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Stahlspannung bei Risslast:

0,8 • e" • sRm w„

°s Es 260 N/mm2
0,8 • sRm

Erforderlicher Bewehrungsgehalt:

NR Ac -fa

A f
\i% 100 • — 100 • —= 0,77%

Schlussbemerkungen

In Stahlbetontragwerken können unter
Umständen bereits relativ kleine
Temperaturänderungen zur Bildung von Rissen
führen. Ein sogenanntes abgeschlossenes

Rissbild wird jedoch auch bei grossen
Temperaturänderungen normalerweise
nicht erreicht, d.h. die Zwängungs-

schnittkräfte übersteigen die Rissschnittkräfte

im allgemeinen nur unwesentlich,
und die Rissweiten sind - gleiche
Bewehrung vorausgesetzt - bei kleinen und
grossen Temperaturänderungen etwa
gleich gross. Andererseits ist bei einem
infolge Lasteinwirkung gebildeten
abgeschlossenen Rissbild die Rissausweitung
infolge Zwängung aus Temperatur
normalerweise klein. Die zur Gewährleistung

der Verträglichkeit erforderliche
Krümmung verteilt sich auf alle Risse
oder mit anderen Worten: Die Zwän-
gungsschnittkräfte sind wegen der
wesentlich geringeren Steifigkeit im
gerissenen Zustand relativ klein.

Die Rissweite lässt sich durch zwei
Massnahmen günstig beeinflussen:

-Kleine Stahlspannungen unter den
Rissschnittkräften; dies erfordert aber
einen entsprechend hohen
Bewehrungsaufwand.

- Kleine Rissabstände, was etwa gleich¬

bedeutend ist mit kleinen Stababständen,

und demzufolge nur einen relativ
kleinen Kostenmehraufwand verursacht.

Spannbetonbrücken sind somit in ihrer
Gebrauchsfähigkeit im allgemeinen nicht
durch Temperaturänderungen gefährdet,
sofern die Bewehrung in den kritischen
Bereichen relativ engmaschig angeordnet

ist und unter den Rissschnittkräften
nicht zu hohe Spannungen aufweist

Teilweise vorgespannte Träger mit
ausreichender, gut verteilter Bewehrung
sind somit im Blick aufdas Rissverhalten
besser als voll vorgespannte Träger ohne
oder nur mit geringer schlaffer Bewehrung.

Adresse des Verfassers: Prof. Dr. C Menn, Institut für
Baustatik und Konstruktion, ETH-Hönggerberg. 8093

Zürich.

Zur probabilistischen Erdbebenberechnung
von Tragwerken
Von Dieter D. Pfaflinger, Zürich

Starke Erdbeben weisen bezüglich ihres Auftretens und bezüglich ihres Verlaufes
Zufallscharakter auf. Es wird gezeigt, wie ans dem seismischen Standortrisiko zusammen mit einer
probabilistischen Beschreibung der Anregung die Überschreitungswahrscheinlichkeit bestimmter
zulässiger Werte der Tragwerksgrössen während der Lebensdauer des Bauwerks ermittelt werden
kann. Ein auf der Methode der kleinsten Quadrate beruhendes Verfahren zur Gewinnung der

probabilistischen Beschreibung aus den heute meistens verwendeten Bemessungsspektren wird
angegeben. Die Ausführungen werden durch ein numerischen Beispiel illustriert.

Einleitung

Die Behandlung des Lastfalls Erdbeben
hat in den vergangenen Jahren stark
an Bedeutung gewonnen. Einer der
Gründe für diese Entwicklung liegt in
dem Bestreben, Menschen und
Bauwerke immer besser vor den
Auswirkungen starker Beben zu schützen.
Dementsprechend nahmen auch die
einschlägigen Sicherheitsanforderungen an
wichtige Bauten stetig zu. Auf der anderen

Seite erlauben die heutigen Kenntnisse

seismischer Vorgänge in Verbindung

mit modernen Berechnungsmethoden
langsam eine realistischere

Abschätzung der zu erwartenden Tragwerks-
beanspruchung.

Erdbeben entsprechen dynamischen
Belastungen mit Zufallscharakter. Im Ge¬

gensatz zu anderen probabilistischen
dynamischen Lasten, wie beispielsweise
durch Wind oder Wellen, weisen Erdbeben

eine sehr viel kleinere Häufigkeit auf.
Wegen des daher noch geringen
statistischen Materials sind denn auch
Prognosen über zu erwartende seismische
Anregungen an einem bestimmten
Standort nach wie vor mit erheblichen
Unsicherheiten behaftet Aber nicht nur
das Eintreten eines Bebens, sondern auch
der Verlauf des Bebens selbst besitzt
Zufallscharakter. Es ist daher sinnvoll,
Erdbeben als stochastische Prozesse
aufzufassen. Eine probabilistische Tragwerks-
berechnung liefert dann die Wahrscheinlichkeit

des Eintretens bestimmter Werte

und insbesondere bestimmter
Extremwerte der Tragwerksgrössen.
Zusammen mit dem seismischen Risiko
des Standortes lassen sich damit Aus¬

sagen über die Überschreitungswahrscheinlichkeit

vorgegebener zulässiger
Werte der Tragwerksgrössen während
der Lebensdauer des Tragwerks machen.
Kennt man zudem den Versagensmechanismus,

so kann die gesamte Tragwerks-
sicherheit abgeschätzt werden. Derartige
probabilistische Ergebnisse sind eine
wertvolle Ergänzung der Resultate einer
konventionellen deterministischen
Berechnung.

Im folgenden wird die probabilistische
Tragwerksberechnung für ein in
wahrscheinlichkeitstheoretischer Form
gegebenes seismisches Standortrisiko und für
eine als stochastischer Prozess beschriebene

Anregung näher behandelt. Dabei
werden die Tragwerkseigenschaften als
deterministisch und linear-elastisch
angenommen. Die Dämpfung wird als

proportionale viskose Dämpfung
vorausgesetzt. Der stochastische Prozess
der Anregung soll stationär und normalverteilt

sein. Da man die Erdbebenanregung

des Standorts heute meistens
über Bemessungsspektren festlegt, wird
der stochastische Prozess aus dem
Bemessungsspektrum gewonnen. Dank der
Annahmen von Linearität und
proportionaler Dämpfung kann die probabilistische

Berechnung in wenig aufwendiger

Form durchgeführt werden.
Insbesondere lässt sich die Sensitivität der
Lösung bezüglich einzelner Parameter
einfach untersuchen.
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Seismisches Standortrisiko

Aus den Daten historischer Beben
zusammen mit theoretischen Modellen
wurden in verschiedenen Ländern
Erdbeben-Risikokarten entwickelt (z.B. [3]).
Sie erlauben für einen gegebenen Standort

die Bestimmung der mittleren
jährlichen Eintretenswahrscheinlichkeit pE
von Beben, deren maximale
Bodenbeschleunigung a einen bestimmten Wert
a0 erreicht oder überschreitet:

(1) Pe Pb (aD)

Für die Tragwerksberechnung sind nur
die Beben von Interesse, die zu Schäden
führen können. Dies ist etwa für
horizontale Bodenbeschleunigung ab a0
0,05g der Fall, wobei g die Erdbeschleunigung

bezeichnet Dieser Wert
entspricht ungefähr der Beschleunigung bei
Intensität (MSK) VI oder bei Magnitude

4 (Richter) im Epizentrum. Die
Eintretenswahrscheinlichkeit pT wenigstens

eines derartiger Beben während
der Dauer T(in Jahren) ergibt sich damit
aus einer Binomialverteilung zu

(2) HHHHG
Die Wahrscheinlichkeitsverteilung der
maximalen Bodenbeschleunigungen a
wird als eine Gumbel-Extremwertvertei-
lung in der Form

(3) p(a) ocexp [-<x (jä-u) ~e~^"-u)]

angenommen, wobei a und u Parameter
der Verteilung sind und

(4)
— a
a —

die aufdie Erdbeschleunigung g bezogene

Bodenbeschleunigung bezeichnet.

Für eine dynamische Tragwerksberechnung

reicht die maximale Bodenbe-
schleunigung allein nicht aus. In der
Berechnungspraxis definiert man daher
normalerweise mit Hilfe von a ein
Bemessungsspektrum. Bemessungsspektren

werden als geglättete Mittelwerte
oder Extremwerte der Antwortspektren
mehrerer Beben gewonnen.
Bemessungsspektren berücksichtigen somit in
beschränkter Form den Zufallscharakter
der seismischen Anregung, erlauben
aber keine vollständige probabilistische
Berechnung. Wegen der weitverbreiteten

Verwendung von Bemessungsspektren
besitzen Verfahren zur Gewinnung

der probabilistischen Beschreibung der
Anregung aus einem Bemessungsspektrum

besondere Bedeutung.

Stochastische Prozesse

Ein stochastischer Prozess besteht aus
n zeitabhängigen Funktionen X\(t), / ™ 1,

...«,«-*», denen das glShe physikalische

Phänomen zu Grunde liegt. Für
eine feste Zeit t erhält man eine
stochastische Variable (Bild 1). Der Prozess
wird als stationär bezeichnet, wenn alle
statistischen Mittelwerte zeitunabhängig
sind. Ein stationärer Prozess läßt sich
stets aufden Mittelwert p 0 normieren.
Sind die Werte xj(t) bei festem t normalverteilt,

so spricht man von einem
Gauss'schen Prozess.

Stationäre Gauss'sche Prozesse mit
Mittelwert Null sind durch ihr Leistungsspektrum

m
(5) SX(Q) E lim 2 IX(Q) ¥¦

T

bezüglich ihrer statistischen Eigenschaften

vollständig charakterisiert. Dabei
bezeichnen E[] den Erwartungswert,
X(Q) die Fourier-Transformierten der
Funktionen des Prozesses x(t) und T die
Dauer. Die Varianz al erhält man aus

(6)

OO

— I S^Q)dQ
In *j

Man sieht daraus, dass das Leistungsspektrum

im wesentlichen den Beitrag
der Frequenz Q an die Varianz des
Prozesses liefert.

Aus einer Extremwertbetrachtung erhält
man für die Wahrscheinlichkeit (p, dass
die während einer Dauer Tauftretenden
Extrema des Prozesses betragsmässig die
Schranke xm (Bild 1) überschreiten, den
Ausdruck

(7) (p 1—exp \-2fxTe

Dabei bedeutet

(8) /»=-m2n

J Q1Sx(Q)dQ
o

T/2

oo

f S/ü)dQ

die erwartete Frequenz in Hertz. Der
erwartete Extremwert \x\max lässt sich mit

(9) \x\max ax ('\/2ln2fxT +
~]/lln2fxT/

abschätzen, wobei y 0,577216 die
Euler'sehe Konstante bezeichnet.

Die Überlegungen lassen sich dahingehend

verfeinern, dass man xm nicht
als feste Schranke, sondern als eine durch
eine Wahrscheinlichkeitsverteilung
gegebene Grenze annimmt. Diese Situation

tritt beispielsweise beim Vergleich
stochastischer Tragwerksbeanspruchun-
gen mit streuenden Tragwerkswider-
ständen auf. Da die folgenden Ausfüh¬

rt t

Bild 1. Funktion x\(t) eines stochastischen Prozesses

rangen dabei grundsätzlich gültig bleiben,

wird im weiteren nur die einfache
Beziehung Gl. (7) verwendet

Tragwerksb erechnung

Die Bewegungsgleichung eines
beispielsweise mit finiten Elementen dis-
kretisierten Tragwerks lautet

(10) m
[M] {5} + [Q {«} + [Kl - £ W«tt

1=1

mit der Massenmatrix [M], der
Dämpfungsmatrix [C], der Steifigkeitsmatrix
[K], dem Vektor [q] der Verschiebungs-
freiheitsgrade und den Lastvektoren
{Pil')>i(t), wobei die Vektoren {/>,}

zeitunabhängig sind. Dazu sind zwei
Anfangsbedingungen zu erfüllen.

Für eine gleichmässige Anregung aller
Auflagerpunkte durch eine
Bodenbeschleunigung x(t) reduziert sich die
rechte Seite von Gl. (10) auf den einzigen

Term

(11) {Pi}yi(t) -[M\{a}x(t)

mit dem Vektor {a} der Starrkörperverschiebung

unter x 1. Die Verschiebungen

{q} bezeichnen dann Relativver-
schiebungen. Bei ungleichmässiger
Anregung entsprechen die y£t) den
Verschiebungen, Geschwindigkeiten und

'Beschleunigungen der angeregten
Auflagerpunkte und die {/>;} den Kräften
unter den jeweiligen Einheitsgrössen.

Bei linearen Tragwerken mit proportionaler

Dämpfung kann Gl. (10) durch
modale Superposition mit der Transformation

(12) {?}= 2 fir\nr(t)
r=l

gelöst werden. Dabei bezeichnen {qr}
den r-ten Eigenvektor des ungedämpften
Tragwerks, n,,(0 die entsprechende
Normalkoordinate und // die Anzahl der
mitgenommenen Eigenschwingungen.
Transformation von Gl. (10) mit Hilfe
von Gl. (12) liefert die Einmassen-
schwingergleichungen

m

(13) mriir + crti, + fcr% - 2 t,,^, r- l,..n

l-\
für die Normalkoordinaten n,r Die
Koeffizienten m„ c, und kr entstehen durch
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Vor- und Nachmultiplikation der
entsprechenden Systemmatrizen mit {qr}.

Die Koeffizienten £„• der Belastungsseite
erhält man aus

(14) {«/W
Die Funktionen v,(r) werden nun als
stationäre Gauss'sche Prozesse aufgefasst.
Sind V, und y, korreliert, so erhält man
die Kovarianz aus dem Kreuzleistungsspektrum

(15) S\ (Q)
lim\ 2Y,(Q)Yj(Q)

7> T

durch Integration analog zu Gl. (6).
Dabei bezeichnen Y\(Q) und Y/Q) die
Fourier-Transformierten von v,(t) und
yit). Für / j erhält man das Leistungsspektrum.

Aus Gl. (13) und (15) folgt,
dass die Kreuzleistungsspektren S:ra(Q)

der modalen Belastungen zweier
Gleichungen r und ^ durch

m m
(16) Slrs(Q) X X iAM®>

f-.iy-i
gegeben sind. Eine Fourier-Transforma-
tion von Gl. (12) und Gl. (13) liefert
schliesslich zusammen mit Gl. (16) für
die Kreuzleistungsspektren Sy(Q) der
Verschiebungen qff) und q/f) den
Ausdruck

SJ(Q).=
n n

(17)

mit

2 2 q,AjsHrmHAmslrs(ü)
r=lj=l

1
(18) Hr(Q) ¦-

kr - mßl + icft
wobei / in Gl. (18) die imaginäre Einheit

bezeichnet Damit sind ebenfalls die
Leistungsspektren der Verschiebungen
qfct) sowie auch die Leistungs- und
Kreuzleistungsspektren der zu den
Verschiebungen proportionalen Tragwerksgrössen

wie Spannungen und Schnittkräfte

bekannt Man beachte, dass diese
Beziehungen zwischen den
Kreuzleistungsspektren der Anregung und der
Tragwerksantwort für den stationären,
d.h. eingeschwungenen Zustand des

Tragwerks gelten.

Bei seismischer Anregung hängen die.
Leistungs- und Kreuzleistungsspektren
SPy von der maximalen Bodenbeschleunigung

a ab. Man sieht aus Gl. (9) und

Bild 2. Dlskretlstertes Leistungsspektrum

IS. (121

-n
*^ maxa,

Gl. (6), dass a als Faktor a2 in die
Gleichungen eingeht Bezieht man alle
Anregungen auf eine Bodenbeschleunigung

a0 — 1, so lässt sich wegen der
Linearität der Gleichungen (16) und (17)
die Varianz einer bestimmten Trag-
werksgrösse s nach Gl. (6) als

(19) al a2ol

darstellen, während die erwartete
Frequenz / gemäss Gl. (8) von a
unabhängig ist. Die Überschreitungswahrscheinlichkeit

<p eines zulässigen Wertes
szui der Tragwerksgrösse s wird damit
nach Gl. (7) zu
(20)

<p(a) 1 — exp -2fsTe

szul

aoa

Der Wert cp (a) ist die bedingte
Überschreitungswahrscheinlichkeit von s„i
unter der Bedingung einer seismischen
Anregung mit der Bodenbeschleunigung
a. Zusammen mit der Verteilung p(a)
der Bodenbeschleunigung gemäss Gl.
(3) und mit der Eintretenswahrscheinlichkeit

Pf nach Gl. (2) eines Bebens
mit Schadenspotential erhält man für
die gesamte Überschreitungswahrscheinlichkeit

$ von szui während der Lebensdauer

des Tragwerks den Wert

(21) * Py J p(a) q(a) da

wobei die Integration bis zu einer vom
Standort abhängigen oberen Grenze der
Bodenbeschleunigung durchgeführt
wird.

Bestimmung von Leistungsspektren
aus Bemessungsspektren

Mit den Ergebnissen der Risikoanalyse
des Standortes wird üblicherweise das

Bemessungsspektrum SJa>0, Q festgelegt.
Um aus dem Bemessungsspektrum ein
Leistungsspektrum zur probabilistischen
Beschreibung der Belastung zu gewinnen,

wird im folgenden angenommen,
dass S/u>0, 0 als Erwartungswert der
maximalen Relativverschiebung eines
Einmassenschwingers der Kreisfrequenz
w0 und der Dämpfungsrate C unter der
seismischen Anregung definiert ist und
eine glatte Funktion von u„ und
darstellt. Statt mit S/too, 0 wird in der Praxis
häufig mit dem sogenannten Pseudo-
Geschwindigkeitsspektrum

tf(22) 5Kw0,ö - Wo VI - 5d((o0, 0

gearbeitet

Die Bewegungsgleichung eines
Einmassenschwingers unter der
Bodenbeschleunigung x(t) lautet

(23) mq" + cq + kq ¦= — mx

Fasst man x(t) als stochastischen Prozess

mit dem Leistungsspektrum SJQ)
•auf, so erhält man aus Gl. (17) für das

Leistungsspektram SJQ) des Prozesses

d(t)

(24) SJQ)
SX(Q)

(w2 - ü2)2 + 4C2co2Q2

mit der Eigenkreisfrequenz w0 und der
Dämpfungsrate £ des Schwingers. Der
erwartete Extremwert von q(t) ergibt
sich dann mit Hilfe von GL. (9). Gleichsetzen

mit dem Bemessungsspektrum
liefert zusammen mit Gl. (22) die
Beziehung

(25) o, ]/2in2fqTq + JL

}j2Ui2fqTq

Sy (fa)0, Q

<o„ "|A - C2

Die Varianz aq und die erwartete
Frequenz fq von q(t) können mit Hilfe von
Gl. (6), Gl. (8) und Gl. (24) durch SJQ)
ausgedrückt werden. Tq ist die Dauer
des stationären Output Prozesses. Gl.
(25) ist eine nichtlineare Integralgleichung

zur Bestimmung von SJQ), die
im allgemeinen nicht geschlossen gelöst
werden kann. Hingegen gelingt eine
Näherungslösung durch polynomiale
Approximation von SJQ) und Anpassung

der Koeffizienten nach der Methode

der kleinsten Quadrate.

Man ersetzt dazu SJQ) wie in Bild 2
gezeigt im Intervall OSQS Qmax durch
Stützwerte St und gegebenenfalls Werte
von Ableitungen. Durch stückweise
polynomiale Approximation erhält
man SJQ) in der Form

(26) SX(Q) 2 P^(Q)
/=1

mit den n Parametern pt der Diskreti-
sierung und den Interpolationspolynomen

P/(Q). Substitution von Gl. (26)
in Gl. (24) liefert

(27)

5,(Q)
n

2><
P,(Q)

l„2r\2(w5-QT+4Co>JQ

Dank der polynomialen Form von GL
(27) können nun die Integrationen zur
Bestimmung von cc und f. mit Partial-
bruchzerlegung analytisch durchgeführt
werden. Man erhält

(28)
oo

a\ " 7- f Sq(Q)dQ - ^-Sp,/,(w0,0
2tt J 2n
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(29) /, 2rc

OO

/ Q2Sq(Q) dQ

oo

J Sq(Q) dQ

Vi

J_
27t

Sp(//(w0, ö
J
Sp/,(co0, Q
i

Vi

mit analytischen Integralausdrücken
/, und J,. Damit wird die linke Seite
von Gl. (25) eine nichtlineare Funktion
der Parameter p-, und der Dauer Tq. Aus
diesem Grunde muss eine Ausgleichsrechnung

nach der Methode der kleinsten
Quadrate iterativ durchgeführt werden.

Man macht dazu eine lineare Entwicklung

der linken Seite von Gl. (25) um
feste Werte derp, und von Tq. Für jeden
Satz von Werten w0, C, für die das
Bemessungsspektrum bekannt ist, kann Gl.
(25) angeschrieben werden. Die Anzahl
der dadurch entstandenen linearen
Gleichungen für die Korrekturen soll grösser

als die Anzahl der Parameter sein.
Eine Ausgleichsrechnung liefert dann
die Werte der Korrekturen und damit
neue Ausgangswerte der Parameter.
Die Iterationen werden solange wiederholt

bis die Korrekturen genügend klein
geworden sind.

Beispiel

Bild 3 zeigt das FE-Modell einer ebenen
Rahmenbrücke. Der Elastizitätsmodul E
und die Querdehnungszahl v sind

(SO) E 3,2 • 1010 Nm" 1/6

Die numerischen Werte der Massendichte

p, der Fläche F und des
Trägheitsmomentes Iy betragen für die beiden
Stützen

(31) p 2,5 • 103 kgm-3; F= 4,0 m2;
Iy 1,833 m4

und für den Fahrbahnträger

p 3,0 • 103 kgm-3; F= 4,421 m2;
Iy - 3,271 m4

Die Dämpfungsrate wird mit C 0,02
angenommen.

Die Brücke wird an den Auflagerknoten
1, 6 und 21 durch eine horizontale
Auflagerbeschleunigung x(t) mit dem
Leistungsspektrum SJQ) angeregt Dabei
werden die Auflagerknoten als starr
verbunden angenommen. Eine Ausgleichsrechnung

für das Pseudogcschwindig-
keitsspektrum nach Housnerfür r - 0,02

10 11 12 13 5 14 15 16 17 9 18 19 20 21
rPr.

4 8-

A

30m

3 7
40 m

1 2 &77Z
1

40m 50 m 40 m

Bild 3. Ebene Rahmenbrücke

(Bild 4) liefert das in Bild 5 dargestellte
Leistungsspektrum SJQ) sowie eine
Dauer von Tq 5 s für den stationären
Output-Prozess. SJQ) wurde dann auf
einen erwarteten Extremwert der Bo-
denbeschleunigung von Eins skaliert

Für die probabilistische Berechnung
wurden die Eigenfrequenzen der Brücke
zwischen 0 und 20 Hertz berücksichtigt.
Dies führte auf 13 mitgenommene
Frequenzen. Büd 6 zeigt die auf die
Bodenbeschleunigung a bezogene Streuung
Ojiy/a des Biegemomentes My Dabei
wurde jeweils der grösste Wert in den
Knotenpunkten genommen und dazwischen

linear interpoliert Für das

Einspannmoment am Knoten 1 erhält man
°My ~ 1»78 • 106Nm und eine
erwartete Frequenz von/= 4,96 s-1. Für
die Gumbel-Verteilung Gl. (3) wurde a
10,8 und u 0,015 gewählt Mit einer
jährlichen Eintretenswahrscheinlichkeit
von pE 10-2 liefert Gl. (21) für ein
zulässiges Einspannmoment von My,zui
von 1 • 107Nm und für eine Lebensdauer

von 50 Jahren eine Überschrei-
tenswahrscheinlichkeitvon$ 1,8 • 10-2.

Dabei wurde als obere Grenze der
Bodenbeschleunigung a 4ms-2 angenommen.

Erhöht man Myzui um 25%, so

verringert sich die Überschreitungswahrscheinlichkeit

auf $ 6,6 • 10-3.

Schlussbemerkungen

Bei der probabilistischen Erdbebenberechnung

wurde vorausgesetzt dass die
seismische Anregung wie auch die
Tragwerksgrössen durch stationäre Gauss'-
sche Prozesse dargestellt werden können
und dass lineares Tragwerksverhalten
mit proportionaler Dämpfung sowie
deterministische Tragwerkseigenschaf-
ten vorliegen. Alle diese Voraussetzungen

können grundsätzlich fallengelassen
werden. Der Preis dafür besteht aber in
teilweise erheblich komplexeren
Formulierungen und wesentlich grösserem
Rechenaufwand. Auf der anderen Seite
erlaubt die probabilistische Berechnung
in der hier dargestellten Form eine
einfache Untersuchung des Einflusses der
verschiedenen mit Unsicherheiten ver-

SV(T,£= QP2) [ms-']0.25-

0,20-
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0.10
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Bild 4. Pseudo-Geschwindigkeitsspektrum nach
Housner
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Bild 5. Leistungsspektrum

1 106
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3itd 6. Bezogene Streuung &My/a des Biegemomentes
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sehenen Parameter. Aus diesem Grunde
ist von Fall zu Fall abzuwägen, ob eine
noch genauere Untersuchung den damit
verbundenen Mehraufwand rechtfertigt.
Es ist möglich, analog zu den
Bemessungsspektren standortabhängige Be-
messungs-Leistungsspektren zu
entwickeln. Damit würde sich die Bestimmung

des Leistungsspektrums aus dem
Bemessungsspektrum erübrigen. Dem
Zufallscharakter der seismischen Anregung

wäre dadurch von vorneherein
Rechnung getragen.

Probabilistische Überlegungen erlauben,

die Wahrscheinlichkeit des
Eintretens bestimmter Tragwerksbean-
spruchungen während der Lebensdauer
des Tragwerks zu bestimmen. Damit
könnerJIAussagen über die Tragwerks-
sicherheit gemacht werden. Derartige
Ergebnisse erfassen die statistischen
Streuungen der Lasten und gegebenenfalls
auch der Tragwerkswiderstände, nicht
aber grobe Fehler. Probabilistische
Überlegungen stehen heute dem
Ingenieur noch relativ fern. Es ist aber zu

erwarten, dass mit zunehmender
Verfügbarkeit entsprechender Software in
den kommenden Jahren probabilistische
Untersuchungen in Ergänzung der übrigen

Ergebnisse vermehrt zur Beurteilung

eines Tragwerks herangezogen werden.

Adresse des Verfassers: PD. Dr. D. D. Pfaffinger, P+W
Dr. Pfaffinger + Dr. Walder AG. Karl-Stauffer-Stras-
se 9, 8029 Zürich.

Normen: Regeln der Baukunde, Mittel der
Vertragsgestaltung und des Abbaues von
Handelshemmnissen
Von Max Portmann, Bern

Versucht man, den Ursprung der Normung zu erkunden, stösst man auf das weit in die
Geschichte der Menschheit zurückreichende Bestreben, Ordnung in das Chaos zu bringen. Daraus

entstanden vorab Normen des Zusammenlebens, ethische, religiöse, Rechtsnormen. Im
industriellen Zeitalter kam schliesslich der Wunsch auf, immer wiederkehrende technische
und organisatorische Vorgänge ein für allemal zu regeln, und zwar mit den zum Zeitpunkt
der Erstellung einer Norm bekannten Mitteln der Wissenschaften und Technik. Um Geltung
und Anerkennung für ein solches Unterfangen zu erreichen, müssen alle daran Interessierten

mitwirken können. Normung ist somit stets zeitlich begrenzte technische und wirtschaftliche

Optimierung.

Die technischen Normen

Im Ingress zum Reglement für das
Normenwerk des SIA (R 35) heisst es: «Unter

Normung versteht man die begriffliche
Klarstellung und Vereinheitlichung

von Gegenständen, Randbedingungen
und Zielsetzungen sowie Rationalisierung

und Qualitätssicherung. Sie hat
sich im Rahmen der Gesetze zu halten
und bildet ergänzendes Recht. Sie wird
durch die interessierten Kreise gemeinsam

durchgeführt und darf nicht zu
wirtschaftlichen Vorteilen einzelner
führen.» Diese Umschreibung bezieht
sich auf die technischen Normen, die
den aktuellen Stand technischen Wissens

auf den verschiedenen Gebieten
des Bauwesens in konkrete Regeln und
Anordnungen zusammenfassen und
von der Fachwelt als Regeln der
Baukunde anerkannt sind. Kurz zusam-
mengefasst sagen diese Normen, was
wie zu machen ist, nicht jedoch wer was
zu machen hat.

Norminhalt

Die Normen legen Begriffe, Symbole,
Darstellungen, Definitionen fest und

dienen damit der Verständigung der am
Bau Beteiligten.

Der Sicherheit dienen sie durch Festlegung

der den Berechnungen zugrunde
zu legenden Belastungen und
Beanspruchungen und der erforderlichen
Tragfähigkeitsreserven von Tragwerken,

durch Festlegung der Anforderungen

an die Baustoffe, durch Aufstellung
wichtiger konstruktiver Regeln und die
Anweisung zur Durchführung des

Tragfähigkeitsnachweises für ganze
Tragwerke und für Bauteile.

Zur Erreichung und Erhaltung der Qualität

legen die Normen Mindestanforderungen

an Baustoffe, Bauteile und
Bauwerke sowie die entsprechenden Prüf-
und Messverfahren sowie Regeln zur
Sicherstellung der Gebrauchsfähigkeit
fest. Zur Qualitätserhaltung gehören
auch Vorschriften für Abnahme,
Unterhalt und Überwachung der Bauten.

Struktur des Normenwerks

Es gibt zwei Arten von Normen:
Generelle Normen, die Aussagen enthalten,

die das ganze Gebiet des Bauens
beeinflussen. Dazu gehören z. B.
Anforderungen an Baumaterialien mit Prüf¬

methoden und Prüfnormen,
Belastungsannahmen, Anwendung der SI-
Einheiten im Bauwesen, Grundsätze
der Masstoleranzen, Energie im Hochbau,

Wärme- und Schallschutz,
Brandschutz, Heizlastregeln, kubische
Berechnung von Hochbauten u. a. m.

Spezielle Normen, welche die Grundlagen

für die Ausführung der einzelnen
Arbeitsgattungen, Bauteile und
Bauwerke enthalten. Dazu gehören z. B.
Bauten aus Stahl, Beton, Stahlbeton,
Spannbeton, Holz und Mauerwerk;
Kanalisationen, Untertagebauten, Pfahl-
fundationen, Baugruben, das weite
Gebiet des Innenausbaues im Hochbau
sowie die Anlagen der Haustechnik.

Grundlegende Anforderungen
Normen sollen nur geschaffen werden,
wenn für sie ein ersichtlicher Bedarf
vorhanden oder zu erwarten ist. Inhalt
und Text sind so knapp wie möglich zu
fassen, und es sind klare Werte und
Anforderungen festzulegen. Erläuterungen

und Ergänzungen sind auf einen
Anhang zu verweisen. Normen sollen
Regeln für den Normalfall enthalten,
können daher keine allgemein gültigen
Rezeptbücher und dürfen keinesfalls
Lehrbücher sein. Sie sollen jedoch
soweit vollständig sein, dass Bauaufgaben
auf der Grundlage eines soliden
Fachwissens mit ihnen bewältigt werden
können. Daraus folgt, dass Inhalt,
Form und Umfang einer Norm ein
Optimierungsproblem bilden, das in
jedem einzelnen Fall gelöst werden muss.
Bei der Bearbeitung der Normen sind
auch die Forderung nach Wirtschaftlichkeit

und die Belange des
Umweltschutzes zu beachten. Schliesslich ist die
Harmonisierung der nationalen Norm
mit der internationalen Normung
anzustreben.

Für die Gruppierung des Inhalts hat
sich, insbesondere für die speziellen
Normen, das folgende Schema als
zweckmässig erwiesen:
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