**Zeitschrift:** Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

**Band:** 100 (1982)

**Heft:** 40

Artikel: Versorgungsbetriebe des Kantonsspitals Aarau

Autor: Rusterholz, Willi / Högger, Kurt / Hinden, Robert

**DOI:** https://doi.org/10.5169/seals-74869

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Versorgungsbetriebe des Kantonsspitals

Die Versorgungsbetriebe stellen die 2. Neubauetappe des Kantonsspitals Aarau dar. Sie basieren auf dem Horizont-Projekt, das aus dem Architektur-Wettbewerb der Jahre 1968-70 hervorgegangen ist. Eigenart der Spitalanlage ist das Pavillonsystem, das sich im Laufe der baulichen Entwicklung seit 1887 herausgebildet hat. Ständige Erweiterungen der einzelnen Kliniken und Institute verursachten prekäre Platz- und Betriebsverhältnisse in den Versorgungsbereichen, besonders bei Küche, Apotheke, Lager und Transport. 1971 beschloss der Regierungsrat die Projektierung der Versorgungsbetriebe. Die Ausführung wurde aber mehrmals verschoben, so dass der Neubau erst im Jahre 1982 vollendet werden konnte.

#### Planung und Generalplaner

#### Planungsschritte

Ziele

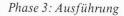
Als Vorgabe für die Planung wurden vom Bauherr folgende Ziele formuliert:

- «Ziel der Versorgungsbetriebe ist die Sanierung des Kantonsspitals Aarau im Bereich der Ver- und Entsorgung sowie des Transportwesens.»
- «Die Versorgungsbetriebe sind derart auszulegen, dass die im ganzen Spitalareal auftretenden gungsbedürfnisse befriedigt werden, wobei unter Einbezug aller Folgekosten minimale Betriebskosten realisiert werden müssen.»

In enger Zusammenarbeit zwischen Generalplaner und Bauherr wurden folgende Planungsschritte festgelegt:

Phase 0: Betriebskonzept, Funktionsund Raumprogramm

Ausgehend von vorgegebenen Spezifikationen des Bauherrn (z.B. Anzahl Patientenbetten, Personalbestand usw.) und aufgrund einer Bedürfnisermittlung (zeitliches Ausbaukonzept, Kapazitätsreserven usw.) wurden vom Generalplaner optimale Betriebskonzepte, Funktions- und Raumprogramme für die verschiedenen Versorgungsbereiche erarbeitet. Diese Betriebskonzepte wurden eingegliedert in einem Gesamtversorgungskonzept, welches u.a. in der Lösung des spitalinternen Material-fluss- und Transportwesens ausgedrückt wurde. In dieser Phase wurde den Benützern und den extern zugezogenen Beratern ein Mitspracherecht eingeräumt.


#### Phase 1: Vorprojekt

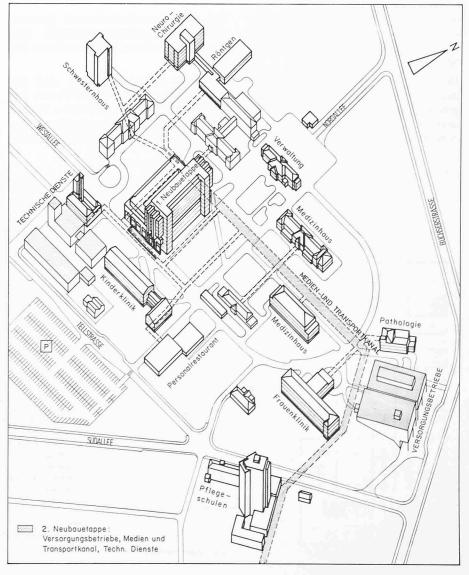
Umsetzung der Betriebskonzepte, Funktions- und Raumprogramme in ein Vorprojekt mit Kostenschätzung für die Krediterteilung durch den Grossen Rat.

#### Phase 2: Bauprojekt

Bauprojekt, Submissionspläne und Anforderungskatalog mit Beschrieb von Standard und Qualität der Gebäude, Räume, der technischen Anlagen und der Betriebseinrichtungen als Grundlage für eine Generalübernehmersubmis-

Kantonsspital Aarau. Gesamtübersicht (Isometrie)




Ausführung des geplanten Werkes durch einen Generalübernehmer (Arthur Gross AG, Brugg), wobei der Generalplaner (mit Ausnahme der Installationsplanung) sämtliche Planungsleistungen behielt.

#### Einbezug des Generalplaners

Aussergewöhnlich ist die Tatsache, dass der Generalplaner bereits mit der Erarbeitung der Betriebskonzepte, Funktions- und Raumprogramme betraut wurde (Phase 0) und dass in dieser Phase den Benützern ein Mitspracherecht eingeräumt wurde.

Der erste positive Aspekt dieses Vorgehens äusserte sich darin, dass in keinem späteren Zeitpunkt wesentliche Konzept- und Projektänderungen vorgenommen werden mussten und damit die Investitionskosten unter Kontrolle gehalten werden konnten.

Der zweite positive Aspekt lag darin, dass in Zusammenarbeit mit den Benützern die Betriebsabläufe optimal gestal-





Versorgungsbetriebe. Ostfassade mit Anlieferung

tet werden konnten. Damit wurde aber auch erreicht, dass zukünftig minimale Betriebskosten realisiert werden kön-

Der dritte positive Aspekt äusserte sich darin, dass die Benützer aufgrund genügender Informationen (und Kompetenz) bereit waren, den Optimierungsvorschlägen des Generalplaners in bezug auf Raumdispositionen, Ausbaustandard, Installationskonzepte und Baukonstruktionen grösstenteils zu fol-

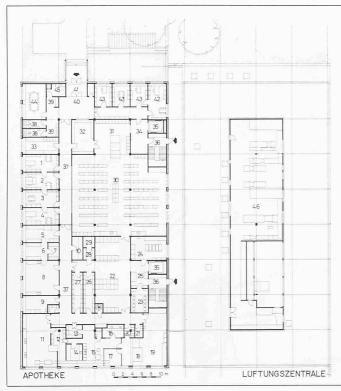
Aufgrund dieser Tatsachen sind wir überzeugt, dass die Qualitätsziele des Bauherrn mit den realisierten Bauten und Anlagen und den vorgesehenen Betriebskonzepten erfüllt sind. Es galt unter Anwendung eines Kosten-Nutzen-Denkens ökonomische Prinzipien zu verankern und alle möglichen Massnahmen zur Kostendämpfung zu tref-

Willi Rusterholz

#### Baubeschrieb

Die neuen Versorgungsbauten des Kantonsspitals Aarau bestehen aus zwei geographisch getrennten, funktional aber zusammengehörenden Teilen.

