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- gut auf der Betonoberfldche haften,

- vorhandene oder sich neu bildende
Risse bis zu einer Breite von etwa 0,3
mm lberbriicken,

- unter Baustellenbedingungen zuver-
lassig appliziert werden kénnen,

- auf einfache Art repariert und allen-
falls nach einigen Jahren erneuert
werden konnen.

Die Forderung nach guter Haftung und
zugleich gentigender Rissiiberbriickung
ist schwer zu erfiillen, da es sich um
zwei gegenldufige Eigenschaften han-
delt. Man beobachtet daher hédufig, dass
alte oder neue Betonrisse sich auch in
diinnen, gut haftenden Beschichtungen
zeigen und damit Ansdtze neuer Schad-
stellen bilden (Bild 7). Auf der anderen
Seite haben starke dehnungsféhige, riss-
iiberbriickende Beschichtungen oft die
Tendenz zu grosseren Ablosungen, die
meist von einer mechanischen Beschi-
digung, etwa durch den Schneepflug,
ausgeht.

Sowohl fiir Impriagnierungen wie auch
fiir Beschichtungen besteht ein verhélt-
nismaéssig grosses Angebot von Produk-
ten, die sich zum tiberwiegenden Teil in
Laborversuchen als geeignet erwiesen
haben. Trotz diesen Ergebnissen sind
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nun leider die Erfahrungen in der Pra-
xis nicht so eindeutig. Offenbar gilt
auch hier, dass die Verwendung von
qualitativ hochwertigen Materialien al-
lein nicht geniigt fiir den Erfolg einer
solchen Sanierung. Vielmehr zeigt sich
erneut sehr deutlich, dass auch eine
griindliche Vorbehandlung der Beton-
oberfliche, die genaue Einhaltung der
Anwendungsbedingungen  (Feuchtig-
keit des Betons, Temperatur usw.) und
die #dusserste Sorgfalt in der Applika-
tion des Produkts entscheidende Fakto-
ren sind, damit die Bestdndigkeit von
gefdhrdeten Betonoberflichen {iber
lingere Zeit erhalten werden kann.

Biegewellen in Sandwich-Strukturen
Von Mahir Sayir, Ziirich

Die Phasengeschwindigkeit von Biegewellenin stab-oder plattenartigen Strukturen mit homogenem
Querschnitt ist von der Wellenléinge abhiingig. Bei Wellenliingen, viel grosser als die Dicke der
Struktur, ist die Phasengeschwindigkeit ziemlich genau proportional zur Wellenzahl (reziproke
Wellenliinge - 2 7). Grosse Wellenlingen fahren langsamer; wegen dieses dispersiven Charakters
der Welle éndert sich die Form eines nichtsinusoidalen Impulses wihrend der Fortpflanzung. Bei
Wellenliingen, die mit der Dicke vergleichbar sind, machen sich starke Schubeinfliisse bemerkbar
(Timoshenko Balken), die Abhiingigkeit der Phasengeschwindigkeit von der Wellenlinge wird
schwiicher, die Welle wirkt weniger dispersiv. Bei Sandwich-Strukturen mit einem weichen Kern
und steifen Flanschen sind die Schubeinfliisse schon bei grossen Wellenlingen stark, die Wellen-
fortpflanzung weist je nach Griossenordnung der Wellenliinge eine eigentiimliche Gestalt auf. Im
folgenden Artikel wird ein theoretisches Modell beschrieben, das mit Hilfe von systematischen,
sowohl mathematisch als auch physikalisch begriindeten Approximationsschritten den experimen-
tellen Beobachtungen qualitativ und quantitativ entsprechende Resultate ergibt. Inshesondere wird
gezeigt, dass Querimpulse mit Wellenliingen, die zwischen zwei Referenzlingen 1,, A, liegen, sich
praktisch als dispersionsfreie Schubwellen fortpflanzen.

