Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 100 (1982)

Heft: 27/28

Artikel: Baulicher Brandschutz mit Beton: Bericht von der Arbeitstagung des

Deutschen Beton-Vereins in Frankfurt

Autor: Brux, G.

DOI: https://doi.org/10.5169/seals-74833

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Baulicher Brandschutz mit Beton

Bericht von der Arbeitstagung des Deutschen Beton-Vereins in Frankfurt

Von G. Brux, Frankfurt

Ohne besonderen Nachweis erfüllten früher die üblichen Abmessungen der für den baulichen Brandschutz wesentlichen Bauteile aus Beton und Stahlbeton in der Regel reichlich die Anforderungen an eine ausreichende Feuerwiderstandsdauer. Die inzwischen weiterentwickelten und verfeinerten allgemeinen Bemessungs- und Konstruktionsregeln ermöglichen statisch-konstruktiv wesentlich schlankere Querschnitte, die wegen freierer Gestaltung auch ausgeführt werden. Die Vorschriften für den baulichen Brandschutz wurden deshalb neu gefasst und so verfeinert, dass die in den Bauordnungen usw. enthaltenen Anforderungen an den baulichen Brandschutz ohne weiteres nachgewiesen werden können; künftig müssen Bauteile auch hinsichtlich ihrer Feuerwiderstandsdauer bemessen werden.

Die Bemessung von Bauteilen auf ihre Feuerwiderstandsdauer ist den konstruierenden Ingenieuren und entwerfenden Architekten noch verhältnismässig ungewohnt. Nach dem Erscheinen wesentlicher Grundlagen hat deshalb der Deutsche Beton-Verein im neuen Kongresszentrum «Alte Oper» am 3. März 1982 in Frankfurt am Main eine Arbeitstagung abgehalten, an der 170 Ingenieure und Architekten von Bauunternehmungen, Ingenieur- und Architekturbüros, Bauabteilungen der Industrie, Verwaltungen und Versicherungen teilnahmen. Fachleute vermittelten Forschungsergebnisse und Konstruktionsregeln; sie erläuterten die neuen Brandschutzvorschriften, u.a. DIN 4102 (besonders deren Teil 4 mit dem Katalog brandgeprüfter Bauteile) [2, 3] und DIN 18 230 [4] und wie die in den Bauordnungen festgelegten Brandschutzverordnungen zweckmässig und wirtschaftlich erfüllt werden können. -Rechtzeitig vor der Tagung erschien das Beton-Brandschutz-Handbuch [7], so dass es Architekten und Ingenieure künftig einfacher haben werden, ihre Konstruktionen auch brandschutztechnisch zu bemessen.

Baulicher Brandschutz, keine Geheimwissenschaft

Der Vorsitzende des Deutschen Beton-Vereins, Georg Lücking, begrüsste die Teilnehmer und ging auf die volkswirtschaftliche Bedeutung von Grossbränden ein. Er stellte fest, dass baulicher Brandschutz keine Geheimwissenschaft mehr ist. Ausreichender Feuerwiderstand lässt sich heute ebenso einfach beim Entwurf berücksichtigen wie Standsicherheit, Feuchtigkeits-, Wärme- und Schallschutz. Beim Beurteilen neu zu erstellender Bauwerke müssen

und gleich behandelt und dabei den Gesichtspunkten der Sicherheit und des Sachschutzes auch im Hinblick auf die Erhaltung des Gebäudes gleichermassen Rechnung getragen werden. - Nach Ernst Achilles, leitender Branddirektor bei der Feuerwehr der Stadt Frankfurt am Main, haben die Anzahl der Brände und die Höhe der Brandschäden (1950 140 Mio. Mark, 1960 350 Mio. Mark, 1970 1300 Mio. Mark und 1980 3500 Mark ohne Schäden Betriebsunterbrechungen, Unterversicherung, Verlusten von Arbeitskräften und Absatzmärkten sowie hohe Brandfolgeschäden) in der Bundesrepublik Deutschland in den letzten Jahren in erheblichem Masse zugenommen, was u. a. auf eine bedenkliche Unterschätzung der Bedeutung des vorbeugenden Brandschutzes zurückzuführen ist. Aus- und Fortbildung von Ingenieuren und Architekten sind auf diesem Gebiet unterentwickelt. Rückschläge bei der risikogerechten Beurteilung neuer Baustoffe und Bauteile sind auch in Zukunft nicht auszuschliessen. Die Fülle neuer Vorschriften und Verordnungen überfordert manchen Planer und engt ihn seines Erachtens wesentlich in seinen freien Gestaltungsmöglichkeiten ein. Es wurde vor scheinbar wirtschaftlicheren Planungslösungen gewarnt, bei denen brandschutztechnische Auflagen umgangen werden. Tragwerke aus Stahlbeton haben sich bei zahlreichen Grossbränden hervorragend bewährt und werden auch weiterhin einen wesentlichen Anteil an der Sicherung des baulichen Brandschutzes übernehmen können. Neben der Tragwerksplanung und Gütesicherung wird in Zukunft auch der Wiederherstellung von Stahlbetonbauten nach Brandschäden grosse Bedeutung beizumessen sein; meist ist dies mit Hilfe von Spritzbeton [8] wirtschaftlich möglich.

