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- gut auf der Betonoberfläche haften,
- vorhandene oder sich neu bildende

Risse bis zu einer Breite von etwa 0,3

mm überbrücken,
- unter Baustellenbedingungen zuverlässig

appliziert werden können,
- auf einfache Art repariert und allenfalls

nach einigen Jahren erneuert
werden können.

Die Forderung nach guter Haftung und
zugleich genügender Rissüberbrückung
ist schwer zu erfüllen, da es sich um
zwei gegenläufige Eigenschaften handelt.

Man beobachtet daher häufig, dass

alte oder neue Betonrisse sich auch in
dünnen, gut haftenden Beschichtungen
zeigen und damit Ansätze neuer Schadstellen

bilden (Bild 7). Auf der anderen
Seite haben starke dehnungsfähige,
rissüberbrückende Beschichtungen oft die
Tendenz zu grösseren Ablösungen, die
meist von einer mechanischen Beschädigung,

etwa durch den Schneepflug,
ausgeht.

Sowohl für Imprägnierungen wie auch
für Beschichtungen besteht ein
verhältnismässig grosses Angebot von Produkten,

die sich zum überwiegenden Teil in
Laborversuchen als geeignet erwiesen
haben. Trotz diesen Ergebnissen sind

Literatur

[1] Bänziger, DJ. und andere (1981): «Der
Lehnenviadukt Beckenried». Baufachverlag

AG, Zürich
[2] Rösli. A., Harnik, A.B. (1979): «Zur Frost-

Tausalz-Beständigkeit von Beton».
Schweiz. Ingenieur und Architekt, Heft 46

[3] Richartz, W. (1969): «Die Bindung von
Chlorid bei der Zementerhärtung».
Zement-Kalk-Gips, Heft 10

[4] Koppel, A.J. (1982): «Versuche zum Beto¬

nieren von Brückenbrüstungen mit frost-
tausalzbeständigem Beton», DJ. Bänziger
und A.J. Koppel, Ingenieurbüro Buchs,
1982

nun leider die Erfahrungen in der Praxis

nicht so eindeutig. Offenbar gilt
auch hier, dass die Verwendung von
qualitativ hochwertigen Materialien
altein nicht genügt für den Erfolg einer
solchen Sanierung. Vielmehr zeigt sich
erneut sehr deutlich, dass auch eine
gründliche Vorbehandlung der
Betonoberfläche, die genaue Einhaltung der
Anwendungsbedingungen (Feuchtigkeit

des Betons, Temperatur usw.) und
die äusserste Sorgfalt in der Applikation

des Produkts entscheidende Faktoren

sind, damit die Beständigkeit von
gefährdeten Betonoberflächen über
längere Zeit erhalten werden kann.

s-*~l

**&~

Bild 7. Rissbildung in gut haftender Beschichtung
mit der Gefahr erneuterSchadenbildung

Adresse der Verfasser: Prof. Dr. A. Rösli, A. Häch-
ler, dipl. Bauing. ETH, Institut für Baustoffe,
Werkstoffchemie und Korrosion, ETH Höngger-
berg, 8093 Zürich.

Biegewellen in Sandwich-Strukturen
Von Mahir Sayir, Zürich

Die Phasengeschwindigkeit von Biegewellen in stab- oder plattenartigen Strukturenmithomogenem

Querschnitt ist von der Wellenlänge abhängig. Bei Wellenlängen, viel grösser als die Dicke der

Struktur, ist die Phasengeschwindigkeit ziemlich genau proportional zur Wellenzahl (reziproke
Wellenlänge ¦ 2 ti). Grosse Wellenlängen fahren langsamer; wegen dieses dispersiven Charakters
der Welle ändert sich die Form eines nichtsinusoidalen Impulses während der Fortpflanzung. Bei

Wellenlängen, die mit der Dicke vergleichbar sind, machen sich starke Schubeinflüsse bemerkbar
(Timoshenko Balken), die Abhängigkeit der Phasengeschwindigkeit von der Wellenlänge wird
schwächer, die Welle wirkt weniger dispersiv. Bei Sandwich-Strukturen mit einem weichen Kern
und steifen Flanschen sind die Schubeinflüsse schon bei grossen Wellenlängen stark, die
Wellenfortpflanzung weist je nach Grössenordnung der Wellenlänge eine eigentümliche Gestalt auf. Im
folgenden Artikel wird ein theoretisches Modell beschrieben, das mit Hilfe von systematischen,
sowohl mathematisch als auch physikalisch begründeten Approximationsschritten den experimentellen

Beobachtungen qualitativ und quantitativ entsprechende Resultate ergibt. Insbesondere wird
gezeigt, dass Querimpulse mit Wellenlängen, die zwischen zwei Referenzlängen A2, X{ liegen, sich

praktisch als dispersionsfreie Schubwellen fortpflanzen.

The phase velocity of flexural waves in beam- or plate-like structures with homogeneous section
depends on the wavelength. For wavelengths whlch are much greater than the thlckness of the
structure, the phase velocity is quite precisely proportional to the wave number (reciprocal
wavelength - 2 tx). Long waves travel slowly; because of this dispersive character, anonsinusoidal Impuls
changes its shape while propagating. Forwavelengths comparable with the thlckness ofthe structure,
strong shear effects are to be expected (Timoshenko beam), the dependence ofthe phase veloclty
on the wavelength gets weaker, the wave is less dispersive. In sandwich-structures with a soft core
between stiff plates, the shear effects are strong even for long waves, the propagation of flexural
wave is associated with characteristic features dependlng on the order of magnitude of the
wavelength. In the following paper, a theoretlcal model ls presented, based on approximation Steps,
which can be mathematically and physically justified. Thls model gives results confirming qualita-
(ively and quantitatively experimental observations. It Is shown In particular that lateral Impulses
with wavelengths lytng between two reference lengths A2, X, propagate practically as shear waves.

Biegewellen in homogenen Balken

Ein Querstoss verursacht an einem dünnen

homogenen Balken eine Störung,
die sich in Form einer Biegewelle
fortpflanzt. Die zugehörige „Wellenglei-
chung" kann aus der Gleichung der
Biegelinie

(1) MJEl

(v Querverschiebung, 0' " Ableitung
nach der Längskoordinate, / Flächenmoment

2. Grades, E Elastizitätsmodul,

Mb Biegemoment) und aus der
Gleichgewichtsbedingung mit
Trägheitskraft

(2) M'„'- p-dV

(p Masse je Volumeneinheit, A m

Querschnittsfläche, 0' m Ableitung nach
der Zeit) hergeleitet werden. Man
bekommt

(3) ML
pA

+ v-0
Eine sinusoidale Störung mit gegebener
Frequenz/und zugehörigerWellenlänge
A, pflanzt sich mit der Phasengeschwindigkeit

(4) c=fk
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Bild 2. Disperstonskurve für einen Kreisquerschnitt

fort. Diese kann aus (3) mindern Ansatz

(5) v v0 exp [2tti (x — ct)/X]

ermittelt werden. Man bekommt

(6) BaBG
X A p

Demgemäss ist die Phasengeschwindigkeit
der Biegewellen der Wellenlänge

umgekehrt proportional. Grosse Wellenlängen,

d.h. kleine Frequenzen fahren
langsamer. Man sagt, dass die Welle „dis-

.E*. G*, fj*

x
OJ

'//////^////////////////A

E G 5

j \'//////////////////////ZA
*t

Bild 3. Sandwich-Balken

Bild 4. Kräfte am Sandwich-Balken ßir mittelgrosse
Wellenlängen

— Y////M///A -^F-fr dF

tN
4-

dx

Q + dQ

persiv" sei, denn bei einem beliebigen
Stoss, der nach der Fourier-Entwicklung
alle sinusoidalen Komponenten
aufweist, deformiert sich die zeitliche und
örtliche Gestalt der Störung während der
Fortpflanzung. Die sinusoidalen Komponenten

mit kleiner Frequenz konzentrieren

sich an dem „Schwanz" der Welle,
während die Komponenten mit grosser
Frequenz sich an der Wellenfront beeilen;

die Störung verflacht sich (Bild 1).

