Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 101 (1983)

Heft: 14

Artikel: Thermographie im Bauwesen

Autor: R.G.

DOI: https://doi.org/10.5169/seals-75106

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Thermographie im Bauwesen

Was ist Thermographie? Die nachfolgende Artikelreihe zeigt die physikalischen und anwendungstechnischen Grundlagen und Eigenheiten dieses neuen Messverfahrens zur Feststellung von Temperaturunterschieden an Gebäuden. Das Verfahren gestattet, mittels

Sichtbarmachung von unterschiedlichen Oberflächentemperaturen an Fassaden von beheizten Gebäuden festzustellen, wo durch Wärmebrücken infolge schlechter Isolation mehr Wärme verloren geht als in ihrer Umgebung.

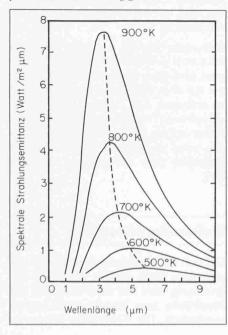
Thermographie kann man zweckmässig

anwenden, wenn an die Fassadenrenovation eines alten Gebäudes geschritten werden soll oder wenn bei einem Neubau Zweifel daran bestehen, ob seine Ausführung den im Vertrag vereinbarten Bedingungen hinsichtlich Isolierfähigkeit entspricht.

Thermographische Messtechnik

Temperaturmessung von Oberflächen

Von Philippe Virdis, Freiburg


Physikalische Grundlagen

Spektrale Leistungsdichte

Die Thermographie ist eine moderne Anwendung der Strahlungsphysik, die u.a. erlaubt, die Temperatur eines Gegenstandes sichtbar zu machen.

Es ist jedermann wohlbekannt, dass ein stark erhitztes Objekt (z.B. ein Metallstück) weissglühend wird. Dieser Körper strahlt sichtbare Wellen des elektromagnetischen Spektrums aus; steigt die Temperatur, dann ändert sich gleichzeitig die Farbe (von rot zu gelb usw.). Die-

Bild 1. Zusammenhang zwischen absoluter Temperatur und spektraler Emittanz des schwarzen Körpers. Plancksches Strahlungsgesetz

se Farbgliederung entspricht einer Wellenlängenmodifikation der Strahlung je nach Temperatur. Jeder Körper, dessen Temperatur über dem absoluten Nullpunkt (-273 °C) liegt, sendet eine Wärmestrahlung aus. Diese Strahlung ist für das menschliche Auge erst bei hohen Temperaturen sichtbar. Bei normalen Temperaturen liegt sie im Infrarotbereich des elektromagnetischen Spektrums

Der Strahlungsfluss eines Körpers hängt von seiner Temperatur, seinem Emissionsfaktor, der Wellenlänge der ausgesandten Strahlung und der Umgebungstemperatur ab. Max Planck hat die spektrale Leistungsdichte der Strahlung des schwarzen Körpers mit der nachstehenden Formel (Plancksche Formel) beschrieben:

$$W(\lambda) = \frac{2\pi h \cdot c^2}{\lambda^5 (e^{hc/\lambda kT} - 1)} \cdot 10^{-6}$$

wobei:

 $W(\lambda)$ = Spektrale Leistungsdichte des schwarzen Körpers pro Mikrometer

c = Lichtgeschwindigkeit h = Plancksche Konstante = 6.6 × 10⁻³⁴ Js

k = Boltzmannsche Konstante = 1.4 × 10⁻²³ J/K

T = absolute Temperatur des schwarzen Körpers

λ = Wellenlänge

Strahlung des schwarzen Körpers

Der schwarze Körper ist ein *idealer* Wärmestrahler, der die gesamte einfallende Strahlung absorbiert.

Die Kurve (Bild 1) zeigt, dass das Maximum sich mit wachsender Temperatur gegen kürzere Wellenlängen verschiebt. Anderseits liegt das Maximum im Fall einer Raumtemperatur bei einer grösseren Wellenlänge (etwa 10 µm). Durch die Messung der Strahlungswellenlänge eines schwarzen Körpers kann man seine Oberflächentemperatur bestimmen.

Um die totale Emittanz W des schwarzen Körpers zu ermitteln, integriert man die Plancksche Formel von $\lambda = 0$ bis zu $\lambda = \infty$ (Boltzmannsche Formel):

$$W = \int_{\lambda=0}^{\lambda=\infty} W(\lambda) d\lambda = \sigma \cdot T^{4} [\text{Watt/m}^{2}]$$

wobei:

 $\sigma = \text{Boltzmannsche Konstante}$ = 5,7×10⁻⁸ W/m² K⁴

Die Boltzmannsche Formel beweist, dass die ganze gestrahlte Leistung sich entsprechend der vierten Potenz der absoluten Temperatur verändert. Auf der graphischen Darstellung (Bild 1) entspricht die totale Emittanz W der Fläche unter der Planckschen Kurve bei einer bestimmten Temperatur.

Strahlung der realen Körper

Es gibt in der Natur keinen idealen schwarzen Körper. Das Verhalten der realen Körper kann nach den drei nachstehenden Prozessen beschrieben werden. Ein Teil der einfallenden Strahlung wird direkt weiterübertragen (T), ein anderer Teil wird reflektiert (R) und der dritte Teil absorbiert (A), vgl. Bild 2.

Ein weiterer Faktor, die Emissivität E, bestimmt das Verhältnis zwischen der spektralen Emittanz eines Gegenstandes und jener eines schwarzen Körpers mit derselben Temperatur und Wellenlänge.

$$\varepsilon = \frac{W_{Objekt}}{W_{schwarzer \, K\"{o}rper}}$$

Es gibt drei Typen von Körpern im Zusammenhang mit der Emissivität: