Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 100 (1982)

Heft: 38

Artikel: Haftvermögen von Armierungsstählen: Versuche an

wirklichkeitsgetreuen Balken

Autor: Maissen, Aluis

DOI: https://doi.org/10.5169/seals-74861

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

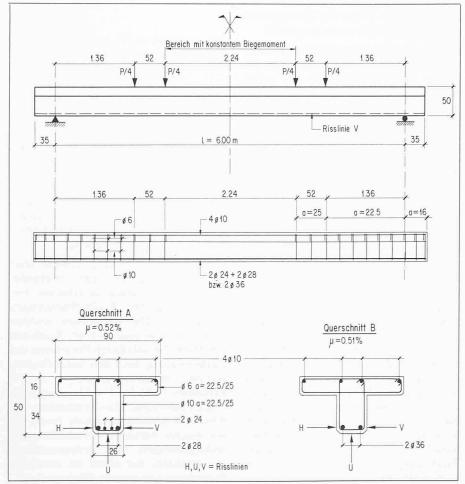
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Haftvermögen von Armierungsstählen


Versuche an wirklichkeitsgetreuen Balken

Von Aluis Maissen, Dübendorf

Die wirkliche Haftproblematik kann nur an wirklichkeitsgetreuen Platten und Balken untersucht werden. Die Norm SIA 162 sieht deshalb für besondere Fälle solche Versuche vor, die indessen aus Kostengründen eher selten sind. Deshalb erscheint es angebracht, an dieser Stelle einige der wichtigsten Ergebnisse aus einer grösseren Serie von Balkenversuchen zu publizieren, die in den letzten Jahren im Auftrag der schweizerischen Stahlwerke durchgeführt wurden. Die Versuche erfolgten in Zusammenhang mit der Weiterentwicklung bzw. Verbesserung der bekannten Armierungsstähle III. Die vorliegende Veröffentlichung erfolgt mit ausdrücklicher Genehmigung der genannten Werke, wofür ihnen auch an dieser Stelle gedankt sei.

In der Schweiz und in verschiedenen europäischen Ländern wird das Haftvermögen von Bewehrungsstählen in der Regel aufgrund von einfachen Normversuchen beurteilt. Meistens geschieht dies in sogenannten Ausziehversuchen, die in modifizierter Form beispielsweise in der Bundesrepublik Deutschland, Grossbritannien und in der Schweiz durchgeführt werden. Österreich kennt hingegen spezielle Biegehaftversuche, die in der Durchführung etwas aufwendiger sind, in der Aussage jedoch zu ähnlichen Ergebnissen führen [1-4]. Abgesehen von der einfachen Durchführung weisen die erwähnten Normversuche jedoch zwei nicht unwesentliche Nachteile auf. Sie haben nämlich nur vergleichenden Charakter, d. h. die gemessenen Werte lassen sich nicht ohne weiteres auf die wirklichen Verhältnisse übertragen. Zudem können die Messergebnisse nicht über die Grenze hinweg miteinander verglichen werden, da die einzelnen Länder jeweils eigene Versuchsbedingungen hinsichtlich Anordnung und Prüfung festgelegt haben.

Bild 1. Versuchsanordnung, Schalung und Armierung der Prüfkörper. Querschnitt A: Normale Bewehrung. Querschnitt B: Bewehrung mit grossen Stäben

In den Ausziehversuchen erfolgt die Beurteilung des Haftvermögens aufgrund von Schlupfmessungen, in den Balkenversuchen aufgrund der entstehenden Rissbildung im Beton. Trotz der begrenzten Genauigkeit bei der Beobachtung von Rissbreiten ist die Aussage aufgrund der Rissbildung zuverlässiger. Dies mag auf den ersten Blick etwas erstaunen, wird jedoch bei der späteren Besprechung der Messergebnisse und ihrer Interpretation offensichtlich. Voraussetzung ist allerdings, dass eine grössere Anzahl von Rissen beobachtet werden kann. Es hat sich gezeigt, dass diese Art von Balkenversuchen reproduzierbar ist, d. h. bei Wiederholungen werden praktisch die gleichen Resultate erzielt, sofern die wesentlichen Parameter nicht geändert werden. Einen Nachteil weisen indessen auch Balkenund Plattenversuche auf. Es existieren nämlich keine Richtwerte in den Normen, mit denen die ermittelten Rissbreiten verglichen werden können. Es gibt zwar verschiedene Empfehlungen über «tolerierbare» Rissbreiten, verbindlich sind diese jedoch nicht [5].

