Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 100 (1982)

Heft: 5

Artikel: Energie im Mehrfamilienhaus: Verbrauchswerte und Sparpotential

Autor: Wick, Bruno

DOI: https://doi.org/10.5169/seals-74749

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Es darf keinesfalls darum gehen, einfach abstrakte Möglichkeiten einer Lösung aufzuzeigen, ohne über deren Machbarkeit Gewissheit zu haben. Schon Aristoteles sah als Seinserfüllung die Verwirklichung der Möglichkeit. Nicht umsonst schilderte er diese Erkenntnis am Beispiel des Baumeisters, der wohl das Vermögen besitzt, Häuser zu bauen, aber dieses Vermögen erst aktualisiert durch den Bau eines wirklichen Hauses. «Ziel aber ist die Verwirklichung, und ihretwegen erlangt man das Vermögen. Denn nicht, um über den Gesichtssinn zu verfügen, sehen die Lebewesen, sondern sie verfügen über den Gesichtssinn, um zu sehen. In gleicher Weise verfügt man über die Baukunst, um zu bauen . . .»

Die Bauqualität muss auf alle Fälle ganzheitlich beurteilt werden, sie darf nicht nur im Kopf oder auf dem Papier existieren. Erst die Verwirklichung der Qualitätsvorstellungen, d. h. die Realisation der Baugedanken wird den Beweis dafür bringen, ob wir uns auf dem Weg zum Ziel, der Qualitätsförderung und -sicherung, bewegen.

Diese Tatsache hat die «Schweizerische Aktion Gemeinsinn für Energiesparen» richtig erkannt. Sie will mit ihrem Seminar eine Gelegenheit geben, am Beispiel des Mehrfamilienhauses die wesentlichen energetischen Verhältnisse am Bau zu sehen und den Teilnehmern die für die Praxis relevanten Erfahrungen durch ausgewiesene Fachleute vor Augen führen. In diesem Sinne betrachte ich diese Veranstaltung als einen bedeutenden Beitrag zur Weiterbildung der verantwortlichen Baubeteiligten und damit zur Förderung unserer Baugualität.

Nach dem Einführungsreferat vom 6. Okt. 1981 zur Fachtagung «Energie im Mehrfamilienhaus». Patronat: Schweizerische Aktion Gemeinsinn für Energiesparen (Sages).

Adresse des Verfassers: Prof. H. Kunz, Lehrstuhl für Architektur und Bauplanung, ETH Zürich,

Energie im Mehrfamilienhaus: Verbrauchswerte und Sparpotential

Von Bruno Wick, Widen

Die Bedeutung der Mehrfamilienhäuser

Jeder zweite Schweizer wohnt in einem Mehrfamilienhaus. Die gesamte beheizte Bruttogeschossfläche aller Mehrfamilienhäuser beträgt 80 Mio m², das sind 24% Anteil an der Bruttogeschossfläche des gesamten Gebäudebestandes in der Schweiz. Diese Zahl dokumentiert die Bedeutung der Mehrfamilienhäuser im Vergleich zu allen anderen Gebäudegruppen. Nur noch die Summe der Einund Zweifamilienhäuser zusammen hat eine gleichgewichtige Bedeutung. Beispielsweise ist die beheizte Bruttogeschossfläche im gesamten Dienstleistungs-Sektor mit 70 Mio m² ebenfalls gross, aber doch kleiner als die Mehrfamilienhäuser für sich allein [1].

Bezüglich Bauform und Gebäudegrösse sind die Mehrfamilienhäuser die homogenste Gruppe unter allen Nutzungstypen. Dagegen sind die Besitz- und Verwaltungsverhältnisse sehr unterschiedlich. Zwar gehört die grösste Zahl der Gebäude natürlichen Personen und einfachen Personengesellschaften. Der Anteil der Genossenschaftswohnungen und der Wohnungen im Besitz von juristischen Personen sowie der öffentlichen Hand ist verhältnismässig gering. Für jede Entscheidungsfindung im Bereich Mehrfamilienhaus ist aber bei mehr als der Hälfte aller Gebäude mit 3 Partnern zu rechnen: dem Mieter, dem

Verwalter und dem Eigentümer. Weniger als die Hälfte aller Gebäude werden vom Eigentümer direkt verwaltet; und nur bei knapp einem Drittel aller Häuser wohnt der Eigentümer selbst in einer der Wohnungen. Diese Besitz-, Verwaltungs- und Nutzungsverhältnisse erschweren die Durchführung von energetischen Sanierungsmassnahmen.

Wie kaum bei einer anderen Gebäudegruppe läuft man bei Diskussionen um das Mehrfamilienhaus Gefahr, politisch interpretiert zu werden. Die sachbezogene Argumentation wird von weiten Kreisen nicht gewünscht. Deshalb sind im Bereich Mehrfamilienhaus sehr viele Stichworte «Reizworte», beispielsweise: individuelle Heizkostenabrechnung, Dauerlüftung, Wärmediebstahl usw.

Im Vergleich zu allen anderen bisher erhobenen homogenen Gebäudegruppen zeichnen sich die Mehrfamilienhäuser weder als durchschnittlich hohe, noch tiefe Verbraucher aus. Sie liegen im Mittelfeld zwischen Schulen, Verwaltungsbauten, Einfamilienhäusern und teilklimatisierten Bauten (Tabelle

Auffallend ist bei den Mehrfamilienhäusern, dass praktisch keine Extremwerte vorkommen, weder nach unten (E < 400) noch nach oben (E > 1400). Alle anderen Gebäudegruppen haben wegen der «missratenen» technischen Installationen grössere Ausreisser nach oben und, bei sorgfältiger individueller Betreuung, häufig tiefere Werte.