Nach (6) folgt für X^O (d. h. f-«>) c-°°.
Diese Aussage ist unrealistisch. Experimente

zeigen, dass die grössten Frequenzen

sich höchstens mit etwa der
Schubwellengeschwindigkeit

(7)

(G Schubmodul) fortpflanzen. Die Formel

(6) gilt nur für Wellenlängen, welche
bezüglich der Querschnittsdimensionen
(hier charakterisiert durch den
„Trägheitsradius" des Querschnittes \I/A)
genügend gross sind. Ist die Wellenlänge
mit der Querschnittsdimension
vergleichbar, so muss (1) zumindest durch
Berücksichtigung des Schubeinflusses

korrigiert werden. In einem rationell
durchgeführten zweiten Approximationsschritt

bekommt man dann für
einen Kreisquerschnitt vom Radius R mit
]/l/Ä R/2 (siehe [1, 2])

(8)
tcr -Je
X Vp

1+-
3 i ¦(7 + 2-=- -2-^)

.i/2

(G
2(1 +v)

Schubmodul). Die Wel¬

lengeschwindigkeit wird, am besten in
dimensionsloser Form c/yE/p, als Funktion

der „Wellenzahl" k 2it/X bzw. der
dimensionslosen Wellenzahl 2t(]/l/AIX
aufgetragen. Die zugehörige Dispersions-
kurve zeigt, dass der Ausdruck (6) der 1.

Approximation die Tangente der genaueren

Kurve gemäss (8) ergibt (Bild 2).
Experimentelle Messungen bestätigen die
theoretische Kurve gemäss (8), selbst für
Wellenlängen kleiner als die
Querschnittsdimensionen (siehe [3]).

Der Vergleich der genaueren Kurve
gemäss (8) mit ihrer geradlinigen
Approximation gemäss (6) zeigt, dass für etwa
AX10 R (d.h. etwa uR/X>0,3) die
Abweichung immer deutlicher wird. Dies
bestätigt auch die von der Statik her
bekannte Tatsache, dass Schubdeformationen

infolge Querkraft nur bei schlanken
Balken (mit symmetrischem Querschnitt)
vernachlässigt werden dürfen. Der
Wellenlänge entspricht dann in der Statik
die Balkenlänge.

Sandwich-Balken, elementare
Theorie

Bei einem Sandwich-Balken mit
rechteckigem Querschnitt der Gesamtdicke
2H, Breite b, bestehend aus einem
weichen Kern (Elastizitätsmoduli E, G,
spezifische Masse p) und zwei steiferen dünnen

Flanschen der Dicke h<H
(Elastizitätsmoduli E*, G*, spezifische Masse p*)
können für grosse Wellenlängen die
Gleichungen (1), (2) übernommen werden

(Bild 3). Man vernachlässigt dabei
die Schubverformung des Kernes, nimmt
an, dass das Biegemoment nur durch
Zug- und Druckkräfte in den Hanschen
aufgenommen wird und bekommt damit
explizit statt (1)

(9) MJE*AhH

(A 2Hb Querschnittsfläche) und statt
(2)

(10) M'„'= - (p + p* hAv
ri

Wir bezeichnen mit
h

(11) p p + P*
H

die „gemittelte" spezifische Masse und
erhalten aus (9) bis (11) die
Wellengleichung

(12) ^-Hhv"" + v 0
P

sowie mit dem Ansatz (5) die
Phasengeschwindigkeit

(i3) c 2küi^ITX
X p~ H

Eine etwas detailiertere Analyse der
Kräfteübertrageung zwischen Flansch
und Kern zeigt, dass hier drei (wirkliche)
Kräfte im Spiel sind (Bild 4). Die Querkraft

Q am Kern entsteht aus einer
konstanten Schubspannungsverteilung längs
der Kerndicke und „überwindet" die
Trägheit des Kernes sowie die von der
Normalkraft je Längeneinheit N
übertragenen Trägheitskräfte des Flansches.
Die zugeordneten Schubspannungen an
der Kontaktfläche zwischen Flansch und
Kern werden von der Längskraft F im
Flansch „aufgenommen". Da die
Schubverformung des Kernes vernachlässigt
wird, bleiben die Querschnitte eben und
senkrecht zur Mittellinie, so dass
zwischen Q, N, F und v einfache
Beziehungen hergeleitet werden können, die
zu (10) und (12) führen.