Versuchskörper

Grösse und Form der Prüfelemente wurden so gewählt, dass erste Erfahrungen aus früheren Untersuchungen mitverwertet werden konnten. Zudem sollten die Prüfkörper baumässige Dimensionen aufweisen, um von vornherein aussagekräftige Resultate zu sichern. Bild 1 zeigt Schalung und Armierung der Prüfkörper. Diese bestehen aus schlaff bewehrten Plattenbalken und weisen folgende Abmessungen auf:

Balkenlänge	6,70 m
Balkenhöhe	0,50 m
Plattenbreite	0,90 m
Stegbreite	0,26 m

Die Spannweite betrug 6,0 m. Spannweite und Trägerhöhe stehen somit im Verhältnis von 12:1 zueinander, was für Balken und Unterzüge in Massivbauweise praktische Verhältnisse bedeutet. Die gewählte Betonqualität entspricht einer mittleren Baustellenfestigkeit. Es wurde bewusst darauf verzichtet, einen Beton mit optimalen Festigkeitseigenschaften zu erzielen. Die maximale Korngrösse betrug 32 mm, die Kornzusammensetzung war indessen eher sandreich, d. h. die gewählte Siebkurve verläuft etwas unterhalb der Fullerkurve. Bei einer Zementdosierung von 250 kg/m³ wurden folgende mittlere Betonfestigkeiten nach 28 Tagen erreicht:

- Würfeldruckfestigkeit $\beta_{w28} = 35 \text{ N/mm}^2$
- Biegezugfestigkeit $\beta_{bz28} = 5.5 \text{ N/mm}^2$

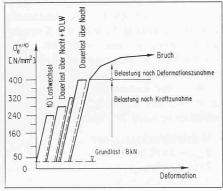
Tor 50

Box - Ultra

Roto

Baro

Bild 2. Typenbilder der Armierung. Von oben nach unten: Tor 50, Roll-S, Box-Ultra, Roto, Baro. Die abgebildeten Stäbe haben einen Durchmesser von 24 mm


Eigentlicher Prüfgegenstand war die Armierung selber, genauer gesagt deren Verbundeigenschaften mit dem umhüllenden Beton. Dass dabei vor allem die individuelle Gestaltung der Profilierung eine wesentliche Rolle spielt, versteht sich von selbst.

In den verschiedenen Untersuchungen wurden sämtliche in der Schweiz hergestellten Armierungsstähle der Gruppe III geprüft, nämlich:

Bezeichnung	Herstellerwerk
Tor 50	Von Moos Stahl AG,
	Luzern
Roll-S	Von Roll AG, Gerlafingen
Box-Ultra	Monteforno SA, Bodio
Roto	Ferrowohlen AG, Wohlen
Baro*	Ferrowohlen AG, Wohlen

^{*} Von Ferrowohlen AG entwickelter, z. Zt. jedoch nicht fabrizierter Stahl.

Bild 3. Generelles Belastungsschema. Im quasielastischen Bereich, d.h. bis zur rechnerischen Stahlspannung von 400 N/mm², erfolgte die Belastung nach Kraftzunahme, darüber nach Deformationszunahme

Stahlsorte	Streckengrenze N/mm ²	Zugfestigkeit N/mm²	Stabdurchmesser⊘(mm)
Tor 50	557	641	24 + 28
Roll - S	535	621	
Box - Ultra	544	739	
Roto	543	621	
Baro	503	762	24 + 28
Tor 50	522	586	36

Tabelle 1. Verwendete Armierungsstähle

Tabelle 2. Kraftstufen für das Belastungsprogramm

$Fe = 2 \varnothing 24 + 2 \varnothing 28$	$Kraft P$ $Fe = 2 \otimes 36$	$\sigma_c^{n} = 10$	$\sigma_b^{n=10}$
kN	kN	N/mm²	N/mm²
20,4	16,0	50	1,9 3,8 6,1 7,7 9,2 10,7
76,0	66,8	100	3,8
142,4	128,0	160	6,1
186,8	168,8	200	7,7
231,2	210,0	240	9,2
275,6	250,8	280	10,7
320,0	291,6	320	12,3
364,4	332,4	360	13,8
408,8	373,2	400	15,3

Nicht mit in die Untersuchungen einbezogen wurden die kleineren Dimensionen Box-Ring, Torip und Roll-R. Box-Ultra und Baro-Stahl haben naturharte Qualität, die übrigen sind Vertreter der kaltverformten Stähle. In Tabelle 1 sind die ermittelten Werte für Streckgrenze und Zugfestigkeit zusammengestellt.