Das Mehrfamilienhaus als Energieverbraucher

Die Energiekennzahl

Die Sages hat das Instrument der Energiekennzahl einer breiten Nutzung zugeführt und bisher Zahlen über die Ergebnisse von Ein- und Mehrfamilienhäusern sowie Schulen publiziert. Leider sind längst nicht alle grossen Erhebungen, die bisher durchgeführt wurden, der Öffentlichkeit zugänglich gemacht worden. Es existieren Erhebungen über mehrere Jahre für den Grossteil der Bundesbauten und für alle Immobilien des schweizerischen Gross-

Tabelle 1. Energiekennzahlen (Mittelwerte Schweiz) im MJ/m² a

	Verwaltung natürlich gelüftet	Schulen ohne elektr. beh. Kindergärten	MFH	EFH	Verwaltung mechanisch gelüftet
E-Wärme	720	805	830	860	980
E-Allgemeinstrom	50	45	30	110	120
E-Wohnungsstrom	eb ood I mi d	a Stanta	80		
E-Total	770	850	940	970	1100

Umrechnungsfaktoren: 42 MJ E-Wärme = 1 kg Öl 3,6 MJ E-Strom = 1 kWh

bankenpools. Es ist nur zu hoffen, dass sehr bald weitere Zahlenergebnisse zum Beispiel über Spitäler, Hotels, Banken, Bundesbauten, PTT usw. publiziert werden. Die Energiekennzahl bemisst den jährlichen Endenergieverbrauch pro m2 beheizter Bruttogeschossfläche.

Die Methodik der bisherigen Erhebungen ist in [2] im Detail beschrieben. Der SIA nimmt die Berechnung der Energiekennzahlen in sein Normenwerk auf. Die SIA-Empfehlung 180/4 «Die Energiekennzahl» [3] liegt bereinigt zur Genehmigung bei der zentralen Normenkommission.

Beim Mehrfamilienhaus ist der Mieterverbrauch von Elektrizität für Kochen, Licht usw. nicht sehr leicht zugänglich, weshalb auf die Erhebung dieser Energiemengen verzichtet wird. Sie können jedoch - um einen vergleichbaren Wert von E-Total hochzurechnen - als statistische Grösse eingeführt werden.

Bei der Warmwasser-Aufbereitung sind zwei grundsätzlich verschiedene Systeme vorhanden. In neueren Gebäuden wird das Brauchwarmwasser zentral aufbereitet und auf die einzelnen Wohnungen verteilt. Bei älteren Gebäuden und bei den neuesten Mehrfamilienhäusern ist häufiger das System der dezentralen Aufbereitung mit Warmwasserboilern in den einzelnen Wohnungen vorhanden. Der Energieverbrauch wird dem Mieter direkt über den Wohnungszähler verrechnet. Bei der zentralen Warmwasseraufbereitung (etwa 60% der Fälle) dominiert eindeutig die Wassererwärmung über die Öl- oder Gasheizung. Nur in knapp 10% aller Fälle wird das Brauchwasser in einem zentralen Elektroboiler erwärmt. Noch wenig vertreten ist zur Zeit die Lösung der gemeinsamen Aufbereitung im Winter mit Öl und während der Übergangszeit mit Strom.

In statistisch genügender Zahl wurden die Fälle dezentrale Aufbereitung bzw. zentrale Aufbereitung mit Öl oder Strom erfasst. Die wichtigsten Werte sind in Tabelle 2 zusammengefasst.

Parameter-Analysen

Mit einem Fragebogen [4] für die Berechnung der Energiekennzahl werden verschiedene Parameter miterhoben, wie Alter, Höhe über Meer, Heizsystem, Technisierungsgrad, installierte Heizleistung, Sondernutzung usw. Im Rahmen der Parameteranalyse interessiert die Frage, ob ein Zusammenhang zwischen Parameter und Energiekennzahl besteht. Im gesamten wurden über 1 Dutzend Parameter untersucht. Bild 1 zeigt den Zusammenhang zwischen Energieverbrauch und Alter im engen Bereich zwischen 1940 und 1980. Die

Tabelle 2. Energiekennzahl und installierte Heizleistung bei Mehrfamilienhäusern

Energiekennzahl [MJ/m²a]	Gute Werte	Mittelwerte	Sofort sanierungs- bedürftig	
E-Total Heizen und allg. Strom inkl. Warmwas- ser bei zentraler Warmwasserversorgung ohne Wohnungsstrom	kleiner als		grösser als	
 Alle Objekte Kombikessel Ölheizung mit Elektroboiler 	(660) 700	860 920	(950) 1030	
zentral 1952* - Ölheizung ohne Warmwasser 1953* *Baujahr (Mittel)	650 600	825 770	950 870	
E-Heizen Heizen inkl. Warmwasser bei Kombikesseln	3			
Alle ObjekteKombikessel (Heizen + Warmwasser)Ölheizung (ohne Warmwasser)	- 680 580	825 880 740	1000 840	
Installierte Heizleistung [W/m²] 1 W/m² = 860 cal/h m²	Gute Werte	Mittelwerte	Sanierungs- bedürftig	
– Alle Objekte – Kombikessel – Ölheizungen	kleiner als 100 100 100	148 146 150	grösser als 120 120 110	