alle konkurrierenden Bauarten gerecht

Tendenzen und Sicherheitsfragen

Der Präsident des Instituts für Bautechnik in Berlin, Prof. Heinrich Bub, sprach über Tendenzen im baulichen Brandschutz und Sicherheitsfragen. Von Art, Menge, Lagerung, Anordnung und Schutz der Brandlasten in Verbindung mit der Ventilation hängt der Zeit-Temperaturverlauf von Bränden ab. Bei Gebäuden überwiegend aus brennbaren Baustoffen (ungeschützt, kein Putz o. ä.) als feste Brandlast kann sich die Gesamtbrandlast mehr als verdoppeln mit jeweils zunehmenden Auswirkungen. Neben dem Wert des Brandgutes haben auf die Höhe der Sachschäden die Grössen der Brandoder Brandbekämpfungsabschnitte und die Möglichkeiten des Feuerwehreinsatzes Einfluss. Gebäude, die unter umfangreicher Verwendung brennbarer Baustoffe mit unzulänglichen Trennungen und mit zu geringen Abständen errichtet werden, können in verdichteten Baugebieten zu Flächenbränden beitra-

Über die Hälfte der Brandtoten stirbt an Rauchvergiftung, der grösste Teil darum, weil er sich nicht mehr über Rettungswege oder bei ihrer schnellen Verrauchung durch Sprung ins Freie retten und weil die Feuerwehr nicht innerhalb von 10 bis 15 Minuten zur Stelle sein konnte. Für den Personenschutz kommt der technischen Ausbildung der Rettungswege sehr grosse Bedeutung zu. Verstösse gegen die Regeln der Technik erhöhen das Risiko, wie z. B. feuerbeständige Stahlbetondecken ohne ausreichend grosse Betondeckung der Stahleinlagen. Die Beispiele aus Bayern und der Schweiz zeigen, dass ein hohes Niveau der Prüf- und Kontrollmassnahmen die Brandrisiken für Personen und Sachen um 20 bis 30 Prozent senken kann. Die Höhe der Anforderungen in Vorschriften spiegelt die Erfahrungen der jeweiligen Generation wider (z. B. Feuerstürme im Mittelalter und im 2. Weltkrieg, Theater- und aufsehenerregende Hotel-, Warenhausund Industriebrände, Umgang mit offenem Feuer), aber auch den jeweiligen Stellenwert des Gemeinwohls.

Vorschriften behindern den freien Wettbewerb, haben Auswirkungen auf die Bau- und Grundstückskosten. Die Anforderungen zu verringern ist nicht nur eine Sache der Wirtschaftlichkeit und muss beim Personenschutz gesetzlich geregelt werden. Dies gewinnt an Bedeutung im Zusammenhang mit Massnahmen zur Baupreiskostendämpfung, wobei auch über ein Absenken des vorbeugenden Brandschutzes gesprochen wird. Ein neues Sicherheitskonzept ermöglicht es erstmals, die