Bild 2 zeigt die untersuchten Stähle mit den verschiedenen Profilarten. Der gewählte Armierungsquerschnitt sollte einem möglichst idealen Armierungsgehalt hinsichtlich eines duktilen Bruchverhaltens entsprechen und wurde mit $\mu = 0.52\%$ festgelegt. Die Zugarmierung setzte sich demzufolge aus 2 Ø 24 mm und 2 Ø 28 mm zusammen. Mit diesen Armierungseinlagen wurden sämtliche Stahlsorten geprüft. Um die Hafteigenschaften von grossen Durchmessern zu untersuchen, die bekanntlich nicht so günstig sind, wurde ein zusätzlicher Balken mit einer Bewehrung aus 2 \varnothing 36 mm geprüft (μ = 0,51%). Die Zugarmierung wurde hakenlos verankert. Die Bemessung der Schubbewehrung erfolgte nach Richtlinie 17, Norm SIA 162. Diese Berechnungsart ergibt eine wesentlich kleinere Schubbewehrung, als es die herkömmliche Berechnungsmethode mit voller Schubabdeckung ergeben würde. Voraussetzung für die partielle Schubabdeckung ist jedoch eine bessere Verankerung der Hauptarmierung mit einem vergrösserten Überstand von 35 cm über die theoretische Auflagerachse hinaus. Um die Rissbildung im mittleren Bereich mit konstantem Biegemoment nicht zu präjudizieren, wurden hier keine Bügel angeordnet. Die Rissmessungen in dieser Zone haben deshalb eine grössere Aussagekraft als jene im übrigen Balkenbereich.

Versuchsanordnung

Die als einfache Balken gelagerten Prüfelemente wurden durch vier Einzellasten auf Biegung beansprucht, von denen je zwei verhältnismässig nahe beieinander angeordnet waren. Die Wahl von zwei Lastpaaren anstatt von nur zwei einzelnen Lasten hatte den Vorteil, dass die Grösstwerte von Querkraft und Biegemoment nicht im gleichen Querschnitt zusammentrafen. Bild 1 zeigt eine schematische Darstellung der Versuchsanordnung.

Um eine möglichst gute Aussage über die Hafteigenschaften der verschiedenen Armierungsstäbe zu erhalten, waren umfangreiche Rissbeobachtungen erforderlich. Die Rissbreiten wurden dabei auf drei sogenannten Risslinien gemessen, die sich durch Projektion der Zugbewehrung nach den Seitenflächen und der Unterseite ergaben (vgl. Bild 1: Risslinien H, U, V). Die Messungen erfolgten mit einem Handmikroskop von ±½100 mm Ablesegenauigkeit. Im weiteren wurden vertikale Verschiebungen, Stahldehnungen und Betonstauchungen ermittelt, vor allem im mittleren Bereich mit konstantem Biegemoment.

Versuchsdurchführung

Die Spannungsstufen für das gewählte Belastungsprogramm sind in Tabelle 2 enthalten. Bild 3 zeigt zudem das generelle Belastungsschema. Demnach wurden im Verlauf der Kraftsteigerung verschiedene Entlastungen auf die ursprüngliche Grundlast eingeschaltet. Bei bestimmten Hauptstufen wurde die Belastung zudem über Nacht (etwa 15 Stunden) stehen gelassen. Auf zwei weiteren Laststufen wurden je zehn Lastwechsel aufgebracht, um eine eindeutige Rissbildung zu erzielen. Die Wechsel erfolgten dabei langsam, wobei die Last jeweils von der Grundlast bis zur Höhe der betreffenden Stufe gesteigert wurde. Wie diesem Schema zu entnehmen ist, wurde immer von der Grundlast von 8kN ausgegangen. Im quasi-elastischen Bereich, d. h. bis zur rechnerischen Stahlspannung von 400 N/mm², wurde die Last stets bis zu einem bestimmten, vorher festgesetzten Wert erhöht. Danach erfolgte die Belastung nach Deformationszunahme.

Die Bezeichnung $\sigma_e^{n=10}$ steht hier für die rechnerischen Stahlspannungen mit $n = E/E_b = 10$, unter Berücksichtigung der Eigenmasse des Plattenbalkens und der Versuchseinrichtung. Sinngemäss gilt das gleiche auch für die rechnerischen Betonspannungen $\sigma_b^{n=10}$.

Versuchsresultate

Bruchvorgang

Im statischen Bruchversuch zeigten die Prüfelemente ein duktiles Verhalten, d. h. es trat ein typischer Biegebruch mit vorangehender Rissbildung auf. Die Belastung konnte so lange gesteigert werden, bis die Zugarmierung in der Zone mit maximalem Biegemoment deutlich zu fliessen begann. Danach liessen sich die Plattenbalken noch weiter verformen, ohne dass sich die Belastung wesentlich änderte. Der Bruch trat schliesslich infolge Stauchung der Betondruckzone auf.