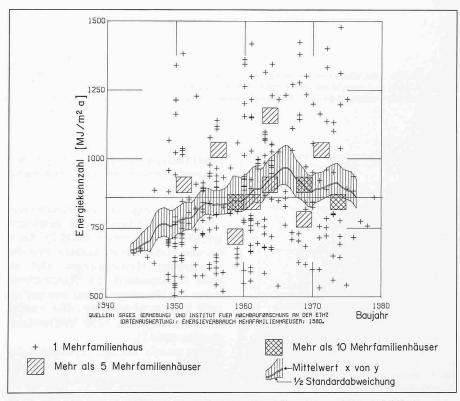


Bild 1. Energieverbrauch in Abhängigkeit des Baujahres. Totale Energiebezugsfläche: 761 800 m²

gleiche Abhängigkeit, d. h. ein Ansteigen der E-Wärme von etwa 550 um die Jahrhundertwende bis über 900 im Kulminationspunkt in den frühen 60er-Jahren und eine Trendumkehr etwa 10 Jahre vor der ersten Energiekrise (1973) zeigen alle grossen Gebäudegruppen (Einfamilienhäuser, Mehrfamilienhäuser, Schulen, Bundesbauten usw.). Diese Abhängigkeit ist hauptsächlich durch geänderte Baukonstruktionen und zunehmenden Technisierungsgrad begründet [5].

Theoretisch müsste jedes Haus mit zunehmender Grösse spezifisch weniger Energie verbrauchen. Beim Mehrfamilienhaus stellt man eine Abnahme fest bis in den Grössenordnungs-Bereich von 1500 m² Bruttogeschossfläche. Ab dieser Baugrösse überwiegen verbrauchsfördernde Einflüsse wie zentrale Heizsysteme, Warmwasser-Umwälzungsverluste usw. Klar unterschiedlich ist auch der Energieverbrauch je nach Heizsystem. Der schlechte Wirkungsgrad der existierenden Kombi-

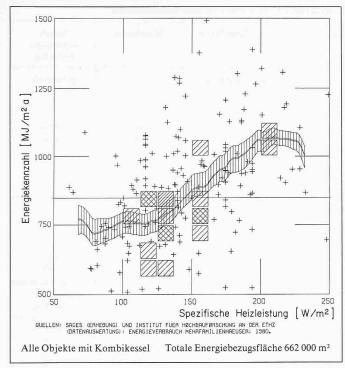
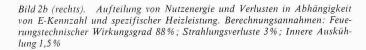
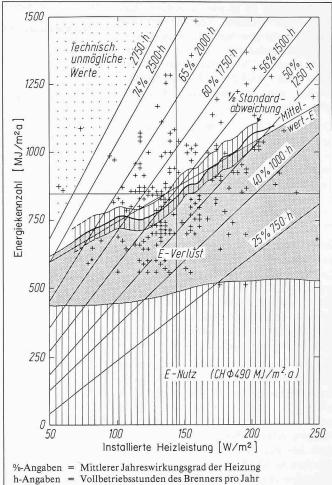




Bild 2a (oben). Energieverbrauch in Abhängigkeit der spezifischen Heizleistung

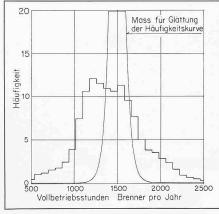
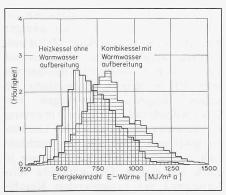



Bild 3 Brennerbetriebsstunden beim Kombikessel. Verteilung der Häufigkeit

Bild 4. Energiekennzahl Mehrfamilienhäuser. Verteilung der Häufigkeit

kessel findet seinen Niederschlag in der höheren Energiekennzahl aller Kombikesselhäuser.

Sehr schön zeigt sich der Zusammenhang Energiekennzahl und installierte spezifische Heizleistung (Bild 2). Auch bei den Mehrfamilienhäusern sind die installierten Heizleistungen viel zu gross dimensioniert. Im Durchschnitt haben die Heizungen etwas weniger als 1500 Vollbetriebsstunden. Der häufigste Wert liegt um 1250 Vollbetriebsstunden (Bild 3).

Leider wurde bei der Erfassung der Mehrfamilienhäuser der Parameter Einzelgebäudeheizung oder Sammelheizung für mehrere Gebäude nicht erfasst. Aus der Energiekennzahl-Auswertung eines grossen Hauseigentümers wissen wir aber, dass der Unterschied zwischen Einzelgebäudeheizung und Sammelheizungen bei allen Nutzungsstufen (Einfamilienhäuser, Mehrfamilienhäuser, Verwaltungsgebäude usw.) markant ist. Auch die nachträgliche Auswertung einzelner Mehrfamilienhäuser aus unseren vorliegenden Erhebungen zeigt klar, dass im Durchschnitt mehr als 100 MJ/m² a für die Verteilung verbraucht werden. Bei der Einzelgebäudeheizung bleiben zudem 30% bis 50% der Kesselverluste als freie Wärme im Haus. Der

allfällig schlechtere Kesselwirkungsgrad der Einzelgebäudeheizung wird wettgemacht durch die angepasste Betriebszeit an die vorhandene Gebäudesubstanz. Bei Sammelheizungen muss immer nach dem am meisten exponierten Verbraucher geheizt werden.