#### Die Versorgungsbetriebe


Sie enthalten folgende Teilbetriebe:

- Zentrallager mit Wagenbahnhof
- Apotheke mit Sterilabteilung
- Zentraleinkauf
- Wäschekommissionierung
- Technische Räume für die zentrale Versorgung des Spitals mit Medien (Medizinalgase, Druckluft, behandelte Wasser, Neutralisation)
- Kehrichtentsorgung
- Elektro- und Heizunterstationen. Lüftungszentralen, Acqua-Dest-Aufbereitungsanlage
- Luftschutzräume (ca. 600 Plätze)

#### Die Technischen Dienste

Die neuen Werkstätten für den Technischen Dienst und der Fuhrpark wurden bei der bestehenden Heizzentrale gebaut, zusammen mit der Erweiterung der bestehenden Heizzentrale für die

Grundriss Erdgeschoss



### Anotheke

#### Büros

- 1. Büro Apotheker
- 2. Büro Sekretariat
- 3. Archiv Bibliothek
- 4. Apotheker-Stellvertreter

- 5. Analytisches Labor
- 6. Physikalische Geräte
- 7. Wägeraum
- 8. Galenisches Labor
- 9. Geräte
- 10. Optische Geräte

#### Sterilabteilung

- 11. Spüle
- 12. Glaszwischenlager
- 13. Wägeraum Chemikalien
- 14. Aseptisches Labor
- 15. Ansetzraum
- 16. Kleinchargen
- 17. Abfüllraum
- 18. Autoklaven
- 19. Kontrolle Quarantäne 20. Schleuse
- 21. WC

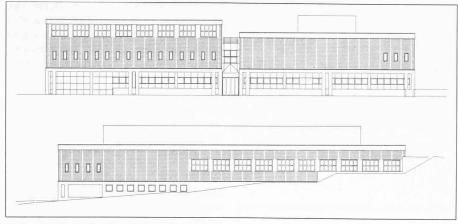
- 22. Quarantäne- und Groblager
- 23. Säureraum

- 24. Feuergef. Flüssigkeiten
- 25. Packraum
- 26. Glasraum rein
- 27. Glasraum unrein 28. Kühlraum 15°C
- 29. Kühlraum 8°C

#### Ausgabe

- 30. Kommissionierlager
- 31. Taxieren, Kontrollieren
- 32. Handverkauf
- 33. Rezeptur

#### Nebenräume


- 34. Vorraum
- 35. Lift
- 36. Тгерре
- 37. Korridor
- 38. WC
- 39. Garderobe
- 40. Halle
- 41. Windfang

#### Zentraleinkauf

- 42. Chef Zentraleinkauf
- 43 Biiro
- 44. Konferenzraum
- 45. Teeküche

#### Lüftungszentrale

46. Lüftungszentrale





Südfassade

Ostfassade (oben); Nordfassade (unten)

#### Grundriss 1. Untergeschoss

#### Küche

- 1. Tiefkühlraum
- 2. Schockgefrierraum
- 3. Schleuse
- 4. Korridor
- 5. Aufenthaltsraum
- 6. Kühlraum Obst 7. Kühlraum Gemüse/
- Kartoffeln
- 8. Vorkühlraum Fleisch
- 9. Kühlraum Fleisch
- 10. Kühlraum Fisch
- 11. Economat
- 12. Rüsterei Gemüse
- 13. Rüsterei Fleisch
- 14. Warme Küche
- 15. Diät-Küche
- 16. Speiseverteilband
- 17. Kalte Küche
- 18. Kühlraum Kalte Küche 19. Frühstücksküche
- 20. Kühlraum Milch-Käse
- 21. Brotraum

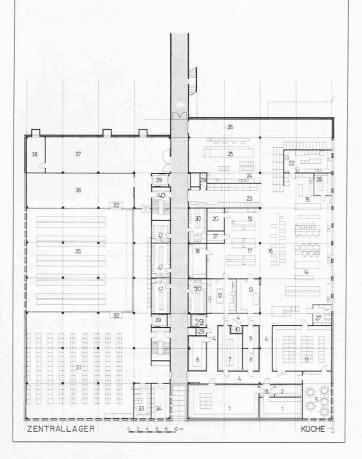
- 22. Patisserie
- 23. Dispenser-Bahnhof
- 24. Plonge
- 25. Geschirrwäscherei
- Wagenwäscherei
- 27. Büro Küchenchef
- 28. Büro Diätassistentin
- 29. Putzraum
- 30. Garderoben

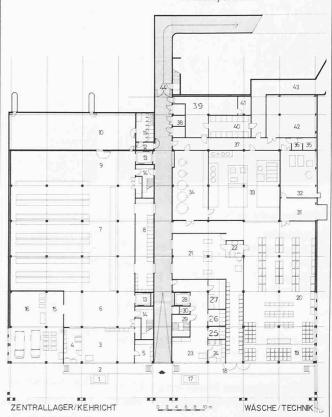
#### Zentrallager

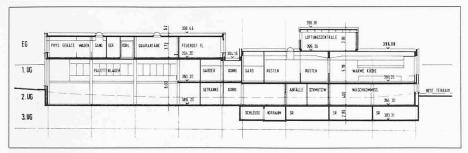
- 31. Kommissionierlager
- 32. Übergabetore
- 33. Büro Lagerchef
- 34. Druckerei
- 35. Luftraum Palettenlager
- 36. Palettenlager
- 37. Wagenbahnhof
- 38. EDV-Raum 39. Lift
- 40. Treppe
- 41. Garderoben

#### Grundriss 2. Untergeschoss

#### Zentrallager/Kehricht

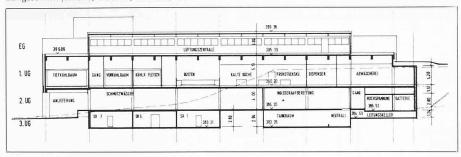

- 1. Hebebühne
- Anlieferungsrampe
- 3. Warenannahme
- 4. Schreibplatz
- 5. Stauraum Apotheke 6. Umschlagplatz
- 7. Palettenlager (2geschossig)
- 8. Getränkelager 9. Sperrgutlager
- 10. Luftschutzraum/Apotheken-
- lager
- 11. Reinigung 12. Schleuse
- 13. Lift
- 14. Treppe
- 15. Kartonlager
- 16. Kehrichtraum


#### Wäschekommissionierung/ Technik


#### 17. Hebebühne

- 18. Anlieferungsrampe
- 19. Stauraum

- 20. Wäschekommissionierung
- 21. Schmutzwäschesortierung
- 22. Wäschereileiterbüro
- 23. Anlieferung Küche
- 24. Büro Speisemeister
- 25. Glassammelraum
- 26. Küchenabfälle
- 27. Kältemaschinenraum
- 28. Lift
- 29. Treppenhaus
- 30. Putzraum
- 31. Medizinalgase
- 32. Druckluftzentrale 33. Wasserbehandlung
- 34. Sanitärzentrale
- 35. Lüftung
  36. Waschmitteldosierung
- 37. Korridor
- 38. Trafo
- 39. Niederspannung
- 40. Hochspannung
- 41. Batterieraum 42. Heizungsunterstation
- 43. Medienkanal
- 44. Transportkanal








Querschnitt

#### Längsschnitt (Küche, Wäsche, Technik)



Unterbringung der beiden neuen Heisswasserspeicher.

Die insgesamt 4 Bauten der Technischen Dienste sind um einen zentralen Anlieferungs- und Werkhof gruppiert. Ein Disponent überwacht die gesamte Anlieferung und ist zugleich Auskunftsstelle.



