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Angewandte Mechanik in Industrie und Hochschule V *

Trends in the Numerical Analysis of
Nonlinear Structural Problems

By Joop C. Nagtegaal, Palo Alto

A review is given of the historic development of finite element analysis methods for nonlinear
structural problems. The shortcomings of these more classical techniques for current strong-
ly nonlinear analysis requirements are discussed. In particular, attention is paid to analysis
of problems of large strain and deformation, to analysis of nonlinear (post-)buckling pro-
blems and to the nonlinear dynamic analysis of large structures.

The difficulties that occur in the above problem areas are, amongst others, excessive compu-
tational cost. Procedures to overcome these difficulties are currently under development in
many institutions. The current state of these procedures is described, and some indication is
given to which extent these new techniques will eventually enlarge the capabilities for numeri-
cal analysis of nonlinear structures.

Es wird eine Ubersicht der geschichtlichen Entwicklung der Finite-Elemente-Methode fiir
nichtlineare Strukturprobleme gegeben. Unzulinglichkeiten eher klassischer Verfahren fiir
geldufige, stark nichtlineare Berechnungen werden gezeigt. Besondere Aufmerksamkeit wer-
den der Berechnung von Problemen mit grosser Dehnung und Deformation, der Berechnung
von nichtlinearen (Nach-)Knickproblemen und der nichtlinearen dynamischen Analyse gros-
ser Strukturen geschenkt.

Die Schwierigkeiten, die in obigen Problemkreisen auftreten, sind, nebst anderen, iibermés-
sige Rechenkosten. Verfahren, die diese Schwierigkeiten zu umgehen versuchen, sind in vie-
len Instituten laufend in Entwicklung. Es wird der momentane Stand dieser Verfahren erliu-
tert. Weiter werden einige Angaben iiber das Ausmass moglicher Erweiterungen numerischer
Berechnungen von nichtlinearen Strukturen, mit diesen neuen Verfahren, dargelegt.

gine technology the problems are very
similar to those in the nuclear industry.
Over the years, several commercially
available finite element codes have
been developed to satisfy these de-
mands.

Traditional Solution Methods
for Nonlinear Problems

After the introduction of the finite
element method for linear problems, it
was soon discovered that the method
could also be used successfully for, up
to that point, unsolvable nonlinear pro-
blems. This was not only interesting as
an academic exercise: there definitely
existed a need for results of nonlinear
analysis in industry. In the first decade
of the development of nonlinear finite
element technology, the direction of
development was strongly influenced
by the needs of nuclear and aerospace
industry [1, 2].

The nonlinear finite element analysis
capabilities were originally developed
from linear finite element programs.
Hence, the approach taken to solve
these nonlinear problems usually was
derived from the methods used for lin-
ear problems. One such approach is the
initial stress/strain approach for plasti-
city problems. Here all nonlinear effects
are included on the right hand side of
the system of linear finite element
equations, which requires an iterative
procedure to solve the nonlinear pro-
blems (Figure la). Another popular ap-
proach to the solution of nonlinear pro-
blems is to consider the nonlinear pro-
blem as a sequence of linear problems.
Here the approach is to solve the instan-
taneous problem, advance the solution
and solve the next instantaneous pro-
blem (Figure 1b).

Note that in this approach a new linear
system of equations needs to be formu-

In the nuclear industry, nonlinear anal-
ysis of nuclear components has to be car-
ried out where nonlinearities are pri-
marily due to nonlinear high tempera-
ture material behavior. Occasionally
geometric nonlinearities have to be in-
cluded, but they are often of a second-
ary nature. At the same time the aero-
space industry, for which initial require-
ments were primarily concerned with
linear analysis, was also requesting non-

linear analysis capabilities. In the struc-
tural area the main nonlinear pheno-
mena to be considered are geometric in
nature (buckling), whereas in the jet en-

*Vgl. Schweizer Ingenieur und Architekt, Heft
51/52: 1117-1121, 1982; Heft 1/2: 2-7; Heft 4:
42-46, 47-50; Heft 9: 275-278, 279-281; Heft 15:
409-412, 1983.

lated and solved in each step.

The “modified linear” approaches dis-
cussed above usually perform satisfac-
torily for problems with “mild"" nonli-
nearities. Problems of this type are for
instance elastic-plastic problems with a
small plastic zone, and geometric nonli-

near problems prior to snap-through or
buckling. However, if the nonlinearity
increases these simple methods often
produce poor results or fail to produce
results at all. More sophisticated ap-
proaches are needed under those cir-
cumstances, and will be discussed in the
remainder of this paper.