Auch bei den Mehrfamilienhäusern musste als negatives Resultat die Erfahrung gemacht werden, dass zwischen der mittleren Jahrestemperatur und dem Energieverbrauch kein direkter Zusammenhang besteht. Die bisher bei allen Energiekennzahl-Erhebungen durchgeführten Normierungen ergeben ein verzerrtes Bild. Bei der Erarbeitung der SIA-Empfehlung 180/4 wurde deshalb richtigerweise auf die Normierung verzichtet. Ein wenig schmeichelhaftes Ergebnis für die vielen Komponenten-Hersteller für aussentemperaturgeführte Heizungsregelungen ist die Tatsache, dass die Summe der handgesteuerten Objekte mit einer E-Heizen von 729 um 12% tiefer liegt als die Summe der Häuser mit automatischer Steuerung und Nachtabsenkung. Die übrigen Parameter, wie Alter, Grösse usw. wurden ebenfalls mitbeurteilt. Die entsprechenden Werte weichen bei den beiden Gruppen nicht sehr stark voneinander ab. Leider wurden nur 8 Fälle mit individueller Heizkosten-Abrechnung erfasst. Die wenigen Gebäude sind im Durchschnitt wesentlich älter und in der Mehrzahl wohnt der Eigentümer (und Hauswart) selber im Haus. Die tiefere Zahl für E-Heizen ist unter Berücksichtigung dieser beiden Randbedingungen leicht erklärlich und eher enttäuschend. Sie darf aber wegen der geringen Anzahl von Fällen nicht als sta-

tistisch gesichert betrachtet werden.

Risikoanalyse

Alle bisherigen Erhebungen zeigten, dass der häufigste Wert für E-Wärme wesentlich tiefer liegt, als der Durchschnittswert für alle Gebäude. Die Häufigkeitsverteilung ist also stark asymmetrisch (Bild 4). Um vom Mittelwert zum häufigsten Wert zu gelangen, muss man die Risikofaktoren beurteilen, die zu einem überhöhten Energieverbrauch führen. Bei der Auswertung der Verbrauchs-Parameter wurden folgende Risikofaktoren erkannt:

		E-Heizen
_	Mehrfamilienhäuser mit mehr	
	als 150 W/m ² spezifischer Heiz-	
	leistung	1000
_	Alle Mehrfamilienhäuser mit	
	beheizter Einstellgarage und	
	Lüftung für innenliegende Bä-	
	der und WC's	968

Mehrfamilienhäuser der Baujahre 1960 bis 1970
 Mehrfamilienhäuser mit beheizter Einstellgarage (ohne WCund Bad-Lüftung)
 Mehrfamilienhäuser mit mecha-

853

849

nischen Lüftungen für innenliegende Bäder und WC's – Mehrfamilienhäuser mit ande-

ren Lüftungen

Interessanterweise haben alle Objekte, die den Mietern keinen ausgeglichenen Komfort bringen (22%, *E-Heizen* = 765) und alle Objekte, in denen bereits Kondenswasserschäden vorhanden sind (11%, *E-Heizen* = 752) keine übermässig hohe Energiekennzahl. Die Tatsache, dass bei den Mehrfamilienhäusern «nur» 11% Kondenswasserschäden haben – gegenüber 12% bei den Einfamilienhäusern – dürfte eher darauf zurückzuführen sein, dass die Mehrzahl der Ausfüller von Fragebogen den Hausverwaltungen angehören.

Schliesst man alle Häuser mit einem oder mehreren Risikofaktoren aus, so erhält man das durchschnittliche «normale» Gebäude, dessen Energieverbrauch man für die Bewertung nach dem *Energiebilanz-Modell* verwenden kann. So haben beispielsweise alle Mehrfamilienhäuser ohne beheizte Einstellgarage und ohne Lüftung eine um 20% tiefere Energiekennzahl und alle Häuser mit weniger als 150 W/m² spezifischer Heizleistung eine um 23% tiefere Energiekennzahl.

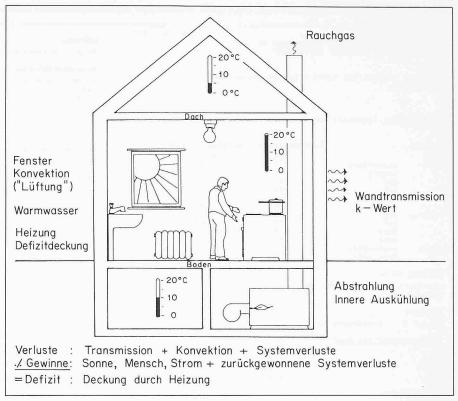


Bild 5. Grundlagen der Energiebilanz

Das statistische Normalhaus

Das so errechnete «normale» Mehrfamilienhaus hat eine Energiekennzahl für E-Heizen von 720; es ist im Durchschnitt drei Jahre älter als der Gesamtdurchschnitt, es hat eine eigene Heizung im Haus und hat weder innenliegende Bäder noch WC's mit mechanischer Lüftung und eine installierte spezifische Heizleistung von 130 W/m². Es kommt am häufigsten im grossen Bereich der 6- bis 12-Familienhäuser vor. Aus der Zeitperiode heraus ist dieses Haus auch dadurch charakterisiert. dass es eine Doppelverglasung hat, ein 32er-Mauerwerk (d. h. einen k-Wert der Wände von etwa 0,9 W/m² K), ein schlecht isoliertes Dach (k-Wert 0.8 W/m² K) und eine unisolierte Geschossdecke über dem Untergeschoss. An diesem typischen Mehrfamilienhaus, das prioritär nach der Sonne orientiert ist und eine West/Ost-Ausrichtung hat, wird im folgenden das Energiebilanz-Modell dargestellt.