#### Versorgungsbetriebe:

|         | 10 660 m <sup>2</sup> |
|---------|-----------------------|
|         | 49 300 m <sup>3</sup> |
| 4       | 27 Monate             |
| BKP 2:  | Fr. 328               |
| BKP3:   | Fr. 60                |
| BKP 1-9 | Fr. 439               |
|         | BKP 2:<br>BKP 3:      |

*Tragstruktur:* Stahlbeton, Stützenraster 7,5×7,5 bzw. 7,5×15,0 m

Fassade: verputztes Mauerwerk / 12 cm Isolation / Welleternitplatten. 3fach Isolierglas

#### Der unterirdische Verbindungskanal

Obwohl sämtliche Gebäude bereits heute unterirdisch verbunden waren, wurde der Bau einer neuen «Hauptstrasse» unumgänglich, weil bei einem grossen Teil des 100jährigen Kanalsystems es nicht möglich war, dass 2 Elektroschlepper kreuzen konnten. Der



#### Technische Dienste:

serspeicher)

| Bruttofläche              |           | 5050 m <sup>2</sup>   |
|---------------------------|-----------|-----------------------|
| Kubikinhalt (SIA)         |           | 24 770 m <sup>3</sup> |
| Bauzeit: Werkstätte       | n         | 16 Monate             |
| Fuhrpark                  |           | 9 Monate              |
| Kosten pro m <sup>3</sup> | BKP 2:    | Fr. 419               |
| (1.4.79 = KV)             | BKP3:     | Fr. 6                 |
|                           | BKP1-     | 9: Fr. 469            |
| (inkl. Notstromzen        | trale und | l Heisswas-           |

Tragstruktur: Stahlbeton 7,50×7,50 m

Fassade: Beton-Sandwichplatten mit 8 cm Isolation. 2fach Isolierglas

neue 2stöckige Kanal ist im oberen Teil ausschliesslich für den Waren- und Personentransport, im unteren Teil ausschliesslich für die Medien (Wasser, Elektro, Heizung, Kanalisation) reserviert.

Willi Rusterholz

#### Transportsystem

#### Gütergruppen

Mit dem innerbetrieblichen Transportwesen wird die Verschiebung von Patienten und Waren zusammenfassend organisiert. Der Katalog der zu transportierenden Güter gibt einen Einblick über den Umfang und den Schwierigkeitsgrad dieser Aufgabe.

Die wichtigsten Gütergruppen sind:

- Mahlzeiten, Zwischenverpflegungen, Getränke, Geschirr und Besteck
- Sauber- und Schmutzwäsche
- Kehricht
- Güter aus dem Zentrallager
- Apothekerwaren, Medikamente, Infusionen
- Laborproben, Blutkonserven
- Patienten in Betten oder in Rollstühlen; leere Betten
- Post, Akten, Krankengeschichten
- Medizinalgase in Flaschen

In einem Spital unterscheiden sich primär zwei Arten von Transporten:



#### Verbindungskanal:

| Länge: Transportk         | anal:   | 375 m               |
|---------------------------|---------|---------------------|
| Medienkanal:              |         | 260 m               |
| Kubikinhalt (SIA)         |         | 9400 m <sup>3</sup> |
| Bauzeit                   |         | 15 Monate           |
| (ohne Unterbrüch          | e)      |                     |
| Kosten pro m <sup>3</sup> | BKP 2:  | Fr. 343             |
| (1.4.79 = KV)             | BKP 1-9 | Fr. 427             |
| (inkl. Fernleitung        | en)     |                     |
|                           |         |                     |

Querschnitte (B×H):

Transportkanal:  $3,50\times3,00 \text{ m}$ Medienkanal:  $3,50\times4,80 \text{ m}$ 

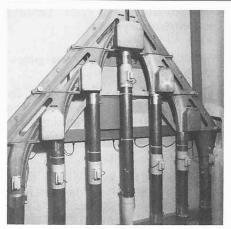
Ausführung: Stahlbeton in Etappen zu je 15 m, in offener Baugrube.

- Programmierbare Transporte wie Essen, Wäsche, Kehricht, Güter aus dem Zentrallager, Apothekerwaren
- Spontan-Transporte wie Patiententransport, Laborproben, Akten, EDV-Belege

#### Bisheriger Zustand

Bereits mit der Inbetriebnahme der 1. Neubauetappe (1975) wurde das gesamte Transportwesen neu organisiert. Für die interne Post wurde ein 2-Stunden-Turnus eingeführt. Für die programmierbaren Transporte wurden detaillierte Fahrpläne aufgestellt. Es stehen heute im wesentlichen nur die elektrisch betriebenen Zugfahrzeuge und die verschiedenen Transportwagen zur Verfügung, mit welchen die programmierbaren Transporte bewältigt werden.

Besonders erschwerend wirkte sich das Fehlen eines geeigneten Transport-Systems aus, mit welchem die spontan anfallenden Kleinstgüter (Bestellungen, EDV-Belege, Laborproben usw.) transportiert werden können. Diese Transporte mussten zu einem grossen Teil durch das Personal der einzelnen Abteilungen durchgeführt werden.


#### Neuer Zustand

Für die Lösung sämtlicher Transportaufgaben gibt es eine reichhaltige Palette von technischen Möglichkeiten, vom einfachen Elektroschlepper bis zum vollelektronisch gesteuerten Transportsystem. Bei diesen technisch aufwendigen Transportanlagen stellt sich ein Problem, indem das Kantonsspital Aarau nicht einen geschlossenen Gebäudekomplex darstellt, sondern als bald 100jährige Spitalanlage nach dem Pavillonprinzip gebaut wurde. Personalsparende automatische Transportsysteme können nicht eingebaut werden.

Besonders erschwerend wirkte sich aus, dass es im unterirdischen Kanalsystem nicht möglich war, mit den Elektroschleppern zu kreuzen. Als wichtigste Massnahme wurde daher ein neuer Transportkanal von den Versorgungsbetrieben bis zur 1. Neubauetappe erstellt

Dieser neue, 2geschossige Verbindungskanal dient im ersten Untergeschoss dem *Patienten- und Warentransport* und im zweiten Untergeschoss dem *Führen der Medien* (Elektro, Heizung, Wasser, Kanalisation).

Die wichtigsten grossvolumigen Gütertransporte werden heute - wie bisher - mit bemannten Elektroschleppern durchgeführt, wobei bis zu 6 Wagen spurtreu dem Zugfahrzeug folgen können. Zur Rationalisierung der Transporte ist in den Versorgungsbetrieben



Rohrpostzentrale

ein Wagenbahnhof geplant, in dem die einzelnen Güter zu Sammeltransporten zusammengestellt werden. Damit sollten die vorhandenen Transportkapazitäten optimal ausgenutzt werden können.

Zum Transport der spontan anfallenden kleinstvolumigen Güter wurde in praktisch sämtliche Häuser des Kantonsspitals eine Rohrpostanlage eingebaut. Grundsätzlich können mit der Rohrpostanlage alle Transportgüter befördert werden, die in eine Rohrpostbüchse passen (Innendurchmesser 80 mm, Länge 36 cm) und nicht mehr als 1 Kilogramm wiegen. Das neue Eingebaute Rohrpostnetz erschliesst 13 Häuser auf dem Areal des Kantonsspitals und weist insgesamt 52 Stationen und mehr als 150 Adressen auf. Das Herzstück der Rohrpostanlage, die Zentralweiche, befindet sich in der 1. Neubauetappe.

Seit der Inbetriebnahme der Rohrpostanlage im Jahre 1980 wurden täglich durchschnittlich knapp über 1000 Sendungen gezählt. Diese Menge entspricht etwa 550-600 Transporten, die bisher hauptsächlich vom Pflegepersonal erbracht wurden. Der Rationalisierungseffekt der Rohrpostanlage ist somit offensichtlich.

Mit ausgedehnten Versuchen wurde die Transportierbarkeit von Laborproben untersucht. Dank einer sorgfältigen Leitungsführung und einer variablen Geschwindigkeit (3-6) m/s) können heute selbst sehr empfindliche Blutproben ebenfalls mit der Rohrpost befördert werden.

Willi Rusterholz

### Medienversorgung Sanitär

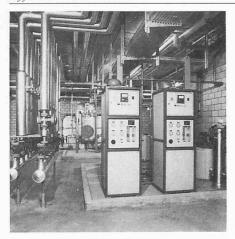
#### Medienkonzept

Um die Versorgung des Kantonsspitals zu gewährleisten, wurde ein neues Me-



Medienkanal

diengesamtkonzept geplant und teilweise bereits mit dem Bau der Versorgungsbetriebe realisiert.


Das Spital wurde bisher vom öffentlichen Wassernetz durch 3 Zuleitungen versorgt. Diese Versorgung erwies sich bereits für den Ausbau der Versorgungsbetriebe als ungenügend, so dass eine neue Zuleitung Ø 200 mm erstellt werden musste. In einer späteren Ausbau-Etappe ist vorgesehen, eine Hauptleitung durch das Spitalareal im Medienkanal zu erstellen und mit dem öffentlichen Netz im Nord-Westen zu verbinden.

Die Strassenkanalisationsleitungen nördlich und nordöstlich des Spitalareals sind überlastet, so dass mit der Realisierung der Versorgungsbetriebe ein Neuanschluss östlich des Spitalareals in den Gönhardkanal (Südallee) erstellt werden musste. An diesen Kanal können die weiteren Ausbauetappen angeschlossen werden.

Warmwasser in den verschiedenen Temperaturbereichen wird dezentral in den einzelnen Gebäuden in Doppelerwärmeranlagen erzeugt.

Die Aufbereitung von enthärtetem und teilentsalztem Wasser erfolgte vor der Realisierung der Versorgungsbetriebe dezentral. In den Versorgungsbetrieben wurde eine Enthärtungsanlage und zur Aufbereitung von teilentsalztem Wasser eine Umkehr-Osmose-Anlage erstellt. Diese Anlagen können bei der Realisierung weiterer Gebäude erweitert werden. Zur Verteilung von enthärtetem und Umkehr-Osmosewasser in die diversen Spitalbauten sind im Medienkanal Verteilleitungen vorgesehen, an die weitere Bauetappen angeschlossen werden können.

Da das Umkehr-Osmose-Wasser für die meisten Verbraucher von der Qualität her ausreicht, wird die Versorgung mit vollentsalztem Wasser dezentral mittels mobilen Patronenentsalzern bzw. bei grösserem Verbrauch mit stationären Mischbettanlagen durchgeführt.



Umkehrosmose-Anlage

Die Aufbereitung von destilliertem Wasser erfolgt unmittelbar bei den Verbrauchern.

Die Sauerstoffversorgung erfolgt zentral ab einem Flüssigsauerstofftank. Die Lachgasversorgung zentral ab Flaschenpaletten. Je eine projektierte Leitung im Medienkanal soll die Versorgung weiterer Bauten gewährleisten. Aus Sicherheitsgründen sind in den einzelnen Spitaltrakten Unterstationen mit Reservepaletten vorgesehen.

Die Vakuumversorgung wurde aus wirtschaftlichen Überlegungen dezentralisiert.

Die Druckluftversorgung erfolgte bis heute dezentral. In den Versorgungsbetrieben wurde eine Druckluftanlage mit Erweiterungsmöglichkeit installiert, um später über eine Hauptleitung, analog Sauerstoff/Lachgas, die Versorgung der Spitalbauten gewährleisten zu können.

# Wassernachbehandlung in den Versorgungsbetrieben

Für die Versorgung der Apotheke und Küche wurden, je nach Verwendungszweck, folgende Anlagen eingebaut:

- Enthärtungs-Pendelanlage, Leistung je 15 m³/h
- Umkehr-Osmose-Doppelanlage, Leistung je 2 m³/h
- Vollentsalzung, Mischbettfilter-Pendelanlage mit UV-Entkeimung, Leistung je 1,5 m³/h
- Destillations-Anlage, Leistung 1501/h

Zur Stappelung von Regenerationsmitteln für die Wassernachbehandlung und den Betrieb der Neutralisation sind installiert:

- 2 Soletanks à 10 000 l
- 1 Salzsäuretank à 2000 l
- 1 Natronlaugetank à 2000 l

Die Regenerationsabwässer und Abwässer-Labor werden durch eine Stap-

pelneutralisation mit einer Leistung von 1 m³/h neutralisiert.

# Wassererwärmung in den Versorgungsbetrieben

Für die allgemeine Versorgung des Apotheken- und Küchentraktes mit Warmwasser von 60 °C sind eingebaut:

 2 Wassererwärmer à 3000 l, Heizleistung je etwa 175 kW/h.

Die Abwärme der gewerblichen Kühlanlage wird zur Vorwärmung des Kaltwassers in einem Speicher à 6000 l genutzt.

Kurt Högger

#### Netz- und Notstromversorgung

Mit der Fertigstellung der Versorgungsbetriebe wird auch eine erste Phase des Ausbaues und der Sanierung der Infrastruktur für die Versorgung mit elektrischer Energie abgeschlossen. Es trifft dies sowohl für die normale Netzversorgung wie auch für die Notstromerzeugung und -verteilung zu. Im Gegensatz zur Netzversorgung, die den betriebsmässigen Einsatz sämtlicher Verbraucher zu gewährleisten hat, musste für den Notstrombetrieb eine Selektion zwischen notstromberechtigten und nicht notstromberechtigten Verbrauchern vorgenommen werden.

In der nun abgeschlossenen Phase des Ausbaus und Sanierung werden wesentliche Teile der Infrastruktur aus finanziellen Gründen sowohl für die Netzversorgung wie auch für die Notstromversorgung genutzt.

#### Netzversorgung

Das Kantonsspital wird im Normalfall aus dem Netz des EWA mit elektrischer Energie (max. Leistung etwa 3 MVA) in Hochspannung von 8,6 kV (später 16 kV) gespeist. Zur Sicherstellung der Energieversorgung ist die Hauptmessund Übergabestation im Haus 1 in ein Ringleitungskabel des EWA eingeschlauft. Vier private, jeweils in Belastungszentren plazierte Transformatorenstationen dienen der Transformierung auf die Gebrauchsspannung von 380/220 V und der Verteilung der Energie. Über private Hochspannungskabel, teils als Ringleitungen ausgeführt, werden die mehrheitlich in Randzonen des Areals liegenden Transformatorenstationen gespeist. Diese Kabel, ausgelegt für 20 kV Betriebsspannung und bemessen für etwa 4 MVA bei 8,6 kV, sind so verlegt, dass die Einschlaufung künftiger Trafostationen auf dem gesamten Areal gewährleistet ist.

Das EWA bietet beim Unterbruch der Energieversorgung auf dem eingeschlauften Kabelring über ein in die Station «Röntgen» eingeführtes, üblicherweise nicht aktives Kabel, nach Vornahme einiger Schaltmanöver, eine Notversorgung des Spitals bis etwa 2 MVA an.

Bauliche Massnahmen in der Station Versorgungsbetriebe für den *späteren Anschluss* weiterer Kabel des EWA tragen steigenden Leistungsbedürfnissen des Spitals oder der Erhöhung der Sicherstellung der Netzversorgung Rechnung.

#### Notstromversorgung

Verbraucher, deren Funktion ein Erfordernis ist zur

- Rettung und/oder Erhaltung von Leben
- Vermeidung von Schäden
- Sicherheit von Personen und Anlagen
- Aufrechterhaltung eines reduzierten Betriebes

sind notstromberechtigt. Diese Verbraucher sind je nach Wichtigkeit in verschiedene Prioritätsstufen eingeteilt.

Gründe des Umweltschutzes, der Reduzierung des Aufwandes für Wartung und Unterhalt, der Reservestellung und gegenseitigen Aushilfe haben, im Gegensatz zur bisherigen Praxis im Kantonsspital, zur Installation einer zentralen Notstromversorgung im Gebäude «Techn. Dienst» geführt. Im Endausbau umfasst diese max. 4 autonome, dieselelektrische Notstromaggregate à 1000 kVA inkl. zugehöriger Schalt-, Steuer- und Überwachungsschaltanlagen. Die erzeugte Notstromenergie wird über die bestehenden Hochspannungskabel auf dem Areal des Spitals verteilt.

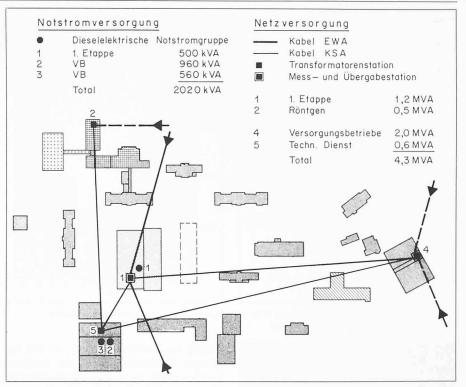
In einer ersten Phase stehen zwei voneinander unabhängige Gruppen mit etwa 960 kVA resp. etwa 560 kVA, ausgelegt für vollautomatischen Start, bei Netzausfall zur Verfügung. Nach dem Erreichen der Nenndrehzahl werden die Maschinen mit den zugeordneten Verbrauchern der ersten Priorität belastet. Die Maschinen sind für den Parallellauf unter sich und mit dem Netz des EWA ausgelegt und mit entsprechenden Steuer- und Regelapparaturen ausgerüstet. Das Steuer- und Fernwirksystem schaltet je nach Lastverhältnissen notstromberechtigte Verbraucher weiterer Prioritäten zu. Ein Kommandopult mit Blindschema und diversen Instrumenten orientiert das Betriebspersonal über den Schaltzustand des Hochspannungsnetzes und den jeweiligen Belastungszustand der einzelnen Transformatorenstationen.

Die in den Gebäuden Haus 1 («Röntgen» und «Neurochirurgie») installierten Notstromgruppen bleiben bestehen und versorgen die ihnen zugeordneten Verbraucher mit Notstrom im Inselbetrieb.

Als Besonderheit ist zu erwähnen, dass die im Haus 1 installierte Notstromgruppe wie auch die beiden in der Notstromzentrale montierten Gruppen vom EWA über die Netzkommandoanlage zur Spitzendeckung abgerufen werden können.

Robert Hinden

#### Optimierung der Lüftungsanlagen


#### Minimale Energieverschwendung

Die Planung der Versorgungsbetriebe fiel mit der «Erkenntnis» zusammen, dass unsere Energiequellen nicht unerschöpflich sind. Lüftungsanlagen, im Volksmund verschrien als Energiefresser, waren demzufolge beliebter Gesprächsstoff, um den Energiesparwillen zu demonstrieren.

Doch wie soll Energie gespart werden, wenn zum Zeitpunkt der Planung noch gar keine verbraucht wird? Wird genügend Energie gespart, wenn Lüftungsund Klimaanlagen zwar mit Wärmerückgewinnung ausgerüstet, die Komfortansprüche aus den guten Energiejahren aber beibehalten werden? Wird Geld gespart, wenn ein Luxusartikel zum halben Preis bezogen werden kann? Wir glauben nein, es wird lediglich die Verschwendung auf die Hälfte reduziert!

Die Lüftungs- und Klimaanlagen in den Versorgungsbetrieben sind nicht für maximales Energiesparen, sondern für minimale Verschwendung konzipiert. Während der Planungsphase wurden in mehreren gemeinsamen Gesprächen von Bauherr - Benutzer - Generalplaner die Komfortstufen schrittweise reduziert. So wurde beispielsweise auf die Kühlung der Küche, des Apothekenlagers und der Labors verzichtet. Lüftungsanlagen sind heute nur noch dort vorhanden, wo sie unbedingt erforderlich sind. Um allfälligen «Energiesparexzessen» (zum Teil wurden erhebliche Reduktionen gegenüber der «Spitalnorm» vorgenommen) entgegenzuwirken, sind vorsichtshalber teilweise Platzreserven für den nachträglichen Einbau von Kühlern vorgesehen.

Ein besonderes Augenmerk wurde der Aufteilung der Lüftungsanlagen nach deren Verwendungszweck geschenkt. So sind Raumgruppen, welche bestimmte Betriebszeiten der Lüftungsanlage verlangen, mit eigenen Anlagen ausgerü-



Kantonsspital Aarau. Elektrische Energieversorgung (Netz- und Notstrom)

stet. Es werden also nicht Räume während Zeiten belüftet, welche dies gar nicht erfordern.

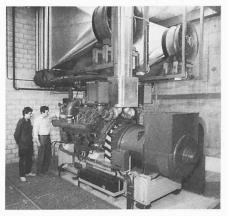
Von wenigen Ausnahmen abgesehen (kleinere Fortluftanlagen) sind Wärmerückgewinnungsanlagen oder, soweit verantwortbar, Umluftanlagen installiert.

Das nachfolgende Beispiel zeugt von der Wirksamkeit von Wärmerückgewinnungsanlagen:

Anlage: Lüftungsanlage «Warme

Küche» Luftmenge: 17 000 m³/h

Betriebsstunden: 270 Std./Monat = 2430 Std./

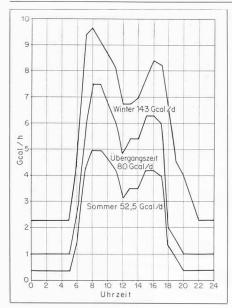

Jahr

Netto-Energiegewinn: 182 000 kWh/Jahr = etwa 20 800 kg Öl/Jahr Amortisationszeit: etwa 4,5 Jahre

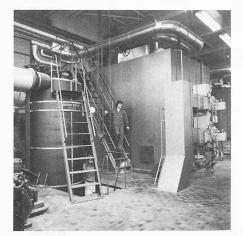
System: indirekter Wärmeaustausch mittels Glykol-Kreislauf

#### Reduzierte Betriebszeit

Vor Inbetriebnahme der Versorgungsbetriebe wurde dem Generalplaner der Auftrag erteilt, die Betriebskosten der vorhandenen technischen Installationen auf tiefstmöglichem Niveau zu halten. Für die Lüftungsanlagen verblieb die Untersuchung der Möglichkeiten einer Beschränkung der Betriebsstundenzahlen. Die gemachten Reduktionsvorschläge sind allerdings nicht als Optimierung, sondern als Minimierung des Energieverbrauchs zu verstehen. So muss damit gerechnet werden, dass einzelne Massnahmen allenfalls vom Personal nicht akzeptiert werden. Doch folgende Gründe bewogen uns, das Risiko von «unterbelüfteten» Räumen trotzdem einzugehen:




Notstromaggregat


- Die Betriebszeiten können nachträglich sehr leicht korrigiert werden.
- Sämtliches Personal kommt aus bestehenden, hygienisch teilweise katastrophalen Räumen (z. B. Apothekenlager, Zentrallager, teilw. Küche) und ist über jede Verbesserung glücklich
- Mit der Reduktion der Betriebsstunden kann erheblich Energie gespart werden, ebenso aber auch Energiekosten (etwa Fr. 46 000.- jährlich).

Sollte sich der reduzierte Betrieb bewähren, so verlängern sich dadurch natürlich die Amortisationszeiten der Wärmerückgewinnungsanlagen. Die Wärmerückgewinnung «Warme Küche» z. B. spart dann nicht mehr 20 800 kg Öl/Jahr, sondern lediglich noch etwa 12 000 kg Öl/Jahr. Energierückgewinnung allein kann also nicht einziges Kriterium für energetisch optimale Anlagen sein!

Werner Waldhauser

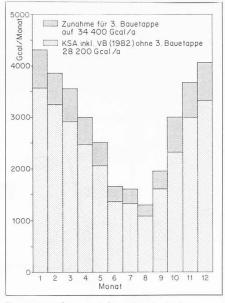


Kantonsspital Aarau. Tagesganglinien des Wärmebedarfs (Winter, Übergangszeit, Sommer)



Heizkessel mit Kombibrenner Oel-Gas. Links: Velox-Kessel

#### Wärmeerzeugung und -verteilung


#### Keine neue Heizzentrale

Die Heizzentrale wurde 1934 erbaut mit einer installierten Leistung von total 24 Gcal/h = 27 900 kW (Wärmetransportmedium Heisswasser von 180°C):

- 2 Velox Heizkessel à 7 Gcal/h = 8140 kW
- 2 Elektroheizkessel à 5 Gcal/h = 5800 kW.

Im Laufe der Zeit wurde ein Velox- sowie ein Elektroheizkessel demontiert und durch zwei Sulzer-Strahlungsheizkessel von je 8 Gcal/h ersetzt. Die heutige Leistung beträgt somit 28 Gcal/h = 32 500 kW.

Die Heizzentrale befindet sich im westlichen Teil des Spitalareals. Die Wärmeversorgung für alle dem Spital zugeordneten Gebäude erfolgt durch 5 in sich getrennte Rohrleitungsgruppen. Die Erschliessung aller Gebäude mit Wärme erfolgt von West nach Ost.



Kantonsspital Aarau. Jahreswärmebedarf

Durch das Horizontprojekt, wo das benötigte Gebäudevolumen im Endausbau festgelegt ist, wurde die bestehende Heizzentrale in Frage gestellt. Das neue Heizwerk wurde im östlichen Teil des Spitalareals geplant, was einen Umbau des bestehenden Rohrleitungssystems zur Folge gehabt hätte. Durch genaue Energiebedarfsermittlungen wurde festgestellt, dass die Leistung der bestehenden Heizzentrale die Wärmeanforderung des Spitals bis weit über das Jahr 2000 erfüllen kann.

#### Verbesserte Nutzung des Rücklaufs

Die immer höheren medizinischen Anforderungen haben dazu geführt, dass der technische Wärmebedarf im Verhältnis zu demjenigen für Heizzwecke sehr hoch anstieg, speziell bei kombinierten Neubauten (Operations- und Bettentrakt). Dies führte dazu, dass die Nutzung des Heisswassers immer schlechter wurde:

- 1974 wurde das Heisswasser von 180°C auf 80°C ausgenutzt.
- Nach dem Umbau 1975 (Bau 1) konnte die Heisswassernutzung nur auf 120°C erfolgen.

Um diesem Missstand entgegenzutreten, wurde der schlecht ausgenutzte Rücklauf für niedertemperaturige Heizzwecke in bestehenden Gebäuden wiederverwendet. Das Temperaturgefälle zwischen Vor- und Rücklauf des Primärheizmediums musste aber so gross wie möglich ausfallen, um die Speicherkapazität sowie die Nutzung von Fremdwärmen möglichst hoch zu halten.

Um die Wärmeversorgung zu optimieren, wurden im neuen Gebäude des Technischen Dienstes zwei Heisswasserspeicher von je 150 m³ Inhalt installiert, so dass die Speicherkapazität mit

den bestehenden Speichern auf 500 m³ erhöht wurde. Durch diese Vergrösserung des Speichervolumens kann nun eine Wärmemenge von 40 Gcal gespeichert werden. Das Spital kann somit teilweise über die Speicher mit Wärme versorgt werden:

- Sommer: Bedarf Ø ca. 2,18 Gcal/h, Versorgungsdauer 18,3 h
- Übergangszeit: Bedarf Ø ca. 3,3
   Gcal/h, Versorgungsdauer 12,1 h
   Winter: Bedarf Ø ca. 5,9 Gcal/h, Versorgungsdauer 6,7 h

#### Fernwärme soll Band-Energie liefern

Durch die Wärmeverwertung des Kehrichts in der Verbrennungsanlage Buchs wird 1984 eine zusätzliche Energieversorgungsmöglichkeit für das Spital erschlossen. Durch eine etwa 3 km lange Fernleitung wird das Heisswasser in die Unterstation des Spitals gebracht und durch Wärmeaustauscher auf das benötigte Temperaturniveau umgeformt. Die dadurch erzeugte Wärme kann direkt oder für die Aufladung der Speicher verwendet werden. Die Wärmeversorgung durch die Kehrichtverbrennung dient vor allem der Industrie im Wynenfeld, so dass das Spital nur noch die überschüssigen Wärmemengen erhält. Um die Versorgungssicherheit mit Wärme trotzdem zu gewährleisten, sind folgende Installationen verwirklicht worden:

- a) Ein 8-Gcal-Heizkessel wurde mit einem Kombibrenner Gas – Oel ausgerüstet, wobei vorwiegend Gas verwendet wird. Bei Gas-Lieferengpässen kann der Brenner auf Öl umgeschaltet werden.
- b) Öllagerkapazität 2 300 000 l (½ Jahresbedarf bei 100% Ölfeuerung)
- c) Anschluss an die Kehrichtverbrennung Buchs etwa im Jahr 1984 (voraussichtlich etwa 20 000 Gcal/a)
- d) In Notsituationen kann mit dem bestehenden Elektroheizkessel von 5 Gcal/h Heizleistung Wärme erzeugt werden.

# Leichte Senkung der Heisswassertemperatur

Die Wärmeversorgung des Spitals ist seit 1934 auf den Verbrauch von 180 °C Heisswasser konzipiert worden. Eine Umstellung auf ein tieferes Temperaturniveau wäre mit hohen Kosten verbunden. Alle Wärmeübernahmeapparate (96 Stück, z.B. Umformer für die Gebäudeheizung und Lüftungsanlagen, Dampferzeuger und Verbrauchswarmwasserboiler) sind auf dieses hohe Temperaturniveau ausgelegt. Mit umfangreichen Versuchen wurde festgestellt, auf welchen Minimaltemperaturen die bestehenden Wärmeverbraucher noch funktionstüchtig bleiben.

Es hat sich gezeigt, dass das Primärheisswasser ohne Funktionseinbussen von 180°C auf 170°C gesenkt werden kann. Daraus resultiert eine Energieeinsparung von 500 Gcal/a = 581 MWh.

#### **Technische Daten**

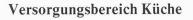
Jahreswärmebedarf 1982: 28 200 Gcal  $(3.87 \cdot 10^6 1 \, \text{O}1)$ 

Jahreswärmebedarf inkl. 3. Bauetappe: 34 400 Gcal/a (4,72 · 106 l Öl)

Voraussichtliche Jahresenergiemenge von der Kehrichtverbrennung: 20 000 Gcal/a (2,74·106 1 Öl)

Öllagerkapazität: (2,30·10<sup>6</sup> l Öl)

Installierte Leistung in best. Heizzentrale: 28 Gcal/h


Benötigte Heizleistung 1982: max. 9,2 Gcal/h

Tagesbedarf Winter 1982: 143 Gcal (19 600 1 Öl)

Tagesbedarf Übergangszeit 1982: 80 Gcal (10 980 1 Öl)

Tagesbedarf Sommer 1982: 52,5 Gcal (7200 1 Ö1)

Dieter Studer



#### Aufgabe

Die Anforderungen an die Spitalküche sind sehr hoch, entspricht sie doch einer neuzeitlichen Verpflegungsanlage, die den ökologischen, technischen und psychologischen Aspekten Rechnung trägt. Heute ist ein differenziertes Speiseangebot möglich geworden, das dem Patienten genügend Abwechslung bringt und auch die individuelle Menuwahl erlaubt. Eingeschlossen sind auch die Mahlzeiten für Schonkost und die verschiedenen Diäten hinsichtlich Grösse und Zusammensetzung.

Die Patientenverpflegung hat für die Genesung zwei wesentliche Funktio-

- physische Stärkung des Körpers durch den Nährwert der Speisen
- psychologische Wirkung auf den Patienten.

Aus der Spitalküche werden versorgt:

- die akutkranken Patienten im Kantonsspital Aarau
- die chronischkranken Patienten im Krankenheim Lindenfeld
- die Schüler und Schülerinnen der Pflegeschulen Aarau
- Personal des Kantonsspitals Aarau und des Krankenheimes Lindenfeld im Personalrestaurant «Treffpunkt»
- die heilpädagogische Sonderschule an der Erlinsbacherstrasse
- Besucher im «Treffpunkt» und in der Cafeteria der 1. Neubauetappe.



Küche mit Diätbüro

#### Bisheriger Zustand

Die Küche war bisher im alten Zentralgebäude untergebracht, welches aus dem Jahre 1887 stammt. Die Apparate und Einrichtungen waren zum Teil noch aus der Zeit des 2. Weltkrieges. Gegenüber der Entwicklung und dem heutigen Angebot von Grosskücheneinrichtungen waren diese Anlagen als nicht mehr konform zu betrachten.

Eine Ausnahme bilden die Tablett-Speisenverteilanlage und der Geschirrspül-Bandautomat, die in den letzten Jahren erneuert wurden.

Zusätzliche Probleme in der alten Küche waren die viel zu kleinen Platzverhältnisse für die Lebensmittelvorräte und die fehlenden Kühl- und Tiefkühlräume.

#### Neuer Zustand

Bei der Planung der Küche wurde von folgenden Verpflegungszahlen ausgegangen (Tab. 1):

Aufgrund der Verpflegungszahlen von etwa 1500 Hauptmahlzeiten ist die Küche nach modernsten hygienischen, technichen und wirtschaftlichen Überlegungen konzipiert. Die Anordnung der Räume, Arbeitszonen und Einrichtungen garantieren einen kontinuierlichen Warenfluss und einen einwandfreien organisatorischen Betriebsablauf bei optimaler Nutzung. Die grosszügigen Lager-, Kühl- und Tiefkühlräume erlauben eine angemessene Langzeitlagerung. Je nach Jahreszeit kann von den Angeboten der Roh- und Frischprodukte sowie teilweise von Halb- und Fertigprodukten reger Gebrauch gemacht werden. Dies wiederum ermöglicht eine Bereicherung der Menuangebote.

Die Apparate und Arbeitsflächen bestehen lückenlos aus rostfreiem Chromnikkelstahl.

Kochapparate, als modernste Druckkochanlagen, bieten energetisch problemlose und ennährungsphysiologische Vorteile. Sie garantieren einen



Küche mit Speiseverteilband

Tabelle 1. Verpflegungszahlen

|                                                         | Früh-<br>stück | Mittag-<br>essen | Abend<br>essen |
|---------------------------------------------------------|----------------|------------------|----------------|
| Kantonsspital                                           |                |                  |                |
| Aarau: - Patienten - Personal+                          | 650            | 650              | 650            |
| Besucher                                                | 300            | 500              | 250            |
| Krankenheim<br>Lindenfeld<br>- Patienten<br>- Personal+ | 200            | 200              | 200            |
| Besucher                                                | 60             | 100              | 50             |
| Extern                                                  | _              | 70               | 70             |
| Total                                                   | 1210           | 1520             | 1220           |

vollautomatischen Ablauf von Überdruck-, Koch- und Dämpfprozessen.

Die Sauberhaltung der Küche ist mittels Hochdruckreinigungs-Sprühlanzen sichergestellt.

Das Angebot der Spitalküche ist vielfältig. So sind beispielsweise in der Hauptküche erhältlich:

- Morgenessen: 4 Kostformen in 4 Portionengrössen
- Mittagessen und Abendessen: 6 Kostformen in 4 Portionengrössen
- zusätzliche individuelle Wünsche: etwa 20 Möglichkeiten

In der Diätküche werden fast 20% aller Mahlzeiten hergestellt. Hier werden die Spezialverpflegungen gemäss ärztlicher Verordnung und in Zusammenarbeit mit der Diätleitung produziert. Allein für diesen Spezialbereich sind rund 30 Kostformen und Varianten erhältlich.

Die neue Küche ist in folgende Arbeitszonen unterteilt:

- Warenannahme und Spedition
- Lebensmittel-Trockenlager, Kühl- und Tiefkühlräume
- Vorbereitung Fleisch und Gemüserüsterei
- Produktion Frühstücksküche

Kalte Küche Patisserie Warme Zubereitung Diätzubereitung

- Zentrale Speisenverteilanlage
- Zentrale Geschirrspülanlage
- Pesonalräume, Garderoben

Mit der Eingliederung der Küche im Gebäude der Versorgungsbetriebe ist es gelungen, die Produktion und Lagerräume auf niveaugleicher Ebene anzuordnen. Diese entspricht zugleich dem unterirdischen Transportkanal, worin die fertigen, tablettierten Speisen in speziellen, isolierten Transportwagen raschmöglichst zu den einzelnen Kliniken gebracht werden.

Die Bewältigung dieser Leistungsanforderungen sind mit der neuen Küchen-

#### Generalplaner

Gesamtleitung und Architektur

Metron Architekten, Brugg/Windisch (Willi Rusterholz, Ruedi Kuhn, Hans Anliker, René Stoos)

Bauingenieur

Bodmer, Regolatti, Matter, Aarau (Robert Matter)

Projekt Sanitär

Karl Bösch AG, Unterengstringen (Willi Scheef, Kurt Högger)

Projekt Elektro

Brauchli und Amstein AG, Zürich (Rudolf Amstein, Robert Hinden)

Projekt Heizung/Lüftung

Studer und Waldhauser, Basel (Dieter Studer, Werner Waldhauser)

anlage auch über das Jahr 2000 unbestritten.

Winfried Englisch, Dieter Pfeffer

Küchenplanung

Karl Bösch AG, Unterengstringen (Dieter Pfeffer, Winfried Englisch)

#### Generalübernehmer

Gesamtleitung, Bauführung Arthur Gross AG, Brugg

Bauingenieur Kanal

Emch und Berger, Aarau

Elektroingenieure (Ausführungsplanung) EWA, Industrielle Betriebe der Stadt Aarau Grossenbacher Planung AG, Wettingen

Heizungs-, Lüftungs-, Sanitäringenieure (Ausführungsplanung)

Sulzer Energieconsulting AG, Winterthur

Redaktionelle Koordination: W. Rusterholz, Metron-Architekten, Brugg/Windisch

## Schweizerische Bauwirtschaftskonferenz

Aus dem Tätigkeitsbericht 1981/82

Unter dem Vorsitz von Nationalrat Willy Messmer fand am 17. September 1982 in Zürich die Plenarversammlung der Schweiz. Bauwirtschaftskonferenz (SBK) statt. Wir veröffentlichen auszugsweise den Präsidialbericht über die Aktivitäten der SBK und das Gastreferat von Bundesrat Hürlimann zum Thema «Bauaufgaben des Bundes in den nächsten Jahren».

#### Zur Lage der Bauwirtschaft

Insgesamt darf die Bauwirtschaft erneut auf ein erfolgreiches Baujahr zurückblicken, indem die Bautätigkeit 1981 gegenüber dem Vorjahr real erneut leicht zugenommen hat und die entsprechenden Produktionswerte auch im ersten Halbjahr 1982 nochmals knapp auf dem Vorjahresniveau gehalten werden konnten. Auffallend ist, dass das Auftragsspektrum der Bauwirtschaft immer stärker auseinanderlaufende Tendenzen aufweist. Insbesondere haben sich die bisherigen Relationen zwischen öffentlichem und privatem Bau, zwischen Hoch- und Tiefbau, zwischen Mehr- und Einfamilienhausbau und vor allem zwischen den einzelnen Kantonen, Regionen und Landesteilen stark verschoben.

Wie aber schon seit einiger Zeit deutlich zu erkennen ist, wird sich die bauwirtschaftliche Grosswetterlage in dieser zweiten Jahreshälfte 1982 merklich abkühlen, so dass für 1982 insgesamt mit einem leichten Rückgang der Bautätigkeit zu rechnen ist. Die Tatsache, dass von den Unternehmungen sämtlicher bauwirtschaftlichen Branchen und Gruppen die kurzfristigen Beschäftigungsaussichten mehrheitlich noch immer

mit befriedigend oder gut bezeichnet werden, verdeutlicht gleichzeitig, dass auch unternehmerseits kurzfristig nicht mit einem schwerwiegenden Einbruch gerechnet wird. Die Tatsache, dass die Bautätigkeit wieder zu den «normalen» Grössenordnungen der Jahre 1979/80 zurückkehrt, darf kein Grund zur Panik sein, in deren Schatten da und dort wieder unmotivierte Unterangebote «gedeihen».

Nach neuesten Schätzungen dürfte die Bauproduktion 1982 real rund 6% unter dem guten Vorjahresniveau liegen. Diese Abschwächung ist fast vollumfänglich die Konsequenz des infolge der stark gestiegenen Baufinanzierungskosten abrupten Nachfragerückgangs im Einfamilienhausbau. Diese Flaute dürfte bis ins Jahr 1983 bestehen bleiben.

Die gegenwärtig eher rückläufige Entwicklung der Zinssätze und die tiefen – immer noch sinkenden – Leerwohnungsbestände deuten in eine eher positive Richtung der künftigen Entwicklung. Trotzdem werden die übrigen binnen- und weltwirtschaftlichen, aber auch strukturellen Rahmenbedingungen dahingehend wirken, dass auch nach 1983 auf Jahre hinaus bei den Bauinvestitionen nur noch mit sehr geringen Zuwachsraten gerechnet werden kann.

#### Neuwahlen ins Präsidium der SBK

Zurückgetreten sind A. Cogliatti, dipl. Bau-Ing. ETH, und Dr. H.-J. Frei, Direktor des SSIV, nachdem beide seit der Gründung der SBK vor sieben Jahren im Präsidium mitgewirkt haben.

Neugewählt wurden folgende Herren:

A. Realini, dipl. Ing. EPFL und Präsident des SIA, als Vertreter der Gruppe Planung,

E. Grimm, Bau-Ing. SIA und Zentralpräsident des SBV, als Vertreter des Bauhauptgewerbes, und

A. Spaltenstein, Präsident des SMGV, als Vertreter des Ausbaugewerbes.

Die Beurteilung der gegenwärtigen Lage und der künftigen Entwicklung der Bauwirtschaft als wichtigstem Zweig der Binnenwirtschaft kann nicht ohne Berücksichtigung der Entwicklung in den übrigen Branchen unserer Volkswirtschaft erfolgen, wird diese doch - infolge der starken Auslandverflechtung unseres Landes - wiederum wesentlich von der Weltwirtschaftslage bestimmt. Will man den neuesten internationalen Wirtschaftsberichten Glauben schenken, so ist der auf die zweite Jahreshälfte erwartete Wiederaufschwung in den wesentlichen Abnehmerstaaten unserer Exportwirtschaft (allen voran in den USA) wider Erwarten ausgeblieben. Es bleibt zu hoffen, dass es sich dabei wirklich nur um eine kurzfristige Verzögerung handelt.

Wir sollten uns aber davor hüten, als Rechtfertigung der gedämpften Wirtschaftslage stets nur kurzfristige konjunkturelle, weltwirtschaftliche, d. h. von aussen her bestimmte Argumente ins Feld zu führen. Hinter der latenten Investitionsflaute stecken teilweise ungelöste Strukturprobleme, die vielleicht in etwas geringerem Masse für die Schweiz – insbesondere aber für die mittel-