand erfordert.

Im Gegensatz dazu benötigen die beiden

nachstehend beschriebenen Methoden

nur die Kenntnis der ersten zwei
Momente, d.h. des Mittelwerts und der
Varianz, und sind somit allgemein und
mit wesentlich weniger Aufwand
verwendbar.

- Mit Taylor-Reihenentwicklungen
Mit Hilfe von Reihenentwicklungen
gelingt es, für einfachere mathematische

Funktionen geschlossene
Formeln für Mittelwert und Standardabweichung

der Funktion aufzustellen.
Die nachfolgenden Formeln entstehen,

wenn in den Reihenentwicklungen

nur konstante, lineare und
quadratische Glieder berücksichtigt
werden:

Gegeben sei eine Funktion mit N
unabhängigen Variablen

y= ¥(x\,xi,...xN)
Bei jeder einzelnen Variablen
bezeichnet man

als Mittelwert u,i, u^,... |i\
als
Standardabweichung oj, Sz, ...Sn

Für die Funktion ergibt sich dann:

- der Mittelwerty
- die Varianz Sy

- die Standardabweichung Sv

(la) j/=F(u.i, u-2,... 1>-n) +

N
1 B-W

(lb) Sj= 2
i=l

(lc) S,- VST

9F
dxi

(Sd2

Voraussetzung für die Anwendung
dieser Formeln ist, dass die Funktion
y bekannt und stetig ist und zweimal
abgeleitet werden kann.

Im folgenden Kapitel wird die
Anwendung dieser Formeln am Beispiel
1 gezeigt.

Methode Rosenblueth

Die von Rosenblueth [6] entwickelte
Methode erlaubt, die ersten zwei
Momente, d.h. Mittelwert und Varianz
einer Funktion y F(jCj), aus denjenigen

der Variablen zu bestimmen,
auch wenn die Funktion nicht ableitbar,

ja sogar, wenn sie nicht in
mathematischer Form bekannt ist. Sie
beruht auf der Idee, die
Wahrscheinlichkeitsverteilung einer kontinuierlichen

Zufallsvariablen so durch die
konzentrierte Verteilung einer
diskreten Variablen P+ und P_ zu erset-
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zen, dass die ersten zwei Momente
dieser Variablen gleich herauskommen

(Bild 3). Dies entspricht der in
der Statik gebräuchlichen Idee, eine
verteilte Belastung durch zwei Kräfte
zu ersetzen, so dass die Resultierende
und die Drehmomente um einen
festen Punkt die gleichen bleiben.

In Bild 3 ist eine Wahrscheinlichkeitsverteilung

f(x) dargestellt. Ihre
Resultierende ist 1 (Gewissheit)
und liegt im Punkt X. Sie wird durch
zwei konzentrierte Wahrscheinlichkeiten

P_ und P+ ersetzt. Rosenblueth

stellte folgende 4 Gleichungen
auf:

P+ + P- 1 1 (Gewissheit)

1. Moment (Mittelwert)
P- • x- + P+ • x+ x
2. Moment (Varianz)
P- ¦ (x- - x)2 + P+ ¦ M - x)2 S2

3. Moment
P--(x--xy+P+-(x+-x)3

ß. • |(ßi Dissimetrie-Koeffizient)

Sie können aufgelöst werden, und es

ergeben sich folgende Formeln:

(2a) P+ 1±_ 1-
1

1 + £l
2

(2b) P- 1 - P+

(2c) x+= x+Sx-yjP-/P+
(2d) x- x-Sx-yJP-/P+

Im Fall einer symmetrischen Verteilung

wird das 3. Moment 0, also
ßi 0, und die Formeln (2) vereinfachen

sich wie folgt:

(3a) P+=P-=y
(3b) x+ x + Sx

(3c) x- X — Sx

Wir können nun dasselbe Konzept
auf die Verteilung einer Funktion
von Zufallsvariablen anwenden. Bild
4 zeigt als Beispiel eine Funktion mit
einer Variablen, die nicht einmal in
mathematischer Form bekannt sein
muss. Von den Punkten x_ und x+
aus können ohne weiteres, z.B.
graphisch, die Punkte y_ und y+ konstruiert

werden, woraus sich die Varianz
S2 und die Standardabweichung 5,
der Funktion y ergeben. Im nachfolgenden

Beispiel 3 wurde diese
Methode benützt, da nur der Reibungswinkel

(p als variabel angenommen
wurde.

f. x

Bild 3. Methode Rosenblueth. Ersatz der kontinuierlichen

Wahrscheinlichkeitsverteilung durch zwei
diskrete Wahrscheinlichkeiten P+ und P-

Y(X)

t,t

33

.5^
K,X

Bild4. Anwendung der Methode Rosenblueth auf
eine Funktion y (x) mit einer Variablen

/
/^s

Randwerte ¦ Sicherheit F2

e + sc,r$ + S9 k* Fl +

£+Sc,y-Sv M Fi-
d-Sc,y-Sv H Fi+

t-Sc,lp- Sv F__

EF
Fi.

IF1

Berechnungsmodell:

Fellenius, Bishop, Janbu, usw.

variabel: q> S konstant: P.S.y
c Sc

F"-rCLF sI=1-j:f2
4 F 4 m

Bild 5. Anwendung der Methode Rosenblueth aufStabilitätsrechnungen (zwei Variable)

Für zwei Variable ergeben sich vier
Permutationen der Werte (5c,- ± S^.
Bild 5 zeigt den Gang der Berechnung

am Beispiel einer Stabilitätsrechnung,

wobei die Kohasion c und
der Reibungswinkel q> als Zufallsvariable,

die übrigen Grössen als
Konstante betrachtet werden.

Für jede Kombination wird mit der
geeigneten Rechenmethode ein
Sicherheitsfaktor F++, F+_ usw.
ausgerechnet. Nach Rosenblueth ist nun

F Mittelwert der F++, F+

usw.

Sf Standardabweichung der
F++ F+-usw.

Wird mit Rechenprogrammen
gearbeitet, so ist es meist ein leichtes, die
Rechnung mehrmals durchzuführen
und damit als zusätzliches Resultat
die Streuung des Sicherheitsgrades zu
erhalten.

Im nachfolgenden Beispiel 2 wurden
die Kohasion c und der Reibungswinkel

<p als Variable betrachtet und
die Berechnung daher viermal
durchgeführt.

Im allgemeinen Fall einer Funktion
mit mehreren Variablen Y ¦» F (x\,
X2, x„) müssen 2" Permutationen
berücksichtigt werden, und die
allgemeine Formel wird

(4a) y E[y]- £ [Jfy yuk.

(4b) S2=E[y2]-(E[y])2

wobei E [y] bzw. E [y2] die erwarteten
Werte von y bzw. y2 bedeuten. Die
Glieder Vi//,-...,, sind die Punktabschätzungen

von y, erhalten für alle
Permutationen der Punktabschätzungen
jeder Einzelvariablen. Die Glieder
Pijk...n sind die entsprechenden
Wahrscheinlichkeiten.

Die beiden zuletzt genannten Methoden

erlauben, Mittelwert und Varianz
einer untersuchten Funktion auf einfache

Weise zu bestimmen. Um die
gesuchte Wahrscheinlichkeit zu berechnen,

braucht es zusätzlich eine Annahme

über die Form der Wahrscheinlichkeitsverteilung.

Am einfachsten ist die Annahme einer
Normalverteilung oder Gaussschen
Verteilung. Sie steht zwar meist im Widerspruch

mit der physikalischen Bedeutung

der Variablen, denn die Grössen
variieren bis ± o°. Wenn die
Variationskoeffizienten relativ gering und die
Verteilungen einigermassen symmetrisch

sind, führt sie in der Praxis
jedoch trotzdem zu brauchbaren Resultaten.