Marchete de Cinecules and C			Mindestdicken d bzw. Mindestbreiten b und zugehörige Achsabstände u in mm						
	Bauteilart		f	ür die l	Feuerwider	stands	sklassen		
				F 30 - A		F 90 - A		F 180 – A	
			d bzw. b	u	d bzw. b	u	d bzw. b	u	
		stat. best. gelagert stat. unbest. gelagert	60 80		100 100		150 150		
	Vollplatte mit Verbundestrich Dicke der Platte		50		50		50		
		stat. best. gelagert stat. unbest. gelagert	60 80		100 100		150 150		
		n Estrich stat. best. gelagert stat. unbest. gelagert	60 80		60 80		80 80		
Decken	Dicke des Estrichs		-		25		40		
	Achsabstand der Feldbewehr einachsig gespannt	BSt 220/340 BSt 420/500 BSt 500/550		12 12		28 35		53 60	
	zweiachsig gespannt	BSt 220/340 BSt 420/500 BSt 500/550		12 12		12 15		23 30	
Wände	nichttragend		80		100		150		
	tragend	$\begin{array}{l} \sigma \leq 0.5 \; \beta_R/2.1 \\ \sigma \leq 1.0 \; \beta_R/2.1 \end{array}$	100 120		140 170		200 300		
	Achsabstand bei T _{krit} = 500 °C	$\sigma \le 0.5 B_R/2.1$ $\sigma \le 1.0 B_R/2.1$		12 12		25 35		55 65	
Balken	dreiseitig beflammt und $T_{krit} = 500^{\circ}\text{C}$	stat. best. gelagert	80 120 160 > 200	25 15 12 12	150 200 250 > 400	55 45 40 35	240 300 400 > 600	80 70 65 60	
Damon		stat. unbest. gelagert	≥ 200 80 -	12	≥ 400 150 250	35 25	240 400	60 50	
Stützen	mehrseitig vom Feuer beansprucht		150	12	240 300	45 35	400 500	70 60	

Tabelle 1. Mindestdicken d bzw. Mindestbreiten b und zugehörige Achsabstände u von verschiedenen Betonbauteilen in unbekleideter Ausführung für die Feuerwiderstandsklassen F 30, F 90 und F 180 [2, 9]

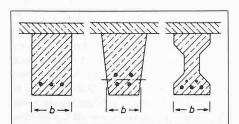
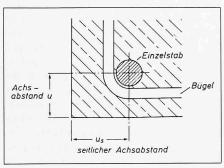



Bild 1. Massgebende Balkenbreite b in Abhängigkeit von der Querschnittsform und der Lage der Bewehrung [2, 9]

Bild 2. Bestimmung des Achsabstandes u sowie des seitlichen Achsabstandes u_s bei dreiseitig beflammten Balken aus Stahlbeton [2, 9]

Höhe der für den baulichen Brandschutz erforderlichen vorbeugenden konstruktiven Massnahmen u. a. mit Hilfe wahrscheinlichkeitstheoretischer Überlegungen mathematisch zu beurteilen, wie z. B. in der künftigen DIN 18 230 [4] für den Industriebau.

Wahl der Baustoffe

In seinem Vortrag über das Brandverhalten und davon abhängig die Wahl der Baustoffe brachte *Ulrich Neck* (Forschungsinstitut der Zementindustrie, Düsseldorf) eine *Klassifizierung von Baustoffen und Bauteilen*. Die Wahl des Baustoffs lässt sich, wenn sie unter brandschutztechnischen Gesichtspunkten geschieht, als *vorbeugende* Brandschutzmassnahme werten.

Zum Beurteilen des Brandverhaltens von Stahlbetonbauteilen werden die physikalischen und chemischen Eigenschaften der einzelnen Betonkomponenten (Zementleim, Zuschläge und Feuchtigkeit) und des Stahls herangezogen. Die vergleichsweise geringe Wärmeleitfähigkeit und das grosse Wärme-

speichervermögen des Betons verhindern eine rasche Erwärmung des Inneren von Betonbauteilen. So wird die für die Betonfestigkeit kritische Temperatur von 700 °C bei üblichen Bauteilquerschnitten im Hochbau erst nach zwei Stunden Branddauer unter Normbedingungen im Abstand von 20 bis 25 mm unter der Betonoberfläche erreicht. Entsprechend lange werden auch die Stahleinlagen durch eine ausreichende Betondeckung vor gefährlicher Erwärmung geschützt. Durch Wahl besonderer Zuschläge, wie Kalkstein und natürlich oder künstlich geblähte Leichtzuschläge, lässt sich dieses Verhalten noch weiter verbessern. Die für den praktischen Brandschutz massgebende Norm DIN 4102 Teil 4 [2] enthält die für den Anwender wichtigen Parameter für eine brandschutztechnisch richtige Ausbildung der Bauteile (Tabelle 1), wie z. B. die Mindestabmessungen (Bild 1), die erforderlichen Betondeckungen (Bild 2) und die einzuhaltenden Druckspannungen [9, 10].

In vielen Brandfällen hat sich gezeigt, dass nach dem Brand Betonbauteile ausgebessert und damit wieder voll einsetzbar gemacht werden konnten. Selbstverständlich müssen vor dem Ausbessern die durch Temperatur- oder Brandgase geschädigten Teile des Betons entfernt und der Zustand der Bewehrung geprüft werden [11]. Hinweise für die Sanierung von brandbeanspruchten Betonbauteilen, z. B. mit Spritzbeton [8], enthalten die Richtlinien für die Ausbesserung und das Verstärken von Betonbauteilen mit Spritzbeton [12].

Besondere Bauteile

Drei Vorträge waren Gruppen von Bauteilen gewidmet.

Waagrechte Betonbauteile

Kurt Holz (Strabag Bau-AG, Köln) sprach über die brandschutztechnische Bemessung waagrechter Betonbauteile, wie Balken und Platten, Einfeld- und Durchlaufträger. Die Lage der Bewehrung im Stahlbetonquerschnitt wird brandschutztechnisch beurteilt über den Achsabstand u, u_s oder u_0 (Bild 2), den Achsabstand der Stabachse der Hauptbewehrung von der Betonoberfläche, d. h. nicht auf die Bügel bezogen. Bei mehrlagiger Bewehrung ist ein mittlerer Achsabstand massgebend. Eine zu geringe Querschnittsabmessung oder ein zu geringer Achsabstand u kann bis zu einem gewissen Grad durch Putz oder Estrich ersetzt werden [8]. Die Konstruktionsregeln richten sich danach, wie lange ein Bauteil dem Brand ausgesetzt sein kann, bis in der Bewehrung die dem Beanspruchungsgrad entsprechende kritische Temperatur erreicht wird. Jedes entsprechend DIN 1045 fachgerecht entworfene Stahlbetonbauteil entspricht der Feuerwiderstandsklasse F 30, wobei bis F 90 meist keine zusätzlichen Massnahmen notwendig sind, gegebenenfalls etwas grössere Betondeckung.

Je schmäler die Biegezugzone eines Balkens ist, um so grösser muss der Achsabstand u sein; je höher die Ausnutzung des Balkens, um so breiter muss die Druckzone sein (Bild 1; Tabelle 1). Wegen der niedrigeren kritischen Temperatur von Spannstahl gelten für Spannbetonbauteile höhere Anforderungen; die Balkenbreiten und die Achsabstände müssen grösser sein.

Ob es bei Balken oder Platten zweckmässiger ist, Einfeld- oder Durchlaufsysteme zu wählen, ergibt sich aus Vergleichsrechnungen. In Durchlaufsystemen treten vor allem bei langer Brandeinwirkung wesentliche Zwängungsmomente über Innenstützen auf; wegen der dadurch entstehenden Querkräfte werden grössere Balkenbreiten gewählt. Ausführliche Konstruktionsregeln und -hilfsmittel sind in [1] zusammengestellt.

Es wurden auch Hinweise für Stahlbetonrippen- und Stahlblechverbunddekken gebracht; die letzten sind nicht in der Norm [2] erfasst, sondern über Zulassung und Gutachten geregelt. Das 0,75 bis 0,88 mm dicke Blech wirkt als Schalung und tragende Bewehrung; trotzdem kann durch die Form der Rippen eine Feuerwiderstandsklasse F 90 und mit Zulagebewehrung sogar von F 180 erreicht werden.

Lotrechte Betonbauteile

Rolf Berner (Ingenieurbüro Prof. Dr.-Ing. Franz, Karlsruhe) berichtete über brandschutztechnische Bemessung lotrechter Betonbauteile, wie Wände und Stützen. Für Stahlbetonstützen der Feuerwiderstandsklasse F 30-A und F 90-A gilt im Regelfall eine Mindestdicke von 300 mm, eine Längsbewehrung von 14 mm Ø, Bügel von 8 mm Ø und eine Bügelbetondeckung von 20 mm. Diese Angaben gelten für alle statischen Lagerungsfälle und alle Bewehrungsgehalte. Sie können bei Putzbekleidung (Sonderputze) oder bei weniger als vierseitiger Brandbeanspruchung unterschritten werden. Die Feuerwiderstandsdauer kann u.a. durch Verlegen eines Teils der Bewehrung ins Stützeninnere erhöht werden. Beim Verwenden von Normalbeton mit 80 Prozent karbonathaltigem Zuschlag dürfen die Querschnittsabmessungen, die Achsabstände und Betondeckung um 10 Prozent verringert werden.

Als Wände gelten Druckglieder mit grösserer Breite als 600 mm und als die fünffache Wanddicke; kleinere Wände sind wie Stützen zu bemessen. Bei Wänden liegen häufig günstigere Verhältnisse als bei Stützen vor, weil Wände mindestens konstruktiv eingespannt und meistens drei- oder vierseitig gehalten werden. Wände dürfen brandschutztechnisch wesentlich dünner als Stützen ausgeführt werden; ihre Schlankheit, das Verhältnis von Stockwerkshöhe zur Wanddicke, ist im allgemeinen auf 25 begrenzt. Durch Anordnen von versteckten Stützen in der Wand lässt sich diese Schlankheitsbegrenzung bei raumabschliessenden Wänden umgehen. Durch eine Putzbekleidung sind tragende Stahlbetonwände in einer Dicke von 80 mm möglich.

Fugen, Lager und Sonderbauteile

Claus Meyer-Ottens (Technische Universität Braunschweig) sprach über Fugen (Stoss-, Lager- und Dehnfugen), Lager und Sonderbauteile. Raumabschliessende Bauteile müssen bei praxisgerechter Ausführung und entsprechendem Einbau unter Brandbeanspruchung tragfähig und raumabschliessend bleiben [14]; das gilt auch für Fugen, Anschlüsse usw. Eine Zusammenstellung der wichtigsten den Anforderungen der Feuerwiderstandsklasse F30 bis F180 entsprechenden Stossund Anschlussfugen von Stahlbetondecken und -wänden einschliesslich Brandwänden [1, 13] enthält [2]. Dehnfugen sind in Gebäuden aus Stahlbeton nach DIN 1045 (1978) anzuordnen.

Es wird zwischen Normal- und Sonderfällen [2] unterschieden, bei denen mit besonders hohen Temperaturen oder besonders langen Branddauern (F 120) zu rechnen ist; wegen der zu erwartenden grösseren Dehnwege werden breitere Dehnfugen empfohlen. Für Lagerfugen, z. B. auf Konsolen, deren angrenzende Bauteile drei- oder vierseitig brandbeansprucht werden können, werden in [2] Mindestquerschnittsabmessungen und Achsabstände der Bewehrung vorgeschrieben und in [7] wichtige Randbedingungen erläutert.

Die im Hoch- und Brückenbau verwendeten Elastomerlager sind brennbar und müssen mindestens der Baustoffklasse B 2 angehören, was leicht zu erfüllen ist. Sie sollen während einer bestimmten Feuerwiderstandsdauer tragfähig bleiben; deshalb richten sich ihre Mindestabmessungen nach der Abbrandgeschwindigkeit des für die Lager verwendeten Materials. [7] enthält Schutzmassnahmen für andere Lager, wie Stahl-, Blei- und Topflager.

Brandwände sind dazu bestimmt, die Ausbreitung von Feuer auf andere Ge-

bäude oder -abschnitte zu verhindern. Sie müssen u.a. aus Baustoffen der Klasse A bestehen, bei mittiger und ausmittiger Belastung mindestens der Feuerwiderstandsklasse F 90 angehören und standsicher sowie raumabschliessend sein. Die Mindestdicken und Randbedingungen zum Errichten von Brandwänden sind in [2] enthalten. Sie werden in [7] ausführlich erläutert, wobei auch auf die gesetzlichen Vorschriften eingegangen wird, die oft übersehen oder missachtet werden. -Innere Brandwände müssen in bestimmten Fällen (< F 90) für sich allein unter Windbelastung standfähig sein; aussteifende Bauteile von Brandwänden müssen mindestens der gleichen Feuerwiderstandsklasse entsprechen. Eingegangen wurde auch auf die brandtechnischen Massnahmen bei nichttragenden Aussenwänden, Brüstungen und Schürzen [2, 7].

Brandverhalten von Gesamttragwerken

Lore Krampf (Technische Universität Braunschweig) brachte Forschungsergebnisse über das Brandverhalten von Gesamttragwerken: Danach ergibt eine ausreichende Feuerwiderstandsfähigkeit der Einzelbauteile im Rahmen einer ingenieurmässig sinnvoll durchdachten Gesamtkonstruktion auch ein entsprechend günstiges Brandverhalten der Gesamtkonstruktion, wenn die durch die Erwärmung ausgelösten Verformungen nicht zu gross werden.