The phase velocity of flexural waves in beam- or plate-like structures with homogeneous section
depends on the wavelength. For wavelengths which are much greater than the thickness of the
structure, the phase velocity is quite precisely proportional to the wave number (reciprocal wave-
length - 2 7). Long waves travel slowly; because of this dispersive character, a nonsinusoidal impuls
changes its shape while propagating. For wavelengths comparable with the thickness of the structure,
strong shear effects are to be expected (Timoshenko beam), the dependence of the phase velocity
on the wavelength gets weaker, the wave is less dispersive. In sandwich-structures with a soft core
between stiff plates, the shear effects are strong even for long waves, the propagation of flexural
wave is associated with characteristic features depending on the order of magnitude of the wave-
length. In the following paper, a theoretical model is presented, based on approximation steps,
which can be mathematically and physically justified. This model gives results confirming qualita-
tively and quantitatively experimental observations. It is shown in particular that lateral impulses
with wavelengths lying between two reference lengths A,, A, propagate practically as shear waves.
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Bild 7. Rissbildung in gur haftender Beschichtung
mit der Gefahr erneuter Schadenbildung
k

Adresse der Verfasser: Prof. Dr. A. Résli, A. Hdch-
ler, dipl. Bauing. ETH. Institut fiir Baustoffe,
Werkstoffchemie und Korrosion, ETH Hongger-
berg, 8093 Ziirich.

Biegewellen in homogenen Balken

Ein Querstoss verursacht an einem diin-
nen homogenen Balken eine Storung,
die sich in Form einer Biegewelle fort-
pflanzt. Die zugehorige ,,Wellenglei-
chung®“ kann aus der Gleichung der
Biegelinie

(1) v’ = My/E

(v = Querverschiebung, ()’ = Ableitung
nach der Lingskoordinate, / = Flichen-
moment 2. Grades, £ = Elastizitdtsmo-
dul, M, = Biegemoment) und aus der
Gleichgewichtsbedingung mit Trég-
heitskraft

Q) Mp= - pAv

(p = Masse je Volumeneinheit, 4 =
Querschnittsfliche, () = Ableitung nach
der Zeit) hergeleitet werden. Man be-
kommt

3) —v™M+i=0
3) pAv \

Eine sinusoidale Stérung mit gegebener
Frequenz fund zugehdoriger Wellenlinge
A pflanzt sich mit der Phasengeschwin-
digkeit

@) c=/
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Bild 1. Dispersion einer Biegewelle
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Bild 2. Dispersionskurve fiir einen Kreisquerschnitt

fort. Diese kann aus (3) mit dem Ansatz
5) v=vyexp[2ni (x — ct)/A]

ermittelt werden. Man bekommt
2 I E

6 c==.)=. V=
A A p

Demgemiss ist die Phasengeschwindig-
keit der Biegewellen der Wellenlinge
umgekehrt proportional. Grosse Wellen-
lingen, d.h. kleine Frequenzen fahren
langsamer. Man sagt, dass die Welle ,,dis-

E*, G*, p*
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Bild 3. Sandwich-Balken

Bild 4.  Krdfte am Sandwich-Balken fiir mittelgrosse

Wellenlingen

Q +dQ
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persiv® sei, denn bei einem beliebigen
Stoss, der nach der Fourier-Entwicklung
alle sinusoidalen Komponenten auf-
weist, deformiert sich die zeitliche und
ortliche Gestalt der Storung wiahrend der
Fortpflanzung. Die sinusoidalen Kompo-
nenten mit kleiner Frequenz konzentrie-
ren sich an dem ,Schwanz® der Welle,
wihrend die Komponenten mit grosser
Frequenz sich an der Wellenfront beei-
len; die Stérung verflacht sich (Bild 1).

Nach (6) folgt fiir A0 (d. h. f—>00) ¢ o0,
Diese Aussage ist unrealistisch. Experi-
mente zeigen, dass die grossten Frequen-
zen sich hochstens mit etwa der Schub-
wellengeschwindigkeit

R

(G = Schubmodul) fortpflanzen. Die For-
mel (6) gilt nur fiir Wellenlidngen, welche
beziiglich der Querschnittsdimensionen
(hier charakterisiert durch den ., Trig-

heitsradius“ des Querschnittes |/7/4) ge-
niigend gross sind. Ist die Wellenlinge
mit der Querschnittsdimension ver-
gleichbar, so muss (1) zumindest durch
Beriicksichtigung des Schubeinflusses
korrigiert werden. In einem rationell
durchgefiihrten zweiten Approxima-
tionsschritt bekommt man dann fir
einen Kreisquerschnitt vom Radius R mit

V1/4 = Ri2 (siehe [1, 2])