Current Approaches to Nonlinear
Problems

In order to solve severely nonlinear
problems, it is no longer useful to con-
sider these problems as modified linear
problems. Instead, it is better to consult
the literature to see which methods ma-
thematicians have devised to solve large
systems of nonlinear equations. A very
important aspect of considering the
nonlinear finite element problem along
this line is that the system stiffness ma-
trix 1s no longer all important. Instead
the central point in nonlinear analysis
methods is the evaluation of the nodal
equilibrium, and the reduction of errors
in the equilibrium. In fact, if possible
one would like to avoid formation and
solution of a stiffness matrix altogether
considering the cost associated with it.
On the other hand, one does not want to
create a method which needs an exces-
sive amount of iterations, since this will
increase the cost as well. Above all one
desires a method which is reliable, in
the sense that it produces a (correct) so-

Figure 1. Classical analysis schemes for nonlinear
problems
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Figure 2. Consirained iteration in a two-dimen-

sional space

lution in all circumstances, even if the
cost is not quite optimal.

Most solutions methods which are cur-
rently investigated are variants of the
Newton method. The classical (Full)
Newton Method, which is used success-
fully in many finite element programs,
seeks to eliminate the equilibrium er-
rors by linearizing the nonlinear gov-
erning equations around the last ob-
tained approximate solution.

The disadvantage of the Full Newton
Method is that it requires formation
and solution of the stiffness matrix in
every increment. In return for that, it
yields quadratic convergence, that is
once one approaches the true solution,
the relative error in the next approxi-
mation is proportional to the square of
the error in the current approximation.
Hence, usually only very few iterations
are needed with this method.

A variant of the above method is the
Modified Newton Method; the basic
procedure is the same as for Full New-
ton iteration, but the stiffness matrix is
now formulated only once at the start of
the iteration sequence. Per iteration,
the savings in cost is considerable:
however, the method loses its quadratic
convergence properties, and particular-

Figure 3. Asymmetric arch snap-through and buckling

ly for strongly nonlinear problems con-
verges very poorly or not at all.

Most recent research on this topic at-
tempts to develop methods which com-
bine the advantages of both Full and
Modified Newton Methods. These me-
thods have a variety of associated
names such as Quasi-Newton, Conju-
gate Newton and Secant-Newton and
they seek to modify the inverse of the
stiffness matrix and/or the right-hand
side of the system directly in order to
speed up the convergence of the solu-
tion process. In addition, so-called “line
searches’ are sometimes carried out in
order to determine the optimal size of
the solution correction. With such
procedures, remarkable improvements
have been obtained for certain classes
of problems. However, instances in
which these modifications had no bene-
ficial effects are also known. The inte-
rested reader is referred to [3] for a more
detailed discussion.

Another line along which the solution
of nonlinear problems is explored is the
so-called reduced basis technique. By
only considering certain solution
modes, the large system of equations is
first transformed to a (very) small sys-
tem of equations, which is then readily
solved. Such methods are quite success-
ful if, from an existing solution, one can
derive the main participating solution
modes, and these modes stay about the
same during a fair portion of the load-
ing history [4]. However, if the solution
pattern changes dramatically a new re-
duced basis must be calculated, which
requires solution of the large system of
equations, and eliminates the advan-
tages of the procedure.

As a final note, it may be observed that
a nonlinear system of equations does
not always immediately exist in alge-
braic form. In particular in plasticity,
viscoelasticity, creep, dynamics, etc., a
finite element idealization would yield
a system of (nonlinear) differential

equations. This so-called semi-discreet
system must then first be integrated in a
suitable manner. In the past, simple ex-
plicit integration procedures were often
used for this purpose. Such procedures
usually have definite stability limits
and hence require large numbers of
load/time increments. For dynamics,
more sophisticated implicit procedures
have been used successfully for some
time. For plasticity, creep and viscoelas-
ticity, the realization that implicit
procedures provide considerable advan-
tages has only transpired recently.

Quasi-Static Post-Buckling
Analysis

Problems with geometric nonlinearities
have been analyzed successfully with
the finite element method for many
years. However, classical analysis
procedures only yield satisfactory re-
sults prior to the occurrence of instable
phenomena. If snap-through or buc-
kling phenomena occur, classical solu-
tion procedures fail to give results. In
order to obtain solutions for such pro-
blems, it is necessary to control the
magnitude of the incremental solution
and hence the magnitude of the load in-
crement automatically. Such techniques
were originally proposed by Riks[S]and
Wempner [6], but had the practical pro-
blem that the usual bandedness of the
system of finite element equations was
destroyed. Later, the method was modi-
fied to overcome this difficulty by doing
the adjustment of the load step sepa-
rately after solution of the system of
equations.