Der gesamte Bruchvorgang kann am anschaulichsten anhand von Kraft-Verformungs-Diagrammen verfolgt wer-

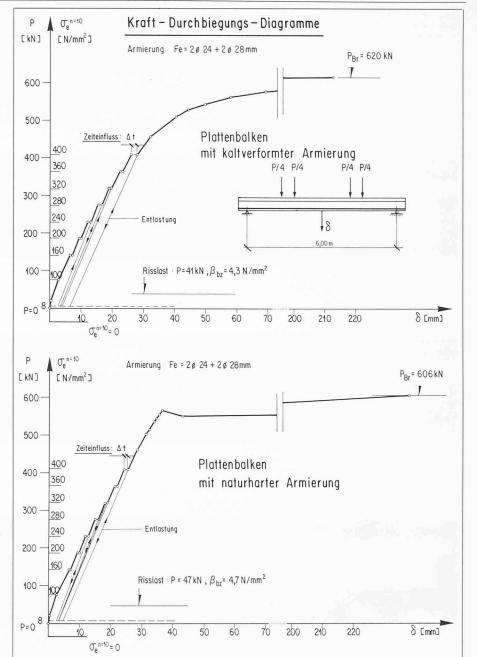
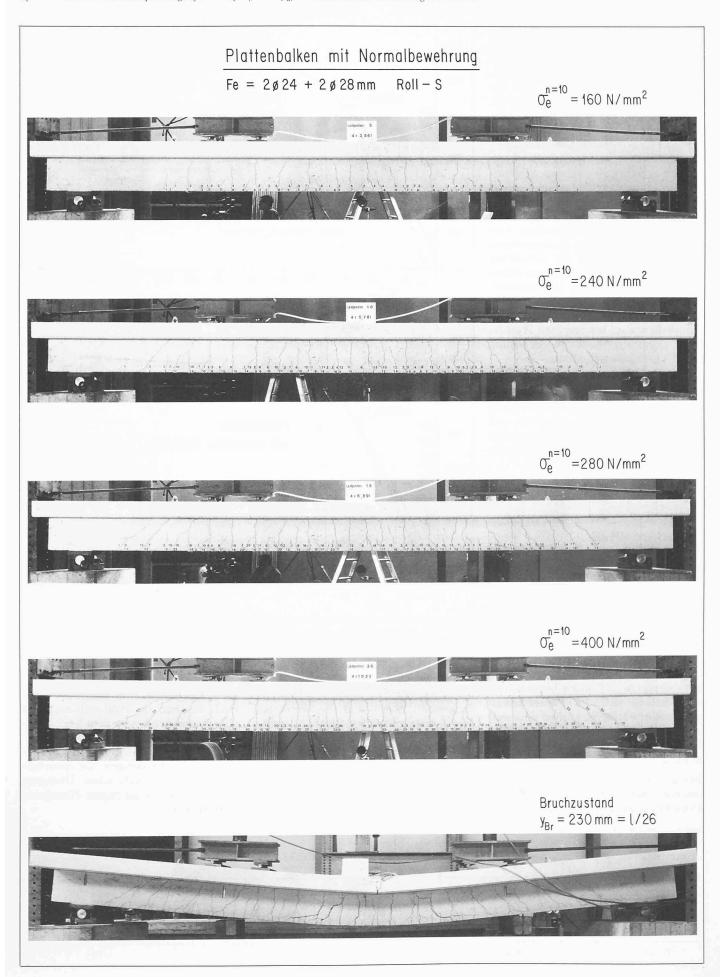


Bild 4. Kraft-Verformungs-Diagramme. Durchbiegung in Feldmitte in Funktion der Belastung bzw. der rechnerischen Stahlspannungen. Oben: Diagramme für kaltverformte Stähle. Unten: Diagramme für naturharte Stähle. Unter Risslast ver-

den. Zwei solcher Kurven sind in Bild 4 dargestellt. Darin sind die vertikalen Verschiebungen in Feldmitte in Funktion der Versuchskräfte aufgetragen. Gezeigt werden die Diagramme je eines Vertreters der kaltverformten bzw. naturharten Stähle. Grundsätzlich unterscheiden sich die beiden Kurven nicht voneinander. Lediglich im Übergang


steht man hier jene Last, bei der die ersten Risse im Balken auftraten

vom elastischen zum plastischen Bereich weichen sie lokal von einander ab, entsprechend etwa dem Verlauf ihrer charakteristischen Spannungs-Dehnungs-Linien. Die kaltverformten Stähle weisen einen stetigen, die naturharten einen eher plötzlichen Übergang auf, der ihrer ausgeprägten Fliessgrenze entspricht.