Energiebilanz des statistischen Mehrfamilienhauses

Bisher war es nicht üblich, für Gebäude den Jahres-Energieverbrauch unter Berücksichtigung der Sonneneinstrahlung und der inneren Abwärmen zu rechnen. Die vereinfachende Annahme, dass jede k-Wert-Verbesserung linear mit einer Verbrauchsreduktion einhergehe, kann dem komplexen Vorgang des

Energieverbrauchs in keiner Art und Weise Rechnung tragen. Mit der zunehmenden Verbesserung der Wärmedämmung sinkt der Wärmeabfluss, aber auch der nutzbare Anteil an passiver Sonnenenergie. Andererseits muss jede Veränderung im Wärmeabfluss (Transmission und Konvektion) mindestens zu einer Änderung der Regelung der Heizung – wenn nicht sogar zu einem Auswechseln der Heizung – führen. Viele Enttäuschungen nach Sanierungen haben ihre Ursache darin, dass die Veränderungen an der Hülle und an der Heizung nicht ausgewogen erfolgten.

Die Berechnungsformeln für eine Energiebilanz sind in den schweizerischen Standardwerken [6, 7] für den energiegerechten Neubau und für die wärmetechnische Gebäudesanierung enthalten.

Energieverluste

Der Energiebedarf entsteht aus dem Wärmedurchgang durch die Aussenwände (Transmissions-Verluste), aus dem Abfluss verbrauchter Luft, respektive dem Aufwärmen der neu zugeführten Luft (Konvektionsverluste) und den System- und Verteilverlusten, beispielsweise den Rauchgasverlusten bei Ölheizungen. Bei den vorhandenen Gebäuden ist zusätzlich noch mit etwa 10% Aufwand für die Bereitstellung des Brauchwarmwassers zu rechnen. Bei Neubauten macht dann der Anteil für Brauchwarmwasser bereits 40% und mehr am Gesamtenergieverbrauch aus.

Tabelle 3. Statistisches Normalhaus (Schweiz). Objektdaten, Standortdaten, Berechnungsannahmen und Energiebilanz

Objekt: Mehrfamilienhaus Obj.Nr. 1111 STATISTISCHES NORMALHAUS CH 8888 SCHWEIZ. MITTELLAND				Lüftung Normalwert od. Berei					
88	00 SCHWEIZ. MITTELLAND			Anzahl Luftwechsel pro Stunde n =	0.50	EFH .4	/ M	FH .	
NORMHAIIS E L	ÄRME 720 MJ/17.2 kg OE	I neo mo IAIIn		Nutzungsfaktoren					
Wohnungen	ANTE 120 MJ/11.2 Kg UE	L Pro mz.JAHK		Strom allgemein	0.80	.5	-	. 9	
angen				Gas für Kochen Cheminee	0.00	.1	-	.5	
				Heizungsverluste	0.70	.2	_	.6	
BJEKTDATEN:	(gemessen oder gerech	net)		Personenwärme	0.65	.1	-	.7	
DO ENTERINE				Globalstrahlung ganzes Jahr G.strlg. z.Zeitpt. der Heizgrenze		. 4 . 4	-	.8	
auteil	<u>Flächen in</u>	m2 k-Werte	e <u>in W/m</u> 2K	Beschattungsgrad					
ach	230		800	Beschattungsfaktor	0.60	. 4		.7	
	berührt 0 ere 0		000	Deschattungst aktor	0.00	• 4	-	• 1	
Süd			900	Heizung					
Ost	160	0.	900	Wirkungsgrad der Heizung im Somme	r 0.10	.1	_	. 4	
Nor			900	Wirkungsgrad der Heizung im Somme Jahreswirkungsgrad der Heizung	0.67	. 4		.8	
Wes enster Süd			900 800						
Ost			800	BILANZ: Energieabfluss - Energ					
Nor	d 8	2.	800						
Wes			800	Transmission (Wände, Fenster	Dach)				
	berührt 230 r Luft 0		800	. anomission (wande, renster	, Dacity				
ube	. 5310	0.		Dach	56 GJ/a				
olumen in m	3			Wand erdberührt	0 GJ/a				
eheiztes Br	utto Volumen 1840			innere Süd	0 GJ/a 26 GJ/a				
uftvolumen	1656			Ost	20 GJ/a 44 GJ/a				
				Nord	26 GJ/a				
ewohner				West	44 GJ/a				
inder 8	Erwachsene 15			Fenster Süd	7 GJ/a				
				Ost Nord	58 GJ/a 7 GJ/a				
nergiezufuh				West	58 GJ/a				
el	12050		505 GJ	Boden erdberührt o.Keller	76 GJ/a				
trom	21000		76 GJ	über Aussenluft	0 GJ/a				
as olz		kWh m3	0 GJ 0 GJ	Total Transmission	402 GJ/a	79.	.8 %		
Heizleistung				Wassererwärmung	63 GJ/a	12.	6 %		
75'000 kcal/	h			Konvektion (Lüftung)	101 GJ/a	20.	0 %		
STANDORTDATE	<u>. N</u>			Konvektion (Lüftung) Umwandlungsverluste	166 GJ/a	33.	0 %		
Globalstrahl	ung			Total Energie-Abfluss	732 GJ/a	145.	4 %		
Mittlere Glo	balstrahlung während o	ler Heizperioo	i e	Abwärme Personen	20 GJ/a				
		00 kJ/m2.d		Strom	39 GJ/a				
		00 kJ/m2.d		Warmwasser	18 GJ/a 65 GJ/a				
		0 kJ/m2.d		Heizung Cheminee	65 GJ/a 0 GJ/a				
				Gas	0 GJ/a				
ittlere Glo	balstrahlung zum Zeitp	ounkt der Heiz	grenze						
		000 kJ/m2.d		Total Abwärmen	143 GJ/a				
		00 kJ/m2.d		Sonneneinstrahlung	86 GJ/a	17.0) %		
	Nordfassade 360	00 kJ/m2.d		Total Energie-Gewinne	228 GJ/a	45.4	1 %		
leizdaten	nach SIA 180								
leizgradtage leiztage		700 230		Energiezufuhr gerechnet	503 GJ/a	100 %	, * 		
				intition on attended to					
Höhe				* 1 % = 5 GJ = 120 kg Oel					
1.ü.M. 400 m				Kontrolle:	E03 01'	0.0	0 4		
				Verbrauch gerechnet Verbrauch gemessen	503 GJ/a 505 GJ/a		8 %		
BERECHNUNGSA	NNAHMEN:	Nor	malwert od. Bereich		 -1 GJ/a				
ittlere Tem	peratur				, 0074		- "		
der Innenr	äume	19 C	20 C	magazina da a					
	ches unter beh. Räumen	10 C	10 C	Heizgrenze 12.8 C Heiztage 237 ger	echnet				
kalter Inn	enraume	10 C	10 C	Heizgradtage 3526 ger					
armwasser		55.0	60.0	3550 Bet					
larmwasserte	mperatur rbrauch pro Person	55 C 40 1/Tag	60 C 35 - 60 1/d	Datum: 25.9.1981	swerter: . M.	in	C		
							1		