In this method one requires that a norm
of the displacement increment is equal
to a certain value. Usually one pres-
cribes the Euclidian norm which leads
to an iteration procedure “on a sphere”.
For a two-dimensional problem, such
an iteration procedure is shown in Fi-
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gure 2. Note that this “constrained” iter-
ation procedure, which features simul-
taneous iteration on loads and displace-
ments, can be used with all variants of
the Newton Method. An example of the
power of this method calculated with a
development version of the MARC pro-
gram [7] is shown in Figure 3.

An arch shown in Figure 3 is hinged at
one end and simply supported at the
other end. A point load is applied at the
center of the arch, and the solution is
calculated for the load range from 0 to
1200. The solution for the initial phase
of the loading process is presented in
[8], and agrees well with the solution ob-
tained here. Note that the problem has
some peculiar features. In particular it
has an initial snap-through phenome-
na, followed by an asymmetric buckling
phase where the displacement stays ap-
proximately constant with a decreasing
load. This makes it almost impossible to
obtain a solution with traditional dis-
placement control.

Finite Strain Plasticity Problems

In the use of the finite element method
for analysis of large strain plasticity
problems (such as metal forming pro-
blems), important differences arise as
compared to classical elastic-plastic pro-
blems. One is the fact that the constitu-
tive equations must be written in an ap-
propriate form. The form usually chos-
en is one where the Jaumann rate of
Cauchy stress is a linear function of the
deformation rate, as described in [9].
The inclusion of the extra terms associ-
ated with this in a finite element
scheme does not present any computa-
tional difficulties. The other difference
is more of a practical nature, namely,
that the plastic strains are usually or-
ders of magnitude larger than in classi-
cal applications.

In the classical solution approach, one
would formulate the rate equations at
the beginning of an increment, solve
these (linear) rate equations and ad-
vance the solution for a certain step
size. This clearly is an explicit method,
and unfortunately such an explicit me-
thod has a definite stability limit. In
fact, it can be proven that local stability
(on the integration point level) is only
obtained if the plastic strain increment
is less than twice the elastic strain [10].
For typical applications, the elastic
strains are of the order of 0,1% and the
desired plastic strains are 100% or more.
Hence, with a classical approach the
number of increments will be in the or-
der of 1000, with associated prohibitive
computing cost. Clearly more advanced

forward integration procedures are de-
sired.

A natural approach seems to be to start
from a formulation based on a finite in-
crement in the solution. Then an as-
sumption is made about the solution
path within the increment, and the rate
equations are integrated to a set of (non-
linear) incremental equations. After
that, an appropriate solution procedure
as discussed in section 2 can be applied
to solve the set of equations. This ap-
proach (with the assumption of a
straight strain path within an incre-
ment) has been worked out in [11], and
applied successfully to a number of pro-
blems. Increments of plastic strain in
the order of 10 to 20% turned out to be
feasible, and although some iterations
are necessary to solve the nonlinear
equations, cost savings of a factor of 10
or more are readily obtained.

An example is shown in Figure 4 (calcu-
lated with the MARC program [7]). A
cylindrical disk is bonded to a rigid
punch, and is decreased in height by
44%. The dimension and properties of
the specimen are shown in Figure 4a.
The analysis was carried out in 44 incre-
ments, with strain increments larger
than 10% towards the end of the analy-
sis. The load deflection curve and the
deformed mesh at the end of the analy-
sis are shown in figures 4b and 4c. Note
that the jump in the load-deflection
curve occurs when the first node on the
outside boundary comes in contact with
the punch and hence is due to the some-
what crude modeling and not a con-
sequence of the solution procedure.
That the results were indeed independ-
ent of the increment size was estab-
lished by repeating the analysis with a
five times smaller load step. The differ-
ences in solution were less than 1%.

Nonlinear Dynamics Problems

If a finite element discretization of a
structural dynamics problem is made,
one arrives at a set of coupled nonlinear
differential equations, the so-called
semi-discreet system. To ultimately
solve this problem, one has to integrate
these equations with respect to time
with use of some discreet integration
operator. Two types of classical ap-
proaches exist to carry out this task: ex-
plicit methods and implicit methods.