Tabelle 3. Bruchkräfte und Bruchverformungen

Verwendete Stahlsorte	Armierung Fe	Bruchkraft P _{Br} (kN)	Durchbiegung in Feldmitte δ_{Br} (mm)	Spannweite/Durchbiegung 1/δ _{Br}
Tor 50 Roll-S Box-Ultra Roto Baro	2 Ø 24 + 2 Ø 28 mm 2 Ø 24 + 2 Ø 28 mm	620 650 606 620 576	213 230 238 209 235	28 26 25 29 26
Tor 50	2 Ø 36 mm	540	240	25

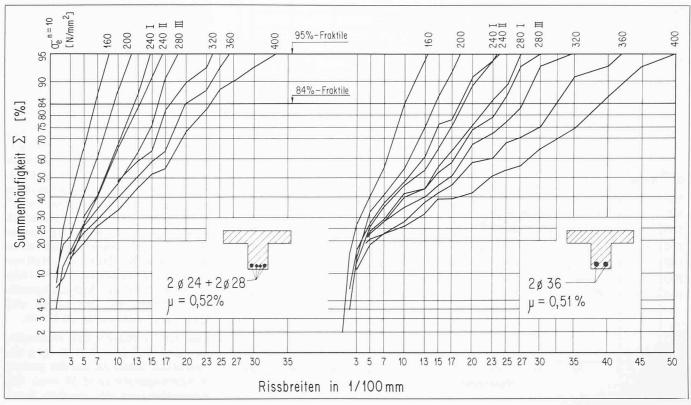
Bild 5. Rissbildung für ausgewählte Spannungsstufen. Die aufgeklebten Zahlen geben die Rissbreiten in 1/100 mm an. Obere Zahlenreihe: Risslinie V. Untere Zahlenreihe: Risslinie U. Zum besseren Erkennen wurden die Risse mit Filzstift nachgezeichnet. Es bedeuten im weiteren: $\sigma_e^n = 10 = Rechnerische Stahlspannungen für n = E_e/E_b = 10$. $y_{Br} = Vertikale Bruchverschiebung in Feldmitte$

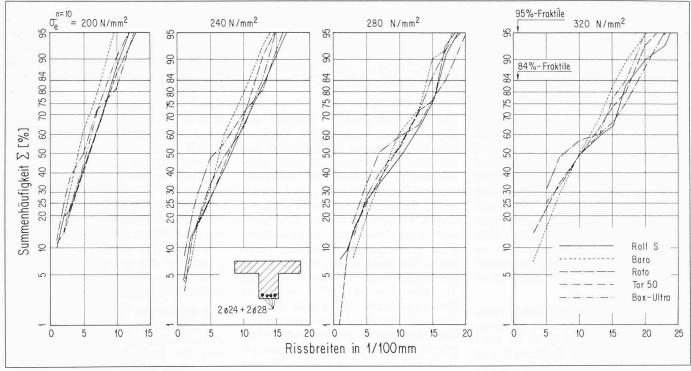
Die Rotationsfähigkeit war bei allen geprüften Armierungsstählen erstaunlich gross, also nicht nur bei den naturharten Stäben. In Tabelle 3 sind die ermittelten Bruchkräfte und die betreffenden Bruchverformungen zusammengestellt. Demnach liessen sich die Plattenbalken in Feldmitte bis zum Eintreten der Betonbruchstauchung sehr weit verformen. Die gemessenen Durchbiegungen betrugen 210 bis 240 mm. Diese Werte liegen nicht nur eng beieinander, sondern sind auch absolut betrachtet als gross zu bezeichnen. Die vertikalen Verschiebungen betragen nämlich rund ½6 der Spannweite, was auf ein äusserst duktiles Bruchverhalten hinweist. Dies wiederum steht, wie bereits früher erwähnt, mit dem idealen Armierungsgehalt von rund 0,5% in engem Zusammenhang.

Im weiteren kann festgehalten werden, dass auch der Plattenbalken mit grossen Armierungsstäben (2 Ø 36 mm) praktisch die gleiche Bruchkraft und die gleiche Bruchverformung aufwies wie die übrigen Prüfelemente. Man kann also sagen, dass die Verteilung der vorhandenen Armierung auf vier kleinere oder zwei grössere Stäbe - bei gleichem Armierungsgehalt - keinen nennenswerten Einfluss auf Traglast und Bruchverformung hat. Ganz anders verhält es sich jedoch mit der Rissbildung bzw. mit dem Haftvermögen zwischen Stahl und Beton, wie es im nächsten Abschnitt dargestellt wird. Dort spielt es nämlich eine entscheidende

Rolle, ob eine bestimmte Armierung auf mehrere dünne Stäbe aufgeteilt oder auf wenige, dafür um so dickere Durchmesser konzentriert wird.