R 1/E
B8 c=—VF—
Aop
2 p2 =15
1+”—R;2(7+2£—2£)
3 2 G
(G =2(1—E+)— = Schubmodul). Die Wel-
Vv

lengeschwindigkeit wird, am besten in

dimensionsloser Form ¢/ |/ E/p, als Funk-
tion der ,,Wellenzahl“ k = 2n/A bzw. der

dimensionslosen Wellenzahl ZnI/I/_A/A
aufgetragen. Die zugehorige Dispersions-
kurve zeigt, dass der Ausdruck (6) der 1.
Approximation die Tangente der genau-
eren Kurve gemiiss (8) ergibt (Bild 2). Ex-
perimentelle Messungen bestatigen die
theoretische Kurve gemiss (8), selbst fiir
Wellenldngen kleiner als die Quer-
schnittsdimensionen (siehe [3]).

Der Vergleich der genaueren Kurve
gemiss (8) mit ihrer geradlinigen Appro-
ximation gemiss (6) zeigt, dass flir etwa
A<10 R (d. h. etwa TtR/A>0,3) die Ab-
weichung immer deutlicher wird. Dies
bestitigt auch die von der Statik her be-
kannte Tatsache, dass Schubdeformatio-
nen infolge Querkraft nur bei schlanken
Balken (mit symmetrischem Querschnitt)
vernachlissigt werden dirfen. Der Wel-
lenlinge entspricht dann in der Statik
die Balkenlinge.

Sandwich-Balken, elementare
Theorie

Bei einem Sandwich-Balken mit recht-
eckigem Querschnitt der Gesamtdicke
2H, Breite b, bestehend aus einem wei-
chen Kern (Elastizititsmoduli E, G, spezi-
fische Masse p) und zwei steiferen diin-
nen Flanschen der Dicke h< H (Elastizi-
tatsmoduli E*, G*, spezifische Masse p*)
konnen fir grosse Wellenldngen die
Gleichungen (1), (2) ibernommen wer-
den (Bild 3). Man vernachldssigt dabei
die Schubverformung des Kernes, nimmt
an, dass das Biegemoment nur durch
Zug- und Druckkrifte in den Flanschen
aufgenommen wird und bekommt damit
explizit statt (1)

©) v’ = M/E*AhH

(A = 2Hb = Querschnittsfliche) und statt
)

(10) My=~(p +p* 4i
Wir bezeichnen mit
h
11) p=p+ p* —
(I1) p=p+p 0

die ,gemittelte* spezifische Masse und
erhalten aus (9) bis (11) die Wellen-
gleichung

*
E* Hner + 9 =0

(12)

sowie mit dem Ansatz (5) die Phasenge-
schwindigkeit

H 1E* h
c=2n— |J— - —

A p H
Eine etwas detailiertere Analyse der
Krifteiibertrageung zwischen Flansch
und Kern zeigt, dass hier drei (wirkliche)
Krifte im Spiel sind (Bild 4). Die Quer-
kraft Q am Kern entsteht aus einer kon-
stanten Schubspannungsverteilung langs
der Kerndicke und ,iiberwindet® die
Tragheit des Kernes sowie die von der
Normalkraft je Lédngeneinheit N liber-
tragenen Trigheitskrifte des Flansches.
Die zugeordneten Schubspannungen an
der Kontaktfliche zwischen Flansch und
Kern werden von der Langskraft F im
Flansch ,aufgenommen®. Da die Schub-
verformung des Kernes vernachléssigt
wird, bleiben die Querschnitte eben und
senkrecht zur Mittellinie, so dass zwi-
schen Q, N, F und v einfache Bezie-
hungen hergeleitet werden konnen, die
zu (10) und (12) fihren.

(13)

Schubkorrektur fiir mittelgrosse
Wellenlidngen (A>4;)

Eine sorgfiltige Analyse der dreidimen-
sionalen Grundgleichungen der linearen
Elastizitit mit Hilfe von asymptotischen
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Entwicklungen nach den kleinen Para-
metern

H _G
A,E B*

deckt auf, dass Schubkorrekturen schon
bei relativ grossen Wellenldngen not-
wendig werden, vor allem wenn das
Steifigkeitsverhiltnis klein (z. B. kleiner
als etwa 1072) ist. Auf einen dhnlichen
Effekt bei faserverstirkten Balken mit
steifen Fasern und weicher Matrix weist
bereits die Arbeit [2] hin. Die Einzel-
heiten der asymptotischen Analyse fiir
das hier betrachtete Problem werden in
einer anderen Arbeit angegeben [4].
In der vorliegenden Arbeit stehen
die daraus hergeleiteten anschaulichen
Modelle und die Hauptresultate im
Vordergrund.