In den drei Beispielen wurden
durchwegs Gausssche Verteilungen
angenommen. Allgemeiner ist die Beta-
Verteilung (Typ I der Klassifikation
von Pearson, Harr[\\), welche sehr
anpassungsfähig ist. Die Verteilungen
sind endlich begrenzt. Zu ihrer Bestimmung

benötigt man daher neben
Mittelwert und Varianz auch die obere und
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untere Begrenzung. Diese können nach
einem odeMnehreren der folgenden
Kriterien gewäJpl werden:

- Definitionsbereich der Funktion im
physikalischen Sinn (z.B. die Kohasion

kann nicht kleiner als Null sein).
- Werte der Funktion, die sich aus den

Begrenzungswerten der Variablen
ergeben.

- Wahrscheinliche Begrenzungswerte
nach der Ungleichheit von Cheby-
shev oder Gauss. Meistjluhren diese
Kriterien dazu, dass die Grenzen in
einem Abstand von 3-4mal die
Standardabweichung beidseitig des
Mittelwerts angenommen werden.

Die Gausssche Verteilung ist ein
Spezialfall der Beta-Verteilungen.

^SlSUJ
p—i

nmm j?

i-:£asi3;^
Bild 6. Mühle Quasseem. Saudi-Arabien.
Getreidesilos der ersten Etappe und Maschinenhausbau-
grube derzweiten Etappe (Photo Baustelle)

Berechnung der Wahrscheinlichkeit

Die Wahrscheinlichkeit, dass ein Ereignis

eintritt, ist, wie in Bild 1 angedeutet,
dargestellt durch die Fläche unterhalb
der Wahrscheinlichkeitsverteilung. Für
die Gausssche NormalvertSlung gibt es

dafür Tabellen, z.B. in Harr [1]. Die
Beta-Verteilungen sind komplexer.
Kurventafeln für eine einfache
Auswertung sind ebenfalls imjjHarr [1] zu
finden. Ferner wurden Rechenprogramme

entwicht, beispielsweise am
Erdbaulaboratorium der EPFL in
Lausanne (Bourdeau [7]).

Anwendungen

An drei Beispielen soll gezeigt werden,
wie man bei Stabilitätsuntersuchungen
mit Hilfe der probabilistischen Methoden

mfflnur geringem Mehraufwand
wesentliche zusätzliche Informationen
gewinnen kann.

Beispiel 1: Tiefe Baugrube für die
Mühle Quasseem, Saudiarabien

In einer Anlage von über 30 m hohen
Getreidesilos liegt, unmittelbar neben
den auf der Geländeoberfläche fundierten

Silos, das Maschinenhaus mit einer
8 m tiefen Baugrube (Bild 6). Aus
Gründen des Bauprogramms konnte
mit dem Bau der Silos nicht gewartet
werden, bis das Maschinenbaus
fertiggestellt und die Böschungen hinterfüllt
waren.

Bild 7 zeigt einen Schnitt durch die
Baugrube. Der Untergrund besteht aus
einer 4 bis 6 m starken Schicht von
überkonsolidiertem Mergel. Darüber
und darunter liegen stark verwitterte

Kalksteine. Die Scherfestigkeit des

Mergels wurde mit einer Serie von 20
einfachen Druckversuchen gemessen,
aus welchen der Mittelwert c und die
Standardabweichung Sc berechnet wurden.

Der Variationskoeffizient ist mit
31% hoch, aber nicht ungewöhnlich.
Für die Last p des leeren Silos wurden
günstige und ungünstige Annahmen
getroffen.

Auf demselben Bild 7 ist die Berechnung

mit einer einfachen geradlinigen
Bruchfläche dargestellt. Da die Formel
für die Sicherheit partielle Ableitungen
erlaubt, haben wir die Methode mit
Taylorreihen nach den Formeln (1)
verwendet.

Nach Harr[l] kann die Sicherheit einer
senkrechten Böschung wie folgt berechnet

werden:

F-- c- Ns-p
v- H

wobei c die Kohasion, p die Auflast auf
der Böschung, y das Raumgewicht des

Bodens und H die Böschungshöhe
bedeuten. Für (p 0 ist Ns as 4. Werden c
und p als Variable mit den Standardabweichungen

Sc und Sp betrachtet, so
ergeben sich folgende partielle Ableitungen:

dF I 1 • Ns 9F 1_
d C

0 r
y- H

^4=0
dp2

dp y-H

Die Formeln (1) ergeben

- den Mittelwert F

- die Varianz S2-

- die Standardabweichung Sf

p= S •N* JL
H

0

Bild 7. Mühle Quasseem. Saudi-A rabien. Stabilität der Maschinenhausbaugrube

Kalkstein

LP

Mergel

IL
Kalkstein

Stabilität des Erdkeils (ebene Gleitflache)

Eingabe Mittel Standard¬
abweichung

Kohasion c [t/m2] 16,8 5,3
Nutzlast p [t/m;] 8 I

Raumgewicht y [t/m3] 2 konstant

Sicherheit:

m e.Ns-P
Y-H —

Standardabweichung:
(cp 0 - Ns 4)

-^W'OrW
V 1,775 + 0,004-= 1,33

Bruchwahrscheinlichkeit:

1,0 -F 1,0-3,7
1,33

2,03

Nach Harr (Tabelle A-3) folgt:

V - 0,479

F[FS 1,0] -0,5 - v - 0,021 oder 2,1%
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Si-

sF

Ns
y-H

Sc —-— X
y-H p

Die Streuung der Sicherheit SF (siehe
Bild 7) ist praktisch vollständig durch
die hohe Streuung der Kohasion
bedingt.

Trotz der hohen mittleren Sicherheit
von F 3,7 gab die Baugrube doch zu
Bedenken Anlass, da sich aus der Streuung

von F eine Bruchwahrscheinlichkeit
von P[F< 1,0] 2,1% ergab. Dies

gab Anlass dazu, den Bauvorgang
abzuändern und doch wenigstens das
unterste Stockwerk des Maschinenhauses
vor dem Bau des Silos zu erstellen. Damit

konnte der Bauvorgang wesentlich
sicherergestaltet werden.

Beispiel 2: Kriechhang bei der neuen
Lombachbrücke an der Habkernstrasse

Unterhalb des Dorfes Habkern bei In-
terlaken quert die Staatsstrasse den
Lombach auf einer neuen Brücke, welche

im selben Heft beschrieben wird [8].
Die südliche Zufahrt der Brücke führt
über einen Lehnenviadukt längs eines
Hanges, wo weichere Flyschgesteine
sich in einer langsamen Bewegung von
mehreren Zentimetern pro Jahr befinden

(Bild 8).

Obwohl die Hanganschnitte geringfügig
sind, wurde versucht, mit Hilfe von

verankerten Schächten die
Stabilitätsverhältnisse zu verbessern.

Bild 9 stellt die Untersuchungen an
einer der geprüften Gleitflächen dar.
Da die Form der Gleitfläche wegen der
Felsverhältnisse und der Anker
unregelmässig gewählt wurde, haben wir die
Rechenmethode von Janbu verwendet.
Die Mittelwerte der Scherparameter c
und (p wurden dem geologischen
Gutachten entnommen, die Streuungen
haben wir nach den Angaben in Tabelle 1

geschätzt.

Die Berechnung der Sicherheit und
deren Streuung erfolgt gemäss Bild 9 vier¬

mal für die Randwerte cp ± S«, und c +
Sc nach der Methode Rosenblueth.
Unter der Annahme, die Sicherheit
habe eine Wahrscheinlichkeitsverteilung

nach der Gaussschen Glockenkurve,

ergibt sich bei einem durchschnittlichen

Sicherheitsgrad von F 1,25 und
einer Standardabweichung von SF
0,15 eine Bruchwahrscheinlichkeit von
4,8%. Eine Nachrechnung mit einer
Beta-Verteilung ergab praktisch das

gleiche Resultat.