In Biegebauteilen, wie Decken und Balken, ergibt sich häufig eine günstige Umlagerung der inneren Schnittgrössen. Bei Erwärmung von unten bauen sich negative Zusatzmomente auf, die die besonders gefährdete untere Feldbewehrung entlasten [2]. Bei Druckgliedern eines Gesamtsystems, wie Stützen, tritt bei Brandbeanspruchung eine ungünstige Umlagerung auf; in der am stärksten erwärmten Stütze vergrössert sich die Normalkraft durch gegenseitige Dehnungsbehinderung. In späteren Stadien werden diese Zusatzkräfte durch Hochtemperaturkriech- und -relaxationseinflüsse aber wieder abgebaut. Bei unterschiedlicher Brandintensität in der Stützenumgebung können unterschiedliche Durchbiegungen des Balken/Deckensystems auftreten und dadurch zusätzliche Momente in die Stützen eingetragen werden, die bei geringer gleichzeitiger Normalkraftbeanspruchung durchaus solche Grössenordnungen annehmen können, dass ursprünglich druckbeanspruchte Bewehrung nunmehr Zugbeanspruchung erhält. Es ist jedoch kein vorzeitiges Stützenversagen wegen dieser Zwangsbeanspruchungen in wirklichen Bränden bekannt geworden.

Dagegen sind schwere Schäden als Folge thermischer Ausdehnung grosser Dekkenbereiche eingetreten. Dehnfugenabstände sollten so klein wie möglich und Dehnfugenweiten möglichst gross gewählt werden. Ein ingenieurmässig gut durchdachtes Aussteifungssystem bewährt sich darum nicht nur für die jahreszeitlichen Temperaturschwankungen, sondern in noch stärkerem Masse im Brandfall und steigert die Wahrscheinlichkeit einer Wiederverwendbarkeit und hilft das Ausmass der Brandschäden und den Aufwand für ihre Beseitigung verringern.

Diese konstruktiven Massnahmen erfordern weniger finanziellen Aufwand als ingenieurmässiges Durchdenken; ihr qualitativer Nutzen ist unbestritten; es gelingt jedoch nicht, ihn allgemein zu quantifizieren.

Hans Seiler (Deutscher Beton-Verein, Wiesbaden) sprach über den Brandschutz im Industriebau (DIN 18230) und gab einen Einblick in die Grundgedanken und die Berechnungsverfahren. Die künftige Industriebau-Richtlinie wird alle in den Zuständigkeitsbereich der Bauaufsicht fallenden Regelungen (für welche Bauteile welche Feuerwiderstandsklasse, Abstandsregeln, Rettungswege-, Treppen-, Zufahrtswegeausbildung, zulässige Flächen für die Brandbekämpfungsabschnitte) enthalten und stützt sich auf das Rechenverfahren von DIN 18230 (erscheint in Kürze als Vornorm) ab, das im Bereich mittlerer und niedriger Brandbelastungen zu niedrigeren Anforderungen führt als die Bauordnungen [1]. So finden in die Brandschutznormung und -forschung neue Beurteilungsgrundsätze Eingang (Tabelle 2). Die Brandbekämpfungsabschnitte (BBA) dämmen jedes Schadenfeuer ein und verhindern so ein Übergreifen auf andere BBA oder die Nachbarschaft.

Tabelle 2. Beurteilungsgrundsätze für den baulichen Brandschutz im Industriebau (DIN 18 230)

bisher	künftig
Festlegungen nach Ermessen	Abstützung auf ein Rechenverfahren
Versuche nur mit ISO-Normbrand (Einheitstemperatur- kurve ETK)	Versuche auch mit Naturbränden
Baustoffe und Bauteile geprüft	auch Bauwerksstruk- tur einbezogen
globale Sicherheitsgedanken	probalistisches Sicherheitskonzept eingeführt
Brandabschnitt (BA) betrachtet	Brand <i>bekämpfungs</i> - abschnitt (BBA)

In die Berechnung geht die erforderliche Feuerwiderstandsdauer für alle Bauteile innerhalb und zur Begrenzung des betrachteten BBA ein; mit Hilfe der Brandschutzklassen (BK I bis BK V) oder durch unmittelbare Umrechnung können in Abhängigkeit von der erforderlichen Feuerwiderstandsdauer die zu fordernden Feuerwiderstandsklassen (F 30, F 60, F 90, F 120) ermittelt werden.

Die Bestimmung der Brandbelastung, das ist die Erfassung der brennbaren Produktions- und Lager- und Baustoffe, ist nicht einfach. Dazu ist ein beträchtlicher Aufwand erforderlich. Dennoch sind die Ergebnisse mit Unsicherheiten behaftet. Deshalb kann im Betonbau ein Verzicht auf die durch die Rechnung nach DIN 18 230 möglichen Erleichterungen und statt dessen Bauen nach der jeweiligen Länderbauordnung [1] lohnend sein.