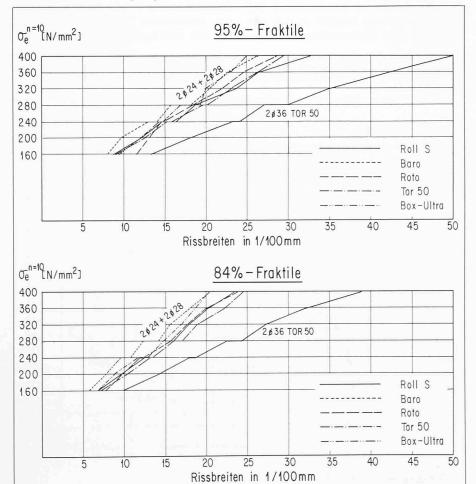
Rissbildung


Die Rissbeobachtungen bildeten den Hauptteil der vorliegenden Untersuchungen. Aufgrund des Rissbildes und vor allem der Rissbreiten sollte nämlich das Haftvermögen der verwendeten Stahlsorten überprüft und miteinander verglichen werden. Zu diesem Zweck wurden die an der Untersicht und an den Seitenflächen auftretenden Risse in der gesamten Zugzone untersucht. Die Ausmessung erfolgte dabei auf den Risslinien H, U und V (vgl. Bild 1). Jeder Riss wurde für bestimmte Spannungsstufen an seinem Schnittpunkt mit den Risslinien ausgemessen. Die systematische Auswertung erfolgte grundsätzlich für die gesamte Balkenlänge. In dieser Arbeit werden indessen nur die Resultate aus dem Bereich mit konstantem Biegemoment wiedergegeben, da diese infolge Fehlens der Bügelbewehrung aussagekräftiger sind und sich für Vergleiche besser eignen.


Bild 5 zeigt Rissbilder an der Balkenvorderseite für verschiedene Spannungsstufen zwischen 160 und 400 N/mm². Die letzte Aufnahme zeigt zudem den Balken im Bruchzustand. Bei dieser Darstellung handelt es sich um einen der fünf Plattenbalken mit nor-

maler Bewehrung (2 Ø 24 mm und 2 Ø 28 mm). Die abgebildeten Rissbilder stammen alle vom gleichen Prüfkörper. Ein Vergleich der fünf mit verschiedenen Stahlsorten armierten Balken hat ergeben, dass die entstandenen Rissbildungen sich nur um Nuancen voneinander unterscheiden. Diese Tatsache wird noch durch die betreffenden Summenhäufigkeitsdiagramme in quantitativer Hinsicht belegt. Die systematische Auswertung der Rissmessungen ergab im weiteren, dass bei der Spannungsstufe von 240 N/mm² (zulässige Spannungen für Stahl III nach Norm SIA 162) bereits 90 bis 95% aller Risse im Bereich mit konstantem Biegemoment vorhanden waren. Bei der weiteren Belastung traten hier nur noch wenig neue Risse hinzu, dagegen öffneten sich die bereits vorhandenen immer mehr und mehr.

Die eigentliche Auswertung der Rissbeobachtungen zeigen die Bilder 6 und 7. Darin sind die Rissbreiten in Funktion der Summenhäufigkeit aufgetragen. Diese Darstellungsart wurde von Prof. Rüsch in [6] beschrieben. Zur Ermittlung der grössten Rissbreiten in Abhängigkeit von den rechnerischen Stahlspannungen wurde von einer statistisch definierten Rissbreite ausgegangen. Dazu wurde die 95 %-Fraktile und zum Vergleich die 84%-Fraktile verwendet. Das sind jene Rissbreiten, die im Versuch bei einer ausgewählten Stahlspannung in nur 5% bzw. 16% aller gemessenen Werte überschritten werden. Bild 8 zeigt die graphische Dar-


Bild 6. Rissbreiten in Funktion der Summenhäufigkeit. Vergleich des Haftvermögens von mittleren und grossen Bewehrungsstäben. Aufgetragen sind die Rissbreiten im Bereich mit konstantem Biegemoment für die untersuchten Laststufen. Links: Balken mit Normalbewehrung: $2 \oslash 24 + 2 \oslash 28$ mm, Roll-S. Rechts: Balken mit grossen Armierungsstäben: $2 \oslash 36$ mm, Tor 50. Wie ein Vergleich der beiden Kurvenscharen zeigt, hat die Konzentrierung des gleichen Armierungsquerschnittes auf nur zwei dicke statt vier mittlere Stäbe wesentlich grössere Rissbreiten zur Folge