Schabkorrektur für mittelgrosse
Wellenlängen (\>X2)

Eine sorgfaltige Analyse der dreidimensionalen

Grundgleichungen der linearen
Elastizität mit Hilfe von asymptotischen
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Entwicklungen nach den kleinen
Parametern

H h H G
(14) e -,e, T,E£ -
deckt auf, dass Schubkorrekturen schon
bei relativ grossen Wellenlängen
notwendig werden, vor allem wenn das

Steifigkeitsverhältnis klein (z. B. kleiner
als etwa 10~2) ist. Auf einen ähnlichen
Effekt bei faserverstärkten Balken mit
steifen Fasern und weicher Matrix weist
bereits die Arbeit [2] hin. Die Einzelheiten

der asymptotischen Analyse für
das hier betrachtete Problem werden in
einer anderen Arbeit angegeben [4].
In der vorliegenden Arbeit stehen
die daraus hergeleiteten anschaulichen
Modelle und die Hauptresultate im
Vordergrund.

Ein sorgfältiges Studium der Grössen-
ordnungen zeigt, dass die elementar
hergeleitete Formel (12) und ihre
Charakterisierung durch die
Phasengeschwindigkeit (13) der sinusoidalen
Störungen nur für

(15) X>2nH ¦dW~^h_
H

gültig bleibt. Der Vergleichswert X\ kann
je nach Verhältnis des Flanschenmoduls
E* zum Schubmodul G des weichen Kernes

erheblich grösser als jener für den
vollen Querschnitt sein. Die Berücksichtigung

der Schubverformung drängt sich
dann, wie oben erwähnt, schon bei grossen

Wellenlängen auf. Die asymptotische
Analyse zeigt, dass die Schubspannungsverteilung

selbst bei diesemverfeinerten
Approximationsschritt längs der Dicke
konstant ist. Der totale Schubwinkel
entsteht einerseits aus der Differenz der
Querverschiebungen und andererseits
aus jener der Längstranslationen der
beiden Flanschen (Bild 5). Beide
Beiträge sind von der gleichen Grössenordnung

für mittelgrosse Wellenlängen
(vergleiche folgenden Abschnitt). Für
die Gleichung der Biegelinie ergibt sich
damit statt (9)

(16)
Mh Q'

E*AhH GA
+

M„
E*AhH GA'

Aus (10), (11), (16) entsteht die Wellen-
gleichung

(17) 4t Hhv"" + \-—Hh (v)" 0
P G

Der letzte Term der linken Seite
entspricht der Schubkorrektur (vergleiche
mit (12)) und darf keineswegs vernachlässigt

werden, falls Wellenlängen
übertragen werden, welche die gleiche
Grössenordnung wie die in (15) erwähnte
Referenzlänge X\ aufweisen. In der Tat
lautet die Phasengeschwindigkeit der

sinusoidalen Störungen gemäss (5) und
(17)

(18) c 2Hi^T/X p Hl

"[/l +x{/x2

Für X>Xi gewinnt man aus (8) wieder
(13) mit XjM-'-O. Je nach Steifigkeitsverhältnis

E*IG kann jedoch die
Referenzlänge, in praktischen Fällen, im
Gegensatz zum vollen Querschnitt
bedeutend grösser sein, so dass Schubkorrekturen

in der Dispersionskurve gemäss
(18) mit E*/G 100 schon für A.<50 H
zu sichtbaren Abweichungen vom
geradlinigen Verlauf gemäss (13) führen können

(Bild 6).

Für X<Xi kann der zweite Term in (17)
im Vergleich zum dritten vernachlässigt
werden. Damit reduziert sich (17) aufdie
dispersionsfreie Schubwellengleichung

(19) Si
P

0

und (18) auf die von der Wellenlänge
unabhängige Schubwellengeschwindigkeit

(20) cs Yg^

Im Bild 6 entspricht dieser Grenzfall
der horizontalen Asymptote. Ein Quer-
stoss im Balken erzeugt dann nur eine
Schubkrümmung (erster Term der linken
Seite von (16) vernachlässigbar), der Balken

wirkt praktisch als Schubfeder. Die
Fortpflanzung eines Impulses erfolgt
dispersionsfrei.

