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Stahlbau Schweizer Ingenieur und Architekt 40/82

Über die Berechnung des
Feuerwiderstandes von Verbundstützen mit
Stahlkern

Von Stanislaw Bryl und Bruno Keller, Winterthur

dauernd vor den Auswirkungen des

Brandes geschützt.

Die Berechnung der Traglast von
Kernstützen während eines Brandes kann
nicht mit den üblichen Berechnungsmethoden

des Feuerwiderstandes von
Stahlteilen erfolgen [1], sondern
verlangt eine genaue Ermittlung der
Temperaturverteilung im massiven
Querschnitt der Stütze.

Einleitung

Unter den verschiedenen Typen von
Verbundstützen (Bild 1) nimmt die
Verbundstütze mit Stahlkern eine besondere

Stellung ein. Im Gegensatz zu den
ausbetonierten Hohlprofilen ist der
grösste Teil des tragenden Querschnittes

durch Betonschichten geschützt.
fe^WaiMVergleich zu den einbetonierten

Walzprofilen besitzt die Kernstütze
einige Vorteile, u. a. ist keine zusätzliche

Armierung und keine Schalung
notwendig. Der äussere Mantel aus
abgekantetem Stahlblech oder aus
dünnwandigen Hohlprofilen verleiht der
Kernstütze erhebliche Vorteile auch
gegenüber den Stahlbetonstützen. Grösster

Nachteil der Stahlbetonstützen sind
die Betonabplatzungen, welche die
tragenden Armierungen freilegen und zu
frühzeitiger Zerstörung der Stahlbetonstütze

mmren (Bild 2). Bei der Verbundstütze

mit Stahlkern verhindert der äussere

Mantel das Abplatzen der
Betonschichten, und der Stahlkern bleibt

Berechnung der
Temperaturverteilung

Bei der Berechnung des Feuerwiderstandes

werden die Stützen als allseitig
beflammt angenommen und der
Brandverlauf nach der ISO-Normbrandkurve
dargestellt:

3 20 + 345 lg (8 f + 1)

wobei:
S Brandraumtemperatur in °C
/ Zeit in Minuten

Bild 1. Querschnitte der Verbundstützen

- ausbetonierte Hohlprofile mit und ohne Armierung: a),b)
- zwischen den Flanschen ausbetonierte Walzprofile: c)

einbetonierte Walzprofile: d)
Verbundstützen mit Stahlkern: e),f)

Mantel

Stah kern

Beton

Die Erwärmung des Verbfflädquer-
schnittes stellt einen zweidimensionalen,

instationären ErwärBingsprozess
dar, der mit folgender Differentialgleichung

beschrieben werden kann:

9-9
d t

i
c- e

'329 329"
dx2 dy2

wobei:
3 - Temperatur
X Wärmeleitzahl
c spezifische Wärme
e Dichte
x, y= Koordinaten des betrachteten

Punktes.

Für die Lösung der Aufgabe eignen sich
besonders die Methoden der Firflxenl
Elemente und der FiSen Differenzen.
Dabei werden sowohwdie Zeit als auch

Bild 2. Betonplatzungen nach 20 Minuten eines
Brandversuchs. Institut für Baustoffe, Massivbau
und Brandschutz (TV Braunschweig)
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Bild 3. Typisches Netzwerk für Berechnung mit
Finiten Elementen. Die angegebenen Zahlen bedeuten
die Temperaturen nach 90 Minuten Normbranddauer.

Der Rundkem wurde durch ßächengleichen
quadratischen Kern ersetzt

Stah 3eton

KL

-8-r Temperatur der Flamme

$0 Oberflächentemperatur

Jkl ~ Wärmestromdichte der Konvektion
und Leitung

jfi Wärmestromdichte der Strahlung

Bild 4. Wärmeübergang an der Oberfläche des

Blechmantels

die Koordinaten x und y in endliche
Schritte eingeteilt. So gilt z. B. in
homogenem Material [3]:

9* ,—9*-i
2-Af

2JM+-&fc.i-l./

11.

Ax2

I-2ÄAJL+S
Ay2

ik. ij-

wobei:
1

1

Numerierung auf der Zeitachse
Numerierung auf der x-Achse
Numerierung auf der y-Achse.

Durch geeignete Verfahren werden die
Temperaturen an den Netzpunkten in
Funktion der Zeit schrittweise berechnet,

wobei Stoffübergänge und tempe-
raturabhängige Werte von X, c und g
berücksichtigt werden können. Für unsere

Zwecke kann z.B. das Programm
von Wickström [2] benutzt werden, das

speziell für die Berechnung von
Verbundquerschnitten unter Brandbelastung

zugeschnitten ist. Ein typisches
Netzwerk ist in Bild 3 dargestellt.