(14) ¢ =§, 6 =

Ein sorgfiltiges Studium der Grossen-
ordnungen zeigt, dass die elementar
hergeleitete Formel (12) und ihre Cha-
rakterisierung durch die Phasenge-
schwindigkeit (13) der sinusoidalen Sto-
rungen nur fir

*
15) A2 H I/% , gl

H

giiltig bleibt. Der Vergleichswert A; kann
je nach Verhiltnis des Flanschenmoduls
E*zum Schubmodul G des weichen Ker-
nes erheblich grosser als jener fiir den
vollen Querschnitt sein. Die Berticksich-
tigung der Schubverformung dridngt sich
dann, wie oben erwédhnt, schon bei gros-
sen Wellenlidngen auf. Die asymptotische
Analyse zeigt, dass die Schubspannungs-
verteilung selbst bei diesem verfeinerten
Approximationsschritt ldngs der Dicke
konstant ist. Der totale Schubwinkel ent-
steht einerseits aus der Differenz der
Querverschiebungen und andererseits
aus jener der Léngstranslationen der
beiden Flanschen (Bild 5). Beide Bei-
trige sind von der gleichen Grdéssen-
ordnung fiir mittelgrosse Wellenldingen
(vergleiche folgenden Abschnitt). Fir
die Gleichung der Biegelinie ergibt sich
damit statt (9)

M »
16 v =—r L -
E*4hH  GA
X Mb _ MI’)’
E*AhH  GA’

Aus (10), (11), (16) entsteht die Wellen-
gleichung

* *
(17) ET Hhv?* + ¥ — g Hh (V)" =0
p G

Der letzte Term der linken Seite ent-
spricht der Schubkorrektur (vergleiche
mit (12)) und darf keineswegs vernach-
lassigt werden, falls Wellenldngen iiber-
tragen werden, welche die gleiche Gros-
senordnung wie die in (15) erwidhnte
Referenzlinge )\, aufweisen. In der Tat
lautet die Phasengeschwindigkeit der

sinusoidalen Stérungen gemadss (5) und
(17)

H 1/E* h
18 = — __/
18 ¢ " p H

1+ 23722

Fiir A> A, gewinnt man aus (8) wieder
(13) mit A,;/A—0. Je nach Steifigkeits-
verhiltnis £%/ G kann jedoch die Refe-
renzlinge, in praktischen Fillen, im
Gegensatz zum vollen Querschnitt be-
deutend grosser sein, so dass Schubkor-
rekturen in der Dispersionskurve gemass
(18) mit E*/G = 100 schon fiir A<50 H
zu sichtbaren Abweichungen vom gerad-
linigen Verlauf gemdiss (13) fiihren kon-
nen (Bild 6).

Fiir A<, kann der zweite Term in (17)
im Vergleich zum dritten vernachlédssigt
werden. Damit reduziert sich (17) auf die
dispersionsfreie Schubwellengleichung

(19) gv”—i}=0
p

und (18) auf die von der Wellenlédnge un-
abhingige Schubwellengeschwindigkeit

@0 ¢ =Yors

Im Bild 6 entspricht dieser Grenzfall
der horizontalen Asymptote. Ein Quer-
stoss im Balken erzeugt dann nur eine
Schubkriimmung (erster Term der linken
Seite von (16) vernachléssigbar), der Bal-
ken wirkt praktisch als Schubfeder. Die
Fortpflanzung eines Impulses erfolgt dis-
persionsfrei.

Zur Verstirkung des Schubeinflusses
durch moglichst grosse Steifigkeitsver-
hiltnisse £*/G konstruierte dipl.Bauing.
M. Koller, Assistent an unserem Institut,
einen Balken (und spiter eine Platte)
durch Verbindung eines weichen Gummi-
kernes mit Aluminiumflanschen (E* G
= 1,8 10°). Die vorerst im Rahmen einer
Diplomarbeit von dipl.Masch.Ing. J. Dual
an diesem Balken durchgefiihrten (siehe
[5]) und von Dr. J. Goodbread iiberwach-
ten Experimente bestitigten zwar den
verstirkten Schubeinfluss, deckten je-
doch Abweichungen der Dispersions-
kurve vom erwarteten dispersionsfreien
Schubverhalten (Asymptote in Bild 6)
fiir kleinere Wellenldngen auf. M. Koller
und J. Goodbread verfeinerten spiter
diese Experimente und entdeckten eine
interessante Analogie zwischen dem
dynamsichen Verhalten einer gespannten
Membran mit kleiner Biegesteifigkeit
und einer Sandwichplatte im Bereich
der kleineren Wellenlingen. Uber Ein-
zelheiten dieser experimentellen Ergeb-
nisse und ihrer theoretischen Abklirung
werden wir in einer anderen Arbeit
Bericht erstatten [4]. Im nédchsten Ab-
schnitt wird das Resultat der asympto-

=
el

Bild 5. Schubwinkel bei mittelgrossen Wellenldngen

E*/G=10%, h/H=0,
//
? 0,3 — T
- |unl/ (
A / (18)
1010’2
= 4
£ /
w
01
: :;*)\1
0 f
0 0,2 0,4 0,6 0,8 1,0
2TMH/A
Bild 6. Dispersionskurve fiir mittelgrosse Wellenldn-

gen

tischen Analyse fiur kleinere Wellen-
lingen kurz erortert.

Verhalten fiir kleinere
Wellenldngen (A <A,)

Die asymptotische Analyse mit den klei-
nen Parametern (14) zeigt, dass (17) nur
fur

]/E* 0 h

(21) A>2n H E?= k2=ﬁkl
giiltig bleibt. Bei Wellenlédngen der glei-
chen Grossenordnung wie die Referenz-
linge A, macht sich die Biegesteifigkeit
der Flanschen bemerkbar. Die Normal-
kraft je Langeneinheit N (Bild 4) erfiillt
eine neue, wichtige Funktion. Wiahrend
sie bei grossen und mittelgrossen Wel-
lenlingen nur die Triagheitskraft des
Flansches Ubertragt, wirkt sie bei kleine-
ren Wellenldngen zusitzlich als eine Art
,Bettungskraft als Federkraft, die vom
Kern (= Schubfeder) ausgelibt wird. Im
Schubwinkel des Kernes spielt nur die
Differenz der Querverschiebungen eine
Rolle. Die Lingsverschiebungen (= Mem-
brandeformation) und damit auch die
Lingskrifte Fkonnen in erster Niherung
vernachldssigt werden. Um sich der
Schubkriimmung des Kernes anzupassen,
miissen sich die Flanschen durchbiegen
und, da ihre Biegesteifigkeit nicht mehr
vernachlissigt werden kann, nehmen sie
individuell je die Hilfte des Biegemo-
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Q gV dx Q + Q'dx
dx -
g o
i Ndx
Bild 7. Krdfte am Sandwich-Balken fiir kleinere Wellenlingen
mentes auf. Sie wirken damit wie zwei WoOE* . G . .
Balken, die durch Schubfederverbunden  (26) ToH == il o v kv =0

sind. Die Gleichgewichtsbedingung am
Flansch ergibt (Bild 7)

(22) M= N — p*hbv,
jene am Kern
(23) Q’= 2N + ApV.

Die Querkraft Q geniigt in dieser Nihe-
rung der Stoffbeziehung

(24) Q= G4V’

und das Biegemoment M, der Gleichung
der Biegelinie fiir die Flanschen

3
@53 -3, = % Ew

Aus (22) bis (25) entsteht die Wellen-
gleichung

Bild 8. Dispersionskurve fiir kleinere Wellenlingen

Fiir A> X, kann der erste Term von (26)
vernachlissigt werden, und (26) redu-
ziert sich auf die dispersionsfreie Schub-
wellengleichung (19), die somit im Be-
reich 4; <A<A, im Sinne einer ersten
Approximation verwendet werden kann.
Die Wellengleichung (26) entspricht
jener eines elastisch eingebetteten Bal-
kens oder auch eines vorgespannten Sta-
bes mit mehr oder weniger ausgeprigter
Biegesteifigkeit. Damit erklirt sich die
obenerwidhnte experimentell festgestellte
Analogie im dynamischen Verhalten
einer vorgespannten Membran (z.B.
Trommelfell) und einer Sandwich-Platte
aus Gummi und Aluminium (selbstver-
stindlich lassen sich die hier fiir den
Sandwich-Balken aufgestellten Bezie-
hungen ohne Schwierigkeit auch auf
Platten {ibertragen (siehe [4]).

Bild 9.

Der Ansatz (5) ergibt mit der Wellen-
gleichung (26) die Phasengeschwindig-
keit

& 1 M
) = Ve W+ LA
2k, & 5 12 A2

Fir A> A, tritt in der Tat der obener-
wihnte Grenzfall der Schubwellen auf,
wahrend sich fiir A <A, die Dispersions-
kurve einer schiefen Asymptote nihert
(Bild 8). Diese entspricht der Disper-
sionsgeraden eines einzelnen Flansches
unter reiner Biegung ohne Bettungsein-
fluss. Dieser Grenzfall gilt nicht fiir belie-
big kleine Wellenldngen, denn sobald A
die Grossenordnung der Flanschdicke h
erreicht, treten entsprechende Schubein-
fliisse auf, so dass die Dispersionskurve
fiir extrem kleine Wellenldngen schluss-
endlich etwa die horizontale Asymptote
der Schubwellengeschwindigkeit des
Flansches erreicht.

Eine Synthese

Eine Kombination der Uberlegungen
aus den beiden letzten Abschnitten fithrt
zur Wellengleichung

* *
_—— s — V“"” = hf[E‘T vn”
G P 3
*

+hHE - =0
G

Sie gilt sowohl fiir grosse als auch fiir
kleine Wellenldngen, die bezliglich der
Flanschendicke 4 geniigend gross sind.
Fiir A> A, kann der erste Term vernach-
ldssigt werden, und (28) reduziert sich
auf (17). Fir A<, darf der letzte Term
im Vergleich zum vorletzten vernach-
lassigt werden, und (28) reduziert sich
auf (26). Die Phasengeschwindigkeit ge-
mass (28) lautet mit dem Ansatz (5)

Dispersionskurve gemdss (29) und Vergleich

E*/G=18.10°, h/H=0/

10
29) 27
E*/G=18.10% , h/H=0,1 ( \ =T |
J . 08
- ] = 17 o i A E o b S U
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V1 + 2371242
Y1+ 2372

Die zugehdrige Dispersionskurve zeigt,
dass die Approximationen gemadss (18)
fiir A>1, und (27) fur A<A,, sehr ver-
niinftige Resultate ergeben (Bild 9). Da
die Approximationen aus den beiden
letzten Abschnitten die physikalischen
Hauptmechanismen im Vergleich zu (28)
expliziter beschreiben, sind die einfache-
ren Wellengleichungen (17) und (26) in
ihren entsprechenden Giiltigkeitsberei-
chen der Gleichung (28) vorzuziehen.
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In statischen Anwendungen erwartet
man, dass in der Ndhe der Lastunstetig-
keiten und Lager das im Abschnitt zuvor
beschriebene Modell mit biegesteifen
Flanschen und Schubfederung giiltig
wird (,kleine Wellenldngen®). Geniigend
weit von solchen Stellen darf dagegen
das im Abschnitt  Schubkorrektur fiir

Uber den Ausdruck unserer Bauwerke

Von Walter A. Schmid, Ziirich

Ein Weg zu lebensforderndem Bauen. Alles, was wir erschaffen, hat Ausdruck und beein-
druckt. Eine Methode wird erldutert, sich in der Asthetik zu iiben.

Comment construire pour élever la qualité de la vie? Tout ce que I'on crée posséde son expres-
sion et impressionne. L’auteur montre comment se former ’esthétique par la contemplation

et 'analyse des impressions regues.

How to get away from ugly to life enhancing structures. Bearing in mind that whatever we
create has expression and will impress, the author shows a method of training esthetics in
contemplating and articulating one’s impressions.

«Die Eigenttimlichkeit des Ausdrucks ist
Anfang und Ende aller Kiinste» Goethe

Es ist bekannt, wie sehr der Jubilar den
Nachwuchs fordert, darum hat der Ver-
fasser beim Schreiben der nachfolgen-
den Zeilen vor allem an die jiingere Ge-
neration gedacht. Es wire ihm eine
Freude, wenn die Jungen, die sich um
lebensférderndes Gestalten bemiihen,
in den folgenden Zeilen etwas finden,
das ihnen weiterhilft.

Lieber junger Gestalter, lieber
frischgebackener Berufskollege

Mit unserem Beruf des Baufachmannes
ibernehmen wir unter anderem die
Aufgabe, unsere Welt sichtbar mitzufor-
men. Diese Darlegungen sollen zeigen,
wie ein Teil unseres fiir die Formge-
bung nétigen Riistzeuges in stindigem
Bestreben entwickelt werden kann.

Schénheit, Empfinden

In der Gruppenarbeit «Asthetik im
Bauingenieurwesen» der Internationa-
len Vereinigung fiir Briickenbau und
Hochbau haben wir erkennen miissen,
wie schwierig es ist zu definieren, was
wir unter Schénheit verstehen.

Ich mochte hier zeigen, dass wir, statt
nach der Schonheit zu fragen, nach dem
Ausdruck suchen wollen. Der Ausdruck
eines Objektes ist fiir uns das, was wir
dariiber empfinden.

Fragen wir nach dem Duft jener sattro-
ten Rose «Papa Meilland» oder was
iber die Interpretation von Mozarts
A-Dur-Violinkonzert durch die Kiinst-
lerin M. zu sagen ist, beide Male wer-
den wir eine dhnliche Antwort erhal-
ten, wie sie jener Architekturstudent
iber das neue, im Sommer 1982 bezoge-
ne Bankgebdude an der Barengasse in
Ziirich gegeben hat: Es werden uns
Empfindungen bekanntgegeben. Diese
Beobachtung haben schon unsere Wort-
schopfer-Vorfahren gemacht, bedeutet
doch das griechische «aisthanesthai»
«Empfinden». Das heisst, Asthetik ist
die Lehre von den «Empfindungen».

Hier noch eine Aussage von Rainer Ma-
ria Rilke tber Cézannes Aquarelle:
«...die Aquarelle sind sehr schon.
Ebenso sicher wie die Bilder und eben-
so leicht, wie jene massiv sind. Land-
schaften, ganz leichte Bleistiftumrisse,
auf die nur da und dort, als Nachdruck
und Bestitigung gleichsam, ein Zufall
von Farbe fillt, eine Reihe von Flek-
ken, wunderbar angeordnet und von

mittelgroBe Wellenldngen“ beschrie-
bene Modell mit biegeweichen Flanschen
im Membranzustand und schubiibertra-
gendem Kern verwendet werden (,,gros-
sere Wellenldngen®).

Adresse des Verfasser: Prof. Dr. M. Sayir, Institut fir
Mechanik, ETH-Zentrum, 8092 Ziirich

einer Sicherheit im Anschlag, als spie-
gelte sich eine Melodie.»

Eindruck - Ausdruck

Alles, was und wie Sie es immer schaf-
fen, hat Ausdruck, beeindruckt das
Mitlebende, wird empfunden. Wir wol-
len den immer horbarer werdenden
Ruf nach Lebensqualitdt auch in unse-
rem Beruf beachten. Darum gestalten
wir nicht nur statisch richtig und wirt-
schaftlich, sondern gleich auch noch
mit positivem Ausdruck, lebensfor-
dernd.

Sie fragen: Wie? Ich meine: Schulen
wir uns an und mit den Eindriicken!
Wir fragen uns: Wie beeindruckt mich
dieses Gegeniiber, was empfinde ich?
Wir suchen nach dem Ausdruck und
fassen es in Worte: «Im Ansprechen der
Welt durch das Wort werden die Ein-
driicke nach bleibenden Bedeutungs-
komplexen gegliedert und als {iber-
schaubares, gegenstdndliches Orientie-
rungsfeld vor das Bewusstsein gebracht
[1]»

In seinen kreativen Phasen wird das
ganze Wesen des schopferischen Men-
schen beteiligt. Wir kénnen unsere Ein-
drucksfelder nicht breit genug anlegen,
damit uns spater daraus die Friichte un-
seres Ausdrucks zufallen. Im Umgang
mit den Bauwerken ist unser Auge, ne-
ben dem Tastsinn und dem Gehor, am
stirksten beteiligt. Deshalb verbleiben
wir im folgenden bei den durch den Ge-
sichtssinn vermittelten Eindriicken.

Der Ausdruck als Bewegung

Es ist hier nicht der Platz, das grosse
Gebiet der Ausdruckskunde darzule-
gen. Wie Ludwig Klages [2] gesagt hat,
werden wir durch den Ausdruck be-
wegt; dieses Bewegende ist selber Bewe-
gung, wie Tanz, Gesten, Gebirden,
Gangarten, Gewohnheiten. Es kann
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