Energiegewinne

Bei Neubauten ist darauf zu achten, dass möglichst hohe Anteile der Strahlungsenergie und der inneren Abwärmen genutzt werden können und nur noch der verbleibende Restenergiebedarf durch zugeführte Fremdenergie gedeckt wird.

Bei der Sonneneinstrahlung ist der Gewinn durch das Fenster am grössten. Der Strahlungsgewinn durch die Wände macht auf der Südseite höchstens 15%, auf der Nordfassade etwa 3% der Transmissionsverluste aus.

Wesentlich ins Gewicht fallen die inneren Abwärmen aus dem Stromverbrauch für Kochen, Beleuchtung, Apparate usw., die im Haus verbleibenden Verluste aus der Verteilung von Brauchwarmwasser, die Wärmeleistung der Einwohner und die Rückgewinnung aus den Systemverlusten, sofern die Heizung im Hause selber installiert ist (Bild 5).

Restbedarf an zugeführter Energie

Das Defizit zwischen Energieverlusten und -gewinnen muss durch die Heizung abgedeckt werden. Diese Deckung des Restbedarfs ist grundsätzlich möglich aus einer Öl- oder Gasheizung im Hause, aus Fernwärmenetzen und/oder aus Wärmepumpen. Die Wärmequellen

können extern sein (Grundwasser, Plenar-Netz usw.) oder intern. Durch die Rückgewinnung innerer Abwärmen, z. B. können die Luftmengen der mechanischen Lüftungen über eine Wärmepumpe geführt werden, reduziert sich das zu deckende Defizit.

An dieser Stelle sei kurz auf die Problematik der Fernwärmeversorgung hingewiesen. Bei heutigen Bauten kann während 250 Tagen Heizwärme geliefert werden, was einem Abrechnungsbetrag von 20 kg Heizöl pro m² entspricht. Verbesserte Bauten brauchen je nach Stand der Sanierung noch 14 bis 6 kg Öl pro m². Der Verbrauch fällt nur noch zwischen 210-160 Tagen an. Das Fern-

Berechnungselemente	Fall A Ist-Wert	Fall B Dach und Boden isoliert	Fall C Heizung ersetzt	Fall D Aussenisola- tion angebracht	Fall E Fenster abgedichtet	Fall F Fenster 3fach verglast
Dach (k-Wert in W/m²K) Wand (k-Wert in W/m²K) Fenster (k-Wert in W/m²K)	0,8 0,9 2,8	0,3	*	0,4	vorher verboten!	1,8
Boden (k-Wert in W/m²K) Temperatur der Innenräume Luftwechsel pro h	1,8 19 °C 0,50	0,6 ▶ 20 °C		▶ 18,5 °C	0,3	
Heizung (Wirkungsgrad Sommer) Heizung (Wirkungsgrad Winter)	0,10 0,67	Heizung- einreguliert	0,65 0,88	0,85	0,83	▶ 0,81
Heizgrenze (°C) Heiztage (d) Heizgradtage (d)	12,5 237 3525	12,4 231 3719	13,5 246 3822	10,7 205 3177	9,7 190 3035	8,4 171 2868
▶ E-Wärme	720	640	518	344	291	229