Bewertung durch Feuerwehr und Sachversicherer

Peter Günther, Branddirektor bei der Feuerwehr in Hamburg, behandelte den vorbeugenden Brandschutz aus der Sicht der Feuerwehr. Es wird zwischen vorbeugendem und abwehrendem Brandschutz unterschieden; beide zusammen bilden die von der Bevölkerung erwartete Brandsicherheit.

Der abwehrende Brandschutz, d. h. aktive Menschenrettung, Sachschutz und wirksame Brandbekämpfung durch die Feuerwehr, hat seine Grenzen in der Mannschaftsstärke der Berufs- und Werkfeuerwehren und in der technischen Leistungsfähigkeit der Feuerwehrpumpen und -leitern. Da hier auch aus Gründen der Sparsamkeit bei den Gemeinden/Städten und in der Industrie keine Steigerungen zu erwarten sind, bedeuten alle Erleichterungen am Bau und damit Abminderungen im vorbeugenden baulichen Brandschutz zwangsläufig auch eine Minderung der gesamten Brandsicherheit.

Torsten Prössdorf, Leiter des Allianz Brandschutz Service in München, sprach über die Bewertung des baulichen Brandschutzes durch die Sachversicherer. In Deutschland stieg in den letzten zehn Jahren das Bruttosozialprodukt um rd. 400 Prozent; im gleichen Zeitraum wuchs der Brandschadenaufwand in der Industrie um über 910 Prozent auf jährlich rd. 2,0 Mrd. Mark. Nur 1 Prozent der Industriebrände verursachten rd. 63 Prozent des Schadenaufwands. Alle grösseren Industrie-Feuerversicherer haben eigene Brandschutzabteilungen mit ausgebildeten Brandschutzingenieuren, welche

die Versicherungsnehmer über vorbeugenden und abwehrenden Brandschutz nicht nur durch Inspektionen bestehender Betriebe, sondern möglichst schon bei der Planung beraten. Nur so lassen sich Brandschutzvorkehrungen versicherungstechnisch am günstigsten durchführen. Durch Komplextrennungen, d. h. durch ausreichende räumliche Abstände oder Brandwände in Sonderausführung, können unterschiedlich gefährliche Betriebsbereiche so voneinander getrennt werden, dass die Durchschnittsprämie für das gesamte Objekt erheblich gesenkt werden kann.

Für Brandschutzmassnahmen gewähren die Sachversicherer auf die Feuerund Betriebsunterbrechungs-Versicherung zum Teil erhebliche Prämienrabatte, wogegen für Mängel oder nicht durchgeführte Massnahmen Zuschläge erhoben werden. Dabei werden nicht nur bauliche, sondern auch andere vorbeugende Massnahmen bewertet [16, 17]. Werden Gebäude durch Brandmeldeanlagen überwacht, mit Feuerlöschanlagen (z. B. Sprinkleranlagen) geschützt oder besteht eine Werkfeuerwehr, so können Rabatte bis zu 5, 60 oder 30 Prozent gewährt werden. Die Prämieneinsparung vor allem aus baulichen, melde- und löschtechnischen Brandschutzmassnahmen können bis zu 70 Prozent (ab 1983 bis zu 85 Prozent) der Grundprämie betragen.

Aktuelle Fragen

Abschliessend sprach Prof. Karl Kordina (Technische Universität Braunschweig) über aktuelle Probleme des vorbeugenden baulichen Brandschutzes, der sich in seiner gegenwärtigen Form in erster Linie auf den Personenschutz ausrichtet. Die entsprechenden Prüf- und Beurteilungsvorschriften (DIN 4102 Teil 2) zielen darauf ab, eine hinreichende Standsicherheit der Bauteile und ihre den Brandraum umschliessende Wirkung für eine bestimmte Zeit aufrechtzuerhalten; nach Ablauf der so bestimmten Feuerwiderstandsdauer darf das Bauwerk einstürzen oder den Durchtritt von Flammen und heissen Gasen erlauben.