Zur Verstärkung des Schubeinflusses
durch möglichst grosse Steifigkeitsver-
hältnisse E*IG konstruierte dipLBauing.
M. Koller, Assistent an unserem Institut,
einen Balken (und später eine Platte)
durch Verbindung eines weichen Gummikernes

mit Aluminiumflanschen (E*/G
1,8 105). Die vorerst im Rahmen einer

Diplomarbeit von dipl.Masch.Ing. J. Dual
an diesem Balken durchgeführten (siehe
[5]) und von Dr. J. Goodbread überwachten

Experimente bestätigten zwar den
verstärkten Schubeinfluss, deckten
jedoch Abweichungen der Dispersionskurve

vom erwarteten dispersionsfreien
Schubverhalten (Asymptote in Bild 6)
für kleinere Wellenlängen auf. M. Koller
und J. Goodbread verfeinerten später
diese Experimente und entdeckten eine
interessante Analogie zwischen dem
dynamsichen Verhalten einer gespannten
Membran mit kleiner Biegesteifigkeit
und einer Sandwichplatte im Bereich
der kleineren Wellenlängen. Über
Einzelheiten dieser experimentellen Ergebnisse

und ihrer theoretischen Abklärung
werden wir in einer anderen Arbeit
Bericht erstatten [4]. Im nächsten
Abschnitt wird das Resultat der asympto-

u

> 1

"Di
1 /
i /
1/
1/

/!X

1 /
1 /
1/

OJ 1
/

/1
/ i

1 / i

1 1 J
dx

Bild 5. Schubwinkel bei mittelgrossen Wellenlängen

E*/G 102, h/H =0.1

1 0,3

x
io/0,2

j/
Nl8)/

i

L—i—

H
0,2 0,4 0,6 0,8

2nHA
1,0

Bild 6. Dispersionskurve für mittelgrosse Wellenlän¬

gen

tischen Analyse für kleinere Wellenlängen

kurz erörtert.

Verhalten für kleinere
Wellenlängen (k<X{)

Die asymptotische Analyse mit den kleinen

Parametern (14) zeigt, dass (17) nur
für

(21) X>2nH l/F
G

JL
H3

X2
H

gültig bleibt. Bei Wellenlängen der
gleichen Grössenordnung wie die Referenzlänge

X2 macht sich die Biegesteifigkeit
der Hanschen bemerkbar. Die Normalkraft

je Längeneinheit N (Bild 4) erfüllt
eine neue, wichtige Funktion. Während
sie bei grossen und mittelgrossen
Wellenlängen nur die Trägheitskraft des
Flansches überträgt, wirkt sie bei kleineren

Wellenlängen zusätzlich als eine Art
„Bettungskraft" als Federkraft, die vom
Kern Schubfeder) ausgeübt wird. Im
Schubwinkel des Kernes spielt nur die
Differenz der Querverschiebungen eine
Rolle. Die Längsverschiebungen
Membrandeformation) und damit auch die
Längskräfte fkönnen in erster Näherung
vernachlässigt werden. Um sich der
Schubkrümmung des Kernes anzupassen,
müssen sich die Flanschen durchbiegen
und, da ihre Biegesteifigkeit nicht mehr
vernachlässigt werden kann, nehmen sie
individuell je die Hälfte des Biegemo-
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Mb Ö

fj*hbvdx
I

'jMb + dMb

I
I

I
i

I
'

Ndx

Q
A q v d x

dx
Q tQ dx

Ndx

3ild 7. Kräfte am Sandwich-Balken für kleinere Wellenlängen

mentes auf. Sie wirken damit wie zwei
Balken, die durch Schubfeder verbunden
sind. Die Gleichgewichtsbedingung am
Flansch ergibt (Bild 7)

(22) M'b'=N- p*hbv,

jene am Kern

(23) Q' 27V + ^pv.

Die Querkraft Q genügt in dieser Näherung

der Stoffbeziehung

(24) Ö GAv'

und das Biegemoment MB der Gleichung
der Biegelinie für die Flanschen

1.3

+ v 0.

(25) M„
bh'

E*v"

Aus (22) bis (25) entsteht die
Wellengleichung

(26) -~ • ^r v"" - -E-
\2H p p

Für X>Xi kann der erste Term von (26)
vernachlässigt werden, und (26) reduziert

sich auf die dispersionsfreie
Schubwellengleichung (19), die somit im
Bereich X\<X<X2 im Sinne einer ersten
Approximation verwendet werden kann.
Die Wellengleichung (26) entspricht
jener eines elastisch eingebetteten
Balkens oder auch eines vorgespannten Stabes

mit mehr oder weniger ausgeprägter
Biegesteifigkeit Damit erklärt sich die
obenerwähnte experimentell festgestellte
Analogie im dynamischen Verhalten
einer vorgespannten Membran (z.B.
Trommelfell) und einer Sandwich-Platte
aus Gummi und Aluminium (selbstverständlich

lassen sich die hier für den
Sandwich-Balken aufgestellten
Beziehungen ohne Schwierigkeit auch auf
Platten übertragen (siehe [4]).