Massnahme

Folgeerscheinung

* Neue Heizung mit 40 kW (bisher 87,5 kW)

Tabelle 5. Statistisch «normales» Mehrfamilienhaus (Schweiz). Sanierungsfälle A bis F. Energiebilanz in GJ pro Jahr

Ti esta-		Fall A Ist-Wer	t	Fall B Dach us Boden i		Fall C Heizung ersetzt	g	Fall D Ausseni angebra	solation icht	Fall E Fenster abgedic		Fall F Fenster . verglast	3fach
	man and an artist of the second	[GJ]	[%]	[GJ]	[%]	[GJ]	[%]	[GJ]	[%]	[GJ]	[%]	[GJ]	[%]
Energiebedarf	Dach Wände Fenster Boden Total Transmissionen Brauchwarmwasser Konvektion Umwandlungsverluste Total Energieabfluss	56 140 130 76 402 63 101 166 732	80 13 20 33 146	22 146 136 28 332 63 106 162 663	74 14 23 36 147	23 152 140 29 344 63 109 44 560	95 17 30 12 154	19 56 116 21 212 63 91 36 404	88 26 38 15 167	18 54 112 19 203 63 52 35 353	100 31 26 17 174	17 50 68 17 152 63 49 27 291	95 39 31 17 182
Energiegewinn	Abwärme: Personen Strom Warmwasser Heizung Total Abwärme Sonneneinstrahlung Total Energiegewinn	20 39 18 65 142 86 228	28 17 45	20 38 18 55 131 83 214	29 19 48	21 41 19 28 109 89 198	30 25 55	18 34 16 21 88 74 162	37 30 67	16 32 15 19 82 69 151	40 34 74	15 28 13 14 70 62 132	44 38 82
giebedarf	Zufuhr von Öl	505	100	451	100	363	100	241	100	204	100	160	100
Restenergiebedarf	Ölverbrauch bezüglich Fall A in %		100		89		72		48		40		32

wärmenetz hat aber seine Bereitschaftsverluste nach dem letzten (schlechtesten) Gebäude zu berechnen. Die mittleren Fernwärmeverluste von heute etwa 8% nehmen zwar absolut nicht wesentlich zu, steigen aber auf 20% und mehr der verkauften Energiemengen.

Durchgerechnetes Beispiel eines «normalen» Mehrfamilienhauses

In Tabelle 3 (EDV-Ausdruck) ist im Fall A der heutige Wert bilanziert, und nachfolgend sind in Tabelle 4 die Sanierungsfälle in bauphysikalisch vertretbarer Reihenfolge aufgezeigt. Tabelle 5 gibt die Prognose-Resultate wieder.

Fall B: Oberste Geschossdecke (Dach) und Trennfläche zwischen Keller und Erdgeschoss (Boden) werden isoliert. Die Heizung wird neu einreguliert. Die mittlere Innentemperatur steigt an. Die Öleinsparung beträgt etwa 11%. Der Komfort wird im Hause wesentlich ausgeglichener sein.

Fall C: Die Heizung wird saniert (Kessel und Brenner neu, Kamin angepasst). Die Restöleinsparung beträgt etwa 17%. Diese Massnahme ist sehr wirksam.

Fall D: Es wird eine Aussenisolation angebracht und gleichzeitig die Raum-

temperatur abgesenkt. Die Restöleinsparung ist mit weiteren 24% eher enttäuschend im Verhältnis zum Aufwand. Massnahme D ist aber oft Voraussetzung für die Massnahme E.

Fall E: Die bisher «verbotene» Abdichtung (Schimmelbildung) der Fenster darf jetzt ausgeführt werden. Restöleinsparung 8%.

Fall F: Es wird aus Demonstrationsgründen angenommen, der Einbau von 3-fach-verglasten Fenstern werde unabhängig von Massnahme E ausgeführt. Deshalb ist auch der Erfolg mit einer Restöleinsparung von nur 8% gering.

Tabelle 6. Ziel- oder Richtwerte (Minimalanforderungen) für ölbeheizte Mehrfamilienhäuser

100	Neubau	Altbau nach Sanierung
Installierte spezifische Heizleistung [W/m²]	< 60*	< 80
Maximaler Jahresenergieverbrauch für Heizung und Warmwasser [MJ/m² a]	< 350	< 450*
Minimaler Energievorrat im Hause Öltank-Grösse	1 Jahresbedarf* 1½ Jahresbedarf	½ Jahresbedarf* 1 Jahresbedarf

^{*} massgebende Richtwerte

Man beachte ganz allgemein, wie kompliziert die gegenseitigen Abhängigkeiten sind. Der Ölbedarf sinkt zwar gesamthaft um 68%, obwohl der Energie-Abfluss «nur» um 58% zurückgeht. Der Abwärmeanteil inkl. Sonneneinstrahlung steigt von 45% auf 82%. Der Anteil Brauchwarmwasser am Wärmebedarf steigt von 13% auf 39% und wird zum dominierenden Verbrauchsfaktor. Die Heiztage gehen von 237 sukzessive auf 171 Tage zurück; die Heizgrenze sinkt von 12,5 °C auf 8,4 °C.