Rissbreiten in Funktion der Summenhäufigkeit. Vergleich des Haftvermögens der verschiedenen Stahlsorten anhand der Balken mit Normalbewehrung Aufgetragen sind die Rissbreiten im Bereich mit konstantem Biegemoment für vier wichtige Spannungsstufen. Ein Vergleich der Rissdiagramme zeigt, dass das Haft vermögen der untersuchten Armierungstypen etwa gleichwertig ist, denn die betreffenden Rissbreiten weichen jeweils nur um höchstens ± 2/100 mm voneinander ab

Bild 8. Grösste Rissbreiten in Funktion der Stahlspannungen. Zur Ermittlung der grössten Rissbreiten wurde von einer statistisch definierten Rissbreite ausgegangen. Dazu wurden die 95 %-Fraktile, und zum Vergleich die 84 %-Fraktile verwendet. Das sind jene Rissbreiten, die bei einer ausgewählten Stahlspannung in nur 5% bzw. 16% aller gemessenen Werte überschritten werden. Dargestellt sind hier die grössten Rissbreiten im Bereich mit konstantem Biegemoment. Kurvenschar links: Balken mit Normalbewehrung, alle Stahlsorten. Einzeldiagramm rechts: Armierung mit dicken Stäben, Tor 50. Auch aus dieser Darstellung wird ersichtlich, dass die Bewehrung mit grossen Stäben wesentlich grössere Rissbreiten zur Folge hat

stellung der so definierten grössten Rissbreiten.

Die Interpretation der verschiedenen Rissdiagramme ergibt folgendes Bild:

- 1. Ein Vergleich der Rissbreiten der normal bewehrten Plattenbalken (2 Ø 24 und 2 Ø 28 mm) zeigt, dass diese bei allen Prüfelementen etwa gleich gross waren. Eine gewisse Reihenfolge bei den fünf untersuchten Stahlsorten ist zwar vorhanden, doch wie den Summenhäufigkeitsdiagrammen in Bild 7 entnommen werden kann, weichen die Rissbreiten um höchstens ± 2/100 mm voneinander ab. Dies bedeutet, dass das Haftvermögen der untersuchten Stähle etwa gleichwertig ist. Dies gilt in erster Linie für die geprüften Dimensionen von 24 und 28 mm. Für kleinere Durchmesser dürften sich diese Verhältnisse etwa gleich bleiben, für grössere Armierungsstähle (Ø 30 bis 40 mm) treten indessen etwas grössere Unterschiede bei den verschiedenen Stahlmarken auf, wie dies bereits früher in [7] wurde. Demnach nachgewiesen wirkt sich die Profilgebung stärker aus bei grossen Armierungsstäben als bei kleinen, bei denen das Haftvermögen ohnehin besser ist. Mit anderen Worten: Gross Armierungsstähle sind mehr auf ihre Längs- und Querrippen angewiesen als kleine.
- 2. Das Haftvermögen der Normalbewehrung (2 Ø 24 + 2 Ø 28 mm) war wesentlich besser als das der grossen Armierungsstäbe (2 Ø 36 mm). Die Konzentrierung des gleichen Stahl-

	$\sigma_e^n = 10 =$	$\sigma_e^{n=10} = 240 N/mm^2$		$\sigma_e^{n=10} = 400 \text{N/mm}^2$	
Bezeichnung	Normalbewehrung $2 \otimes 24 + 2 \otimes 28$	Bewehrung mit grossen Stäben 2 Ø 36	Normalbewehrung $2 \otimes 24 + 2 \otimes 28$	Bewehrung mit grossen Stäben 2 Ø 36	
Anzahl Risse, je Risslinie Mittlerer Rissabstand Grösste Rissbreiten, 95%-Fraktile Grösste Rissbreiten, 84%-Fraktile	24 9,4 cm 0,15 mm 0,13 mm	18 12,4 cm 0,24 mm 0,19 mm	26 8,3 cm 0,29 mm 0,23 mm	19 11,8 cm 0,50 mm 0,39 mm	

Tabelle 4. Vergleich des Haftvermögens bei zwei ausgewählten Spannungsstufen. Die Bewehrung mit mittleren Stäben verursacht im Vergleich zu grossen Armierungsstählen zwar mehr Risse, dafür jedoch kleinere Rissabstände und vor allem kleinere Rissbreiten. Die Tabellenwerte stammen aus dem mittleren Balkenbereich mit konstantem Biegemoment

querschnittes auf nur zwei dicke Stäbe statt auf vier mittlere hatte demnach zur Folge, dass zwar weniger Risse auftraten (nur etwa 75%), dafür jedoch bedeutend grössere Rissbreiten entstanden. Diese Verhältnisse veranschaulichen die Rissdiagramme in den Bildern 6 und 8. In Tabelle 4 wird der Unterschied des Haftvermögens zudem durch einige Zahlenwerte quantifiziert.