Der Ansatz (5) ergibt mit der
Wellengleichung (26) die Phasengeschwindigkeit

(27) ..»£. y1+j-4
12 r

Für X>X2 tritt in der Tat der obenerwähnte

Grenzfall der Schubwellen auf,
während sich für X<€X2 die Dispersionskurve

einer schiefen Asymptote nähert
(Bild 8). Diese entspricht der
Dispersionsgeraden eines einzelnen Flansches
unter reiner Biegung ohne Bettungsein-
fluss. Dieser Grenzfall gilt nicht für beliebig

kleine Wellenlängen, denn sobald X

die Grössenordnung der Flanschdicke h
erreicht, treten entsprechende Schubeinflüsse

auf, so dass die Dispersionskurve
für extrem kleine Wellenlängen schlussendlich

etwa die horizontale Asymptote
der Schubwellengeschwindigkeit des
Flansches erreicht

Eine Synthese

Eine Kombination der Überlegungen
aus den beiden letzten Abschnitten führt
zur Wellengleichung

iA f* p* f*(28) — • — • — v""" - hH^r V*"
12 G p p

+ hH — v" - v 0
G

Sie gilt sowohl für grosse als auch für
kleine Wellenlängen, die bezüglich der
Flanschendicke h genügend gross sind.
Für X>X2 kann der erste Term vernachlässigt

werden, und (28) reduziert sich
auf (17). Für k<Xt darf der letzte Term
im Vergleich zum vorletzten vernachlässigt

werden, und (28) reduziert sich
auf (26). Die Phasengeschwindigkeit
gemäss (28) lautet mit dem Ansatz (5)

Bild 8. Dispersionskurvefür kleinere Wellenlängen Bild 9. Dtsperstonskurve gemäss (29) und Vergleich
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(29) c 2n-**-- l/^Ä
X p H

]/l +AJ/12A.2

|/l + X\lX2

Die zugehörige Dispersionskurve zeigt
dass die Approximationen gemäss (18)
für X>X2 und (27) für a^Aj, sehr
vernünftige Resultate ergeben (Bild 9). Da
die Approximationen aus den beiden
letzten Abschnitten die physikalischen
Hauptmechanismen im Vergleich zu (28)
expliziter beschreiben, sind die einfacheren

Wellengleichungen (17) und (26) in
ihren entsprechenden Gültigkeitsbereichen

der Gleichung (28) vorzuziehen.
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In statischen Anwendungen erwartet
man, dass in der Nähe der Lastunstetigkeiten

und Lager das im Abschnitt zuvor
beschriebene Modell mit biegesteifen
Flanschen und Schubfederung gültig
wird (Jdeine Wellenlängen"). Genügend
weit von solchen Stellen darf dagegen
das im Abschnitt „Schubkorrektur für

mittelgroße Wellenlängen" beschriebene

Modell mit biegeweichen Flanschen
im Membranzustand und schubübertragendem

Kern verwendet werden („grössere

Wellenlängen").

Adresse des Verfasser: Prof. Dr. M. Sayir, Institut für
Mechanik, ETH-Zentrum, 8092 Zürich

Über den Ausdruck unserer Bauwerke
Von Walter A. Schmid, Zürich

Ein Weg zu lebensfördemdem Bauen. Alles, was wir erschaffen, hat Ausdruck und
beeindruckt. Eine Methode wird erläutert, sich in der Ästhetik zu Üben.

Comment construire pour elever la qualite de la vie? Tout ce que l'on cree possede son expres-
sion et impressionne. L'auteur montre comment se former l'esthetique par la contemplation
et l'analyse des impressions recues.

How to get away from ugly to life enhancing structures. Bearing in mind that whatever we
create has expression and will impress, the author shows a method of training esthetics in
contempla ting and articulating one's impressions.