Ziel- oder Richtwerte

Energiekennzahlen über 900 sind im Mehrfamilienhaus durch die Hausbesitzer, respektive Baufachleute zu verantworten. Energiekennzahlen unter 600 können nur von Mieter und Vermieter gemeinsam erzielt werden. Be-

vor die Hülle saniert ist, kann kein Gesetzgeber das Risiko für eine zwangsverordnete «individuelle Heizkostenabrechnung» übernehmen. Eine Verdoppelung der Lüftungsrate (Dauerlüfter) erhöht den Energieverbrauch in unserem Beispiel um 15%. Auch der Mieter kann durch sein Verhalten massgeblich zur Verbrauchsreduktion beitragen. Mehr als die Hälfte aller Mehrfamilienhäuser hat aber so tiefe Energiekennzahlen, dass in diesen Häusern keine «Dauerlüfter» vermutet werden müssen.

Damit die Bauplaner ihren Bauherren brauchbare Entscheidungsgrundlagen auf den Tisch legen können, die auf echten Optimierungsberechnungen beruhen, sollte mit Ziel- oder Richtwerten gearbeitet werden (Tab. 6). Es kann dem Mieter und der Allgemeinheit gleichgültig sein, wie ein Eigentümer ein Ziel erreichen will, wichtig ist nur, dass wirtschaftlich erreichbare Sanie-

Literaturverzeichnis

- Brunner C. U. et al.: «Auslöser und Nebenwirkungen beim Energiesparen im Bauwesen». SNF, Nationales Forschungsprogramm, Zürich, Nov. 1980
- [2] Wick B.: «Sparobjekt Einfamilienhaus». Verlags-AG der akademischen technischen Vereine, Zürich, Februar 1981
- [3] Schweizerischer Ingenieur- und Architektenverein (SIA): SIA-Empfehlung 180/4 «Die Energiekennzahl», bereinigter Entwurf. SIA Zürich, 23.9.1981
- [4] Schweizerische Aktion Gemeinsinn für Energiesparen (Sages): Fragebogen «Energiekennzahl» Mehrfamilienhäuser. Zürich, Juni 1979
- [5] Wick B.: «Energieverbrauch Mehrfamilienhäuser». Vortragsmanuskript, Sages-Tagung Bern, Mai 1980
- [6] Bundesamt für Konjunkturfragen: Wärmetechnische Gebäudesanierung, Handbuch Planung und Projektierung. EDMZ Bern, Januar 1980
- [7] Eidg. Departement des Innern, Amt für Bundesbauten: Energiegerechte Neubauten. EDMZ Bern, August 1981

rungsziele formuliert werden. Der Vermieter kann beispielsweise eine Wärmepumpe installieren oder eine maximale Dämmung ausführen lassen. Im Rahmen der Wirtschaftlichkeit und der Grenzen der Behaglichkeit muss seine Entscheidungsfreiheit gewahrt bleiben.

Adresse des Verfassers: B. Wick, dipl. Ing. ETH/SIA, Ingenieurbüro für Energietechnik, 8967 Widen.

Energiegerechte Mehrfamilienhäuser

Drei Beispiele von Neubauten

Von Roland Stulz, Zürich

Energiesparen beim Neubau

Möglichkeiten und Grenzen

Dem Energiesparen im Mehrfamilienhausbau sind naturgemäss engere Grenzen gesetzt als zum Beispiel im Einfamilienhaus oder bei öffentlichen Gebäuden. Die Gründe hierfür sind vor allem finanzieller und organisatorischer Art. Einerseits darf durch Mehrinvestitionen für Energiesparmassnahmen der Mietzins nicht aus dem relativ engen marktüblichen Preisrahmen fallen, und andererseits muss das sehr unterschiedliche Mieterverhalten beim Einbau von Energiesparelementen berücksichtigt werden.

Die Praxis hat uns gelehrt, dass beim Entscheid für oder gegen die Ausführung von Energiesparmassnahmen folgende Aspekte zu beachten sind:

- Energiesparen mit gutem Kosten/ Nutzen-Verhältnis besteht nicht im Einsatz einer spektakulären Maschine, sondern kann nur durch die sinnvolle Kombination von vielen Einzelmassnahmen an Bauhülle und Haustechnik gewährleistet werden.
- Energiesparen ist in der Regel mit merklichen Mehrinvestitionen und planerischem Mehraufwand verbunden.
- Der Einsatz von Energiespartechniken lohnt sich trotzdem auch für den einfachen Wohnungsbau.

- Der Bauherr sollte als Entscheidungskriterien das Kosten/Nutzen-Verhältnis und die Versorgungssicherheit und nicht nur die Mehrkosten betrachten.
- Die Motivation der Mieter für die richtige Benutzung von energiesparenden Techniken sollte durch entsprechende Beratung und eventuell finanzielle Anreize angeregt werden.

Drei Fallbeispiele

An den drei nachfolgend dargestellten Beispielen soll möglichst das ganze Spektrum der heute im Wohnungsbau realisierbaren Energiesparmassnahmen dargestellt werden. Hierbei werden folgende Aspekte behandelt:

Im Beispiel A werden aktive und passive Energiesparelemente grundsätzlich aufgeführt. Als Entscheidungskriterien im Gespräch zwischen Bauherrn und Architekten wurden hierbei diskutiert

- Gebäudestellung und Grundrissentwurf
- Bauhülle
- Haustechnik