Zusammenfassung

Die vorliegenden Untersuchungen behandeln statische Bruchversuche an Plattenbalken aus Stahlbeton, deren Bewehrung aus den wichtigsten schweizerischen Armierungsstählen der Gruppe III bestand. Hauptziel der Untersuchungen war die Überprüfung des Haftvermögens der einzelnen Stahlmarken und deren Vergleich untereinander. Im weiteren sollte der Einfluss von grösseren Bewehrungsdurchmessern - bei gleichbleibendem Armierungsgehalt - auf den Verbund untersucht werden. Während die Beurteilung der Hafteigenschaften in den genormten Ausziehversuchen aufgrund von Schlupfmessungen erfolgt, geschieht diese an wirklichkeitsgetreuen Balkenversuchen aufgrund der entstehenden Rissbildung. Die Hauptbewehrung der

normalen Prüfelemente setzte sich aus vier Stäben zusammen, nämlich aus 2 Ø 24 und 2 Ø 28 mm. Der entsprechende Armierungsgehalt betrug 0,52%. Mit diesem Armierungstyp wurden sämtliche Stahlmarken getestet. Um den Einfluss von grösseren Durchmessern - bei gleichbleibendem Armierungsgehalt zu überprüfen, wurde ein zusätzlicher Plattenbalken mit der Bewehrung 2 Ø 36 mm ($\mu = 0.51\%$) geprüft. Die Auswertung der umfangreichen Rissbeobachtungen ergab im wesentlichen folgendes Bild: 1. Das Haftvermögen der heute in der Schweiz hergestellten Armierungsstäbe ist im grossen und ganzen etwa gleichwertig. Diese Aussage gilt in erster Linie für die geprüften Bewehrungsstäbe Ø 24 und 28 mm. Für kleinere Durchmesser dürften sich diese Verhältnisse etwa gleich bleiben. Bei der Verwendung von grösseren Dimensionen (Ø 30 bis Ø 40 mm) treten indessen grössere Unterschiede zwischen den verschiedenen Stahlmarken auf. Demnach wirkt sich die Profilgebung stärker aus bei grossen Armierungsstäben als bei kleinen, wo das Haftvermögen ohnehin besser ist. 2. Die Konzentrierung eines bestimmten Armierungsquerschnittes auf nur wenige dicke Stäbe statt auf mehrere mittlere oder dünnere Durchmesser hat zwar weniger Risse, dafür jedoch bedeutend grössere Rissbreiten zur Folge.

Literaturverzeichnis

- [1] G. Rehm: Über die Grundlagen des Verbundes zwischen Stahl und Beton. Heft 138 des Deutschen Ausschusses für Stahlbeton. W. Ernst & Sohn, Berlin 1961. Der Ausziehversuch nach G. Rehm ist nicht genormt in Deutschland, wird aber neben Balkenversuchen zur Untersuchung von Haftproblemen verwendet.
- [2] British Standard, Code of Practice for The structural use of concrete: Pull out test according to British Standard, CP 110: Part 1: 1972, Appendix E.
- [3] Ausziehversuche nach Norm SIA 162 (1968), Richtlinie 13, herausgegeben vom Schweizerischen Ingenieur- und Architektenverein. Zürich.
- [4] Biegehaftversuche nach OENORM B 4200, 7. Teil, herausgegeben vom Österreichischen Normenausschuss, Wien.
- [5] Europäisches Beton-Komitee C.E.B.: Empfehlungen zur Berechnung und Ausführung von Stahlbetonbauwerken, S. 49 ff., Deutscher Beton-Verein e.V.
- [6] Prof. H. Rüsch: Vorläufige Empfehlungen zur Auswertung von Rissmessungen an Stahlbetonbalken, gemäss Brief vom 6. Juni 1966 an das Europäische Beton-Komitee C.E.B.
- A. Maissen: Grosse Armierungsstäbe im Massivbau, Versuche unter statischer und oft wiederholter Belastung. Schweizer Ingenieur und Architekt, Heft 19/1980.

Adresse des Verfassers: A. Maissen, dipl. Ing. ETH, Eidg. Materialprüfungs- und Versuchsanstalt (EMPA), Überlandstr. 129, 8600 Dübendorf.