Solche Programme benötigen als
Eingangsdaten die Wärmeströme in die
Oberfläche als Funktion der Zeit. Diese
sind durch die Flammentemperatur
und durch die Wärmeübergangsmechanismen

zwischen Flamme und
Materialoberfläche bestimmt.

Der Wärmeübergang von den Flammen
an die Aussenfläche der Stütze erfolgt
durch zwei Prozesse: Konvektion/Leitung

und Strahlung (Bild 4). Für die
kombinierte Konvektion und Leitung
ist die Wärmestromdichte gegeben
durch:

JkL= aKL.(§F~ °o)

wobei:

aKL Wärmeübergangszahl, für star¬
ke Turbulenz: 25 W/m2 K [4]

§F Flammentemperatur
%0 — Oberflächentemperatur

Für die Wärmestromdichte der
Strahlunggilt:

Jr OEr
3f+273\4 /So+273

100 100

mit ct 5,77 W/m2 K4.

Für nicht allzu grosse A -9 §F — *9o ist:

;R aR(*9F-*9o)

'9F+273X3mit CXr 4 CT Er 100

Der Wertbereich für aR liegt zwischen
588 (für 100 °C, eR 1) und 14 000
W/m2 K (bei 800 °C), d. h. es gilt in
jedem Fall:

a*» « kl
Das resultierende Emissionsvermögen
eR setzt sich zusammen aus dem
Emissionsvermögen der Flammen: eF 0,6
¦*¦ 0,9 und dem der Oberfläche: e0 0,6

(für Stahl) bzw. e0 0,8 (für Beton) [4].

Für zwei parallele, unendlich
ausgedehnte Ebenen ergibt sich [5]:

Er
1

£o tF

Diese Beziehung kann in erster Näherung

auch für den Fall der allseitig
beflammten Stütze verwendet werden
und ergibt ein eR 0,43 bis 0,56, d. h.
etwa 0,5. Während das Mantefflfech für
die Wärmeleitung nach innen vernachlässigt

werden kann, hat es einen
reduzierenden Effekt auf eR, der nicht
vernachlässigt werden darf.

Infolge der Wärme-Sinung löst sich
die Blechhülle vom Beton ab. Es
entsteht ein Luftspalt von bis :OTl mm
Breite je nach Stützenabmessung, d. h.
dass der Wärmeübergang vom Blech

KL KL

•3*o/S'/
Ir

Bild 5. Wärmeübergang zwischen Mantel und
Beton

zum Beton wieder durch Konvektion/
Leitung und StraBung erfolgt (Bild 5).

In so dünnen Schichten herrscht selbst
bei grossen Temperaturdifferenzen
kaum Konvektion, so dass für die
Wärmeleitzahl A fast nur die Leitung zählt:

X,= 0,027 W/m K.

Für einen Spalt von 0,1 bis 1 mm Breite
ergibt sich so:

K X,/d=21 bis 270 W/m2 K

als untere Grenze, n. etwa dieselbe
Grössenordnung wie für aKL.

Für die Ermittlung des Strahlungsflusses
kann man den Temperaturabfall im

Blech (Bild 5) vernachlässigen, und da
der Strahlungsfluss bei weitem dominiert,

lässt sich durch Gleichsetzen der
Strahlungsflüsse die Blechtemperatur in
guter Näherung berechnen [5]:

1

eF
+ so' n + r/|-<

es
X + XML-2
£s Sf es

wobei:
T -9 -aB73 absolute Tempera¬

tur in K
TB — absolute Temperatur BtesMUa

tons
Ts ¦*= absÄite Temperatur des

Stahlblechs
TF absolute Temperatur der

Flammen

Damit wiederum lässt sich die
Blechtemperatur eliminieren, und man
erhält für die Wäemeltussdichte:

Jr o

£f es 65

T4_ *7-4
1F *B

was einem reduzierten Emis^^^^S
mögen s« von:

£r: x + x + iSf eß Es

pgjgbricht. ^n Werten für eF 0,6 bis
0,9 und es 0,8 entsprechen Werte von
H 0,24 bis 0,27, d. h. etwa 0,3. Dabei
ist die Kopplung der beiden Mechanismen

Konvektion/Leitung einerseits
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3ild 6. Temperaturentwicklung in Kernstütze 200 • 200-120
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Bild 8. Temperaturentwicklung in Kemstütze 300 • 300-180

und Strahlung andererseits im Blech
vernachlässigt worden. Die Dominanz
der Strahlung berechtigt aber dazu, und
die Annahme des resultierenden
Emissionsvermögens mit eR 0,3 trägt allen
Korrekturen 2. Ordnung Rechnung.

Abschliessend kann gesagt werden,
dass das Blech wie ein StrahlungsscgsiBi
wirkt, der das resultierende £R auf Werte

kleiner als 0,3 herabsetzt.
Bilder 6 bis 8 zeigen die Resultate der
Berechnung von Temperaturfeldern

für Kernstützen mit 20, 25 und 30 cm
Abmessung. Deutlich ist dabei die
geringe Differenz der Temperaturen im
Kernbereich, wobei die Tendenz zum
Temperaturausgleich mit der Branddauer

zunimmt.
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Bild 9 Links: Abhängigkeit der Fliessgrenze und des E-Moduls von der Temperatur. Baustähle Fe-235 und
Fe-355. Rechts: Einfluss der Temperatur auf Druckfestigkeit und E-Modul des Betons

Bild 10. Berechnung der Knicklast bei erhöhten

Temperaturen

Materialeigenschaften bei hohen
Temperaturen

Die Materialeigenschaften von Stahl
und Beton sind auch bei hohen Temperaturen

gut bekannt. Für die Baustähle
der Qualität Fe-235 und Fe-355 kann
folgende Abhängigkeit der Fliessgrenze
und des £-Moduls von der Temperatur
angenommen werden [1]:

Tabelle I Traglast von typischen Querschnitten mit Stahlkern

af- S af ¦¦ +
-3,

767 In (3,/1750)

£s,9= Es(\ + 15,9 • 10-595- 34,5

10"7SS2+ 11,8 • 10-9SS3-17,2 • 10-|29£)

Beide Gleichungen (Bild 9. links) sind
jiSjIemperaturen von Qs ^ 600 °C gültig.

Für höhere Temperaturen kann die
Tragfähigkeit des Materials vernachlässigt

werden.

Für die Betonteile wird ebenfalls die
Temperatur von 600 °C als Grenztemperatur

betrachtet. Die Materialwerte
für Temperatureamunter dieser Grenze
betragen [4], (Bild 9. rechts):

H»r9*,=S300oC

ßr.3 ßr(l- 1.333-IO"4 *9h)

£fc,8*=£fc(l -1,467- IO"3 91g
- für300°C<3*,^600oC

ßr.3 ß, (1,70-2,467- 10-||B
Eb.s £(,(0,81 - 8,333 • 10-43fc)

wobei:
ßr rechnerische Betondraekf||BS
keit bei normalen Temperaturen
ßr,3 rechnerische Betofflruckfestig-
keit bei Temperatur i
§b — Betontemperatur in °C
§s — Stahltemperatur in °C

CT/, cj/, 3 Fliessgrenze des Stahls bei

NormaltemperaturundTemperatur 3
Es, £s, g, £(,, Eb, 8 b entsprechende
E-Moduli von Stahl und Beton.

Knicklc st [kN]
Querschnitt Kern

20 °C F30 F60 F90

300 • 300 RND 160 6 6280 4370 3930 3580

300 • 300 RND 180 6 7290 5420 4930 4510

0 300 RND 160 JM"? 6450 3970 3740 3150

0300 RND 180 "Xl0.-Z, 7450 4890 4450 3270

200 • 200 RND 120 6 3370 2020 1630 1270

200 • 200 RND 100 6 2770 1490 1140 870

0 220 RND 120 5.9 3470 1970 1560 1050

0 220 RND 100 5,9 2890 1460 1300 950

Die angegebenen Werte gelten für a/- 215 N/mm2, ßr 30 N/mm2 und für eine Stzenlänge von 300 cm

Traglast bei erreichten
Temperaturen

Mit bekannter Temperaturverteilung
und Materialeigenschaften kann die

Tragfähigkeit der Verbundstütze in
bekannter Weise errechnet werden [7], [8]:

- Quetschlast
NQ. s Z(A A, of. s) + 2 (A Ah ßr.9)

- Eulersche Knicklast
N„* [T.(AA< Es8 x}) +

+ Z(AAbEb.9x?)]n2/lK
- bezogene Schlankheit

Xs tJ NQ.s/Ncr.3
- AbmMdemng der Ouetgghlast dTOsna

Knicken ctk /oyentsprechendder
europäischen Knickkurve C:

oK/of= ß -Vß2-jp
mitß (l +0,384VÄ.|-0.04 +
+ Xi)/{2Xl)

- Traglast Igi erreiSen Temperaturen

Nk. 3 Nq. 8 Ok/O/

Es bedeuten (Bild 10):

A As, AAb Teilelemente des Stahlbzw.

Betonquerschnitts
Xj — Koordinate des Schwerpunktes
dieser Elemente
Ik — Knicklänge deißützen

Für einige typische Querschnitte mit
Stahlkern smd die ResuMte der
Berechnungen in Tabelle 1 zusammengestellt.
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