«Die Eigentümlichkeit des Ausdrucks ist
Anfang und Ende aller Künste» Goethe

Es ist bekannt, wie sehr der Jubilar den
Nachwuchs fördert, darum hat der
Verfasser beim Schreiben der nachfolgenden

Zeilen vor allem an die jüngere
Generation gedacht. Es wäre ihm eine
Freude, wenn die Jungen, die sich um
lebensförderndes Gestalten bemühen,
in den folgenden Zeilen etwas fänden,
das ihnen weiterhilft.

Lieber junger Gestalter, lieber
frischgebackener Berufskollege

Mit unserem Beruf des Baufachmannes
übernehmen wir unter anderem die
Aufgabe, unsere Welt sichtbar mitzufor-
men. Diese Darlegungen sollen zeigen,
wie ein Teil unseres für die Formgebung

nötigen Rüstzeuges in ständigem
Bestreben entwickelt werden kann.

Schönheit, Empfinden
In der Gruppenarbeit «Ästhetik im
Bauingenieurwesen» der Internationalen

Vereinigung für Brückenbau und
Hochbau haben wir erkennen müssen,
wie schwierig es ist zu definieren, was
wir unter Schönheit verstehen.

Ich möchte hier zeigen, dass wir, statt
nach der Schönheit zu fragen, nach dem
Ausdruck suchen wollen. Der Ausdruck
eines Objektes ist für uns das, was wir
darüber empfinden.

Fragen wir nach dem Duft jener sattroten

Rose «Papa Meilland» oder was
über die Interpretation von Mozarts
A-Dur-Violinkonzert durch die Künstlerin

M. zu sagen ist, beide Male werden

wir eine ähnliche Antwort erhalten,

wie sie jener Architekturstudent
über das neue, im Sommer 1982 bezogene

Bankgebäude an der Bärengasse in
Zürich gegeben hat: Es werden uns
Empfindungen bekanntgegeben. Diese
Beobachtung haben schon unsere
Wortschöpfer-Vorfahren gemacht, bedeutet
doch das griechische «aisthanesthai»
«Empfinden». Das heisst, Ästhetik ist
die Lehre von den «Empfindungen».
Hier noch eine Aussage von Rainer Maria

Rilke über Cizannes Aquarelle:
«... die Aquarelle sind sehr schön.
Ebenso sicher wie die Bilder und ebenso

leicht, wie jene massiv sind.
Landschaften, ganz leichte Bleistiftumrisse,
auf die nur da und dort, als Nachdruck
und Bestätigung gleichsam, ein Zufall
von Farbe fällt, eine Reihe von Flek-
ken, wunderbar angeordnet und von

einer Sicherheit im Anschlag, als
spiegelte sich eine Melodie.»

Eindruck - Ausdruck

Alles, was und wie Sie es immer schaffen,

hat Ausdruck, beeindruckt das
Mitlebende, wird empfunden. Wir wollen

den immer hörbarer werdenden
Ruf nach Lebensqualität auch in unserem

Beruf beachten. Darum gestalten
wir nicht nur statisch richtig und
wirtschaftlich, sondern gleich auch noch
mit positivem Ausdruck, lebensfördernd.

Sie fragen: Wie? Ich meine: Schulen
wir uns an und mit den Eindrücken!
Wir fragen uns: Wie beeindruckt mich
dieses Gegenüber, was empfinde ich?
Wir suchen nach dem Ausdruck und
fassen es in Worte: «Im Ansprechen der
Welt durch das Wort werden die
Eindrücke nach bleibenden Bedeutungskomplexen

gegliedert und als
überschaubares, gegenständliches
Orientierungsfeld vor das Bewusstsein gebracht

In seinen kreativen Phasen wird das

ganze Wesen des schöpferischen
Menschen beteiligt. Wir können unsere
Eindrucksfelder nicht breit genug anlegen,
damit uns später daraus die Früchte
unseres Ausdrucks zufallen. Im Umgang
mit den Bauwerken ist unser Auge,
neben dem Tastsinn und dem Gehör, am
stärksten beteiligt. Deshalb verbleiben
wir im folgenden bei den durch den
Gesichtssinn vermittelten Eindrücken.

Der Ausdruck als Bewegung

Es ist hier nicht der Platz, das grosse
Gebiet der Ausdruckskunde darzulegen.

Wie Ludwig Klages [2] gesagt hat,
werden wir durch den Ausdruck
bewegt; dieses Bewegende ist selber Bewegung,

wie Tanz, Gesten, Gebärden,
Gangarten, Gewohnheiten. Es kann
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