Für einen Kriechhang erstaunt dieses
Resultat keineswegs. Es zeigt, dass dem
Hang gegenüber vorher eine etwas
verbesserte Stabilität gegeben werden
konnte, dass aber die Kriechtendenz
andauern dürfte. Daraus wurden folgende
Schlüsse gezogen:

- Die Vorspannanker müssen
nachstellbar sein, damit sie der Entwicklung

angepasst werden können.
- Die Stützwand muss flexibel sein, um

die Bewegungen aufnehmen zu können.

- Eine umfassende Messung und
Kontrolle der Bewegungen und der Ankerkräfte

sind notwendig.

Nach einem Jahr zeigte sich, dass die

Bewegungen der Fixpunkte oberhalb
der Wand von vorher etwa 10 cm/Jahr
auf wenige cm/Jahr zurückgegangen
waren. Die Ankerkräfte wiesen Zunahmen

zwischen 0 und 22% auf, was der
Erwartung entspricht. Einzelne Anker
zeigten Zunahmen über 30%, so dass sie
auf die ursprüngliche Ankerkraft
abgelassen werden mussten. Die Beobachtungen

des laufenden Jahres werden
zeigen, ob allenfalls zusätzliche Anker
notwendig sind.

Beispiel 3: Baugrube in Kriechhang

Für eine Baugrube in einem Kriechhang

in der Umgebung von Lausanne
ist eine verankerte Rühlwand geplant
(Bild 10). In Anbetracht des Strömungsdruckes

des Grundwassers liegt die
Sicherheit des Hanges im heutigen
Zustand schon bei ~1. Durch die verankerte

Wand soll die Sicherheit lokal
verbessert werden.

Dem wahrscheinlichen Bruchmechanismus

der Wand entsprechen, je nach
gewählter Ankerlänge, drei polygonale
Gleitflächen gemäss Bild 10. Zur
Berechnung eignet sich wiederum die
Methode von Janbu. Da die Kohasion c
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Bild 8. Neue Lombachbrücke Habkern. Blick aufLehnenviadukt und Hangsicherung (Photo M. Dietrich)

Bild 9. Kriechhang Habkemstrasse. Berechnung mit Programm Janbu undprobabilistische Auswertung
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Bodenkennziffern Mittel

Kohasion C — 1 t/ma
Reibungswinkel <p 35°

Sicherheiten nach Janbu:

Raumgewicht

<p c

+ + 38,5 1,4
+ - 38,5 1,4

- + 31,5 0,6
31,5 0,6

Sicherheit (Mittel):

y 2,2 t/m3 konstant

F F2

1,447 2,093
1,363 1,858
1,150 1,322
1,066 1,136

IF-5,026 SF1- 6,410

Standardabweichung

Sr - 0,4 t/m!
Sa, - 3,5°

F- —¦ 5,026 - 1,256

Standardabweichung:

l J 1-6.41- (|-5,026):

-0,154

Bruchwahrscheinlichkeit:

1,0 - 1,256
1,662

0,154

V - 0,452

P [FS 1] - 0,5 - v 4Ji%
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Bodenkennziffern:

Mittel Stcndordabweichung

cp 24° S,,= 20
c 0

r 2t/m3 konstant

S Strömungsdruck

Bild 10. Verankerte Rühlwand inUffiiechhane.
Untersuchte Gleitflächen

0 angenommen wurde, kann die
Berechnung der Streuung von F mit den
beiden Randwerten cp ± Sv vorgenommen

werden. Die Methode Rosenblueth
vereinfacht sich dann wie folgt:

Reibungswinkel
Randwert
cp + S9

cp - Sv

Mittelwert

Standard-
abweichune

F=

SF=

Sicherheit

F+

F_

B + F-)

Da die Reibungswinkel nicht genau
bekannt sind, haben wir die Berechnung
mit verschiedenen Werten ausgeführt.
Bild 11 zeigt die Resultate in Abhängigkeit

vom Reibungswinkel. Die Sicherheiten

nehmen mit dem Reibungswinkel
zu. Für Gleitfläche 3 liegt sie

zwischen 1,2 und 1,5 (ausgezogene Linien).
Die gestrichelten Linien stellen die
Bruchwahrscheinlichkeit für die
verschiedenen gewählten Reibungswinkel
mit einer Standardabweichung von
Sp 2° dar. Eine geringe Erhöhung des

Reibungswinkels, z.B. von 24° auf 26°,
bringt eine Steigerung der Sicherheit
von etwa 10%, aber gleichzeitig reduziert

sich die Bruchwahrscheinlichkeit
um einen Faktor 10.

Wir folgern daraus, dass schon geringe
Unterschiede im Reibungswinkel für
die Beurteilung der Stabilität eine
beträchtliche Rolle spielen, und dass sich
daher detaillierte Untersuchungen mit
Bestimmung des Reibungswinkels
lohnen.

Bild 12 betrachtet die Sicherheit (ausgezogene

Linien) und Bruchwahrscheinlichkeit

(gestrichelte Linien) in Abhängigkeit

von der Ankerlänge. Auch hier
ergibt sich die gleiche Schlussfolgerung:

Eine Verlängerung der Anker um
beispielsweise 1,5 m erhöht die Sicherheit

um etwa 10%, reduziert aber die
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Bild 11. Verankerte Rühlwand in Kriechhang.
Sicherheit und Bruchwahrscheinlichkeit in Abhängigkeit

vom angenommenen Reibungswinkel

Bruchwahrscheinlichkeit um einen
Faktor 10. Längere Anker tragen daher
massgeblich zur Sicherheit bei.

Zusammenfassung und
Schlussfolgerung

Die Methoden der Wahrscheinlichkeitsrechnung

ermöglichen es,
Stabilitätsprobleme in der Geotechnik auf
eine neue Art zu untersuchen. In Ergänzung

zum wie bisher bestimmten
Sicherheitsgrad Fwird aus den Streuungen

der Eingabewerte, vor allem des

Reibungswinkels cp und der Kohasion c,
die Streuung des Sicherheitsgrades
berechnet. Daraus kann dann, unter
gewissen Annahmen über die statistische
Verteilung dieser Streuung, die
Wahrscheinlichkeit für den Bruch einer
Böschung berechnet werden. Mit den beiden

Angaben

- Sicherheitsgrad
- Bruchwahrscheinlichkeit

können Böschungen zuverlässiger beurteilt

werden als mit der Sicherheit
allein.

Im vorliegenden Artikel wurden zwei
praktisch anwendbare Methoden
gezeigt, mit denen aus den Streuungen
der Eingabewerte auf die Streuung des

Sicherheitsgrades geschlossen werden
kann. Die eine davon, die Methode
Rosenblueth, ist einfach zu handhaben
und für jedes Problem geeignet.
Anschliessend wurden drei Beispiele
vorgestellt, bei denen die Zusatzinformation

der Bruchwahrscheinlichkeit
einen wesentlichen Punkt für die
Beurteilung darstellte.

Die Grösse der zulässigen
Bruchwahrscheinlichkeit hängt stark vom
Problem ab. Im allgemeinen scheinen Werte

zwischen 0,1 und 1,0% sinnvoll.
Verbindliche Werte werden sich erst aus
einer verbreiteten Anwendung ergeben.
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Bild 12. Verankerte Rühlwand in Kriechhang.
Sicherheit und Bruchwahrscheinlichkeit in Abhängigkeit

von derAnkerlänge
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