In the explicit method, one calculates
the accelerations based on the nodal
force imbalance at a given point in
time, and assumes that these accelera-
tions remain constant during a finite in-
crement. This method only requires one
single inversion of the mass matrix dur-
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Figure4. Upsetting of a cylindrical disk

ing the analysis which is a trivial effort,
particularly if the mass matrix is di-
agonalized. However, the main draw-
back of the explicit method is its limited
stability. The maximum stable time
step is related to the period of the high-
est eigenfrequency in the structure. Par-
ticularly, for large structures with re-
fined element meshes this often leads to
prohibitively small time steps.

In contrast, implicit methods require an
inversion of an operator matrix which
is a linear combination of mass and
(tangent) stiffness matrix. For linear
problems, such methods can be selected
to have very favorable characteristics.
One of the most popular methods is the
Newmark-Beta Method, which in linear
problems is unconditionally stable and
has no artificial damping. For nonli-
near problems, the unconditional sta-
bility cannot be guaranteed any more,
but for most analyses this does not actu-
ally present a problem. The main disad-
vantage of the method, however, is the
need for inversion of an operator ma-
trix which includes the stiffness matrix.
Due to nonlinearities, the stiffness ma-
trix changes in time which makes (very)
frequent formation and inversion of the
operator matrix necessary. For large
problems, this often completely offsets
the advantage over explicit methods.

Recent research in nonlinear dynamics
has concentrated on developing me-
thods which combine the advantages of
both methods. One approach which has
been employed successfully is the im-
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Figure 5. Operator matrix profile in an implicit-
explicit method

plicit-explicit method. This approach
has been particularly successful in the
analysis of coupled fluid-solid pro-
blems. Here the finite element mesh re-
presents two different physical do-
mains, which have considerably differ-
ent stiffnesses. In fluid-solid problems
the solid is usually orders of magnitude
stiffer than the fluid, and in an explicit
method lowers the stable time step to a
prohibitively small value. On the other
hand, the presence of the fluid elements
creates a very large system of equations.

Such problems have now been success-
fully solved by integrating the fluid
with an explicit and the structure with
an implicit method. Originally the ex-
plicit-implicit splitting was done on a
nodal level [12], which caused complica-
tions on the interface. Later it was de-
monstrated that the method could be
made much more effective by doing the
explicit-implicit splitting on the ele-
ment level [13]. Different procedures
are then used to form the operator ma-
trices for the individual elements. With
a diagonalized mass matrix the profile
of the total operator matrix then be-
comes very suitable for treatment with
a modern “skyline” type equation sol-
ver (Figure 5). With such techniques,
problems like sloshing of fluid in a tank
which undergoes fairly large distortions
can be solved effectively (Figure 6).
Though implicit-explicit techniques of-

Figure 6. Sloshing of a fluid in a tank
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fer considerable advantages in coupled
problems, they are of limited effectivity
in structures in which large stiffness
differences do not exist. Research is
currently underway to develop new ap-
proaches to the nonlinear dynamic pro-
blem.

In general these techniques try to find
an operator matrix which does not have
the full bandwidth of the stiffness ma-
trix, but in a narrow diagonal band con-
tain enough stiffness information to in-
crease stability considerably. Such tech-
niques may be called semi-implicit [14].
A specific variant of this family of me-
thods is the operator-split technique, in
which the (implicit) operator matrix is
approximated by product of very easily
invertible matrix factors [15]. As yet, in-
sufficient experience exists with these
techniques to ascertain whether they
really form a large improvement in dy-
namic analysis of nonlinear structures.

Conclusions

In recent research on finite element an-
alysis procedures, considerable advan-
ces have been made in the treatment of
strongly nonlinear problems. Due to
these advances, it has now become pos-
sible to solve heretofore unsolvable in-
stable post-buckling problems, and to
treat large strain plasticity problems
with little more cost than classical elas-
tic-plastic problems. Advances in many
other areas of application have been
made leading again to extended and
more efficient analysis capabilities. For
a more complete review of these recent
developments, the interested reader is
referred to [16].

It is the author’s opinion that in the
near future considerable further pro-
gress in development of nonlinear fi-
nite element analysis procedures will be
made. Such improved procedures will:

- solve currently unsolvable problems;

- treat very large nonlinear problems
more efficiently;

- have controls for automatic load or
time incrementation.

In particular, the last aspect is of para-

mount importance in order to achieve

more widespread use of nonlinear finite

element analysis procedures for practi-

cal engineering problems.

The author’s address: Dr. J. C. Nagtegaal, Vice
President of Engineering, MARC Analysis Re-
search Corp., 260 Sheridan Ave, Suite 200, Palo
Alto, Cal. 94306, USA.
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