Über diesen zweifellos vorrangigen Personenschutz hinaus werden in letzter Zeit zunehmend Forderungen nach einem begrenzten Objektschutz aufgestellt. Anlagen der Energieversorgung, unterirdisch geführte Verkehrswege [15, 16, 17], Industrieanlagen von überörtlicher Bedeutung usw. sollen nach einem Brand in kürzester Zeit wieder funktionsfähig sein und in vergleichsweise kurzer Zeit ohne allzu grosse Schwierigkeiten vollständig wiederher-

gestellt werden können. So musste beispielsweise beim neuen Elbtunnel in Hamburg sichergestellt werden, dass im Falle eines Lkw-Brandes keine Einschränkung der Wasserdichtigkeit und Tragfähigkeit der eigentlichen Tunnelkonstruktion eintritt. Bei der neuen Reichsbrücke in Wien, einer Spannbetonbrücke, in deren Hohlkästen die U-Bahn fährt, musste sichergestellt werden, dass im Brandfall keine bleibenden Verformungen des weitgespannten Tragwerks auftreten, die Tragfähigkeit erhalten bleibt und Risse nur in begrenztem Umfang auftreten. Dies erforderte in beiden Fällen zusätzliche Schutzmassnahmen an den Hohlkasteninnenseiten (Bild 3).

Nach der Untersuchung von Grossbränden der vergangenen Jahre traten Todesopfer nur in Ausnahmefällen durch Versagen von Bauteilen im Brandfall auf, während in der überwiegenden Anzahl aller Fälle Ersticken oder Rauchvergiftung der Grund war. Die meist starke Rauchentwicklung verhindert die Orientierung, verzögert die Gebäuderäumung und erhöht die Gefahr von Vergiftung und Ersticken. Das beim Brand auftretende Kohlenmonoxid kann sogar in einem Nebenraum schlafende Personen töten, bevor diese durch den Temperaturanstieg oder durch Rauch geweckt werden. Trotz intensiver Entwicklungsarbeiten der Hersteller wird es jedoch noch geraume Zeit dauern, bis die Zusammensetzung besonders der Ausbau- und Dämmstoffe so verbessert ist, dass sie beim Verbrennen deutlich weniger Rauch entwickeln.

Als Ergänzung für die derzeit übliche und in der Regel auch ausreichende Beurteilung des Brandverhaltens über das der Einzelbauteile [2] ist der Sonderforschungsbereich «Brandverhalten von Bauteilen» bemüht, Grundlagen für eine umfassende Beurteilung von Gesamttragwerken zu schaffen und daraus praxisgerechte Beurteilungsverfahren zu entwickeln.

Eine weitere Voraussetzung unserer Brandschutzbestimmungen ist die sogenannte Einheitstemperaturkurve (ETK); sie legt einen ganz bestimmten Anstieg der Temperatur im Brandraum in Abhängigkeit von der Zeit fest, macht aber keine Aussagen über die sogenannte Abklingphase. Wirkliche Brände zeigen gegenüber der ETK gelegentlich einen schnelleren, oftmals jedoch einen langsameren Temperaturanstieg und eine ausgedehnte Abkühlphase (Bild 3).

Mangels entsprechender Untersuchungen liegen auch keine systematischen Angaben über die sogenannte Resttragfähigkeit von Bauteilen vor, die einen Brand überstanden haben, Auch hier sind der Forschung weitere Aufgaben gegeben.

Als Ergebnis der Arbeitstagung kann festgestellt werden, dass in der Praxis für die meisten Fälle Hilfsmittel zum brandschutztechnischen Konstruieren und Bemessen zur Verfügung stehen. Verfeinerungen finden ihre natürlichen Grenzen bei den unvermeidlichen Ungenauigkeiten der Ausgangswerte. Da derzeit keine wesentliche Verbesserung beim bekämpfenden Brandschutz der Feuerwehren zu erwarten ist, hängt

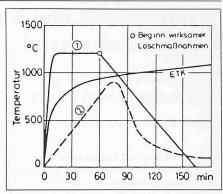


Bild 3. Beispiele für Temperaturverläufe in Tunnelbauwerken. 1 Strassentunnel, 2 U-Bahn-Tunnel, ETK Einheitstemperaturkurve gemäss DIN 4102 Teil 2;[15]

die Grösse der Brandsicherheit vom vorbeugenden, besonders vom baulichen, Brandschutz ab, und Bauteile aus Beton erfüllen in idealer Weise die Anforderungen des baulichen Brandschutzes.

Adresse des Verfassers: G. Brux, dipl. Ing., Schreyerstr. 13, D-6000 Frankfurt 70.

Schrifttum

- [1] Musterbauordnung (MBO), Neufassung
- [2] DIN 4102 Teil 4 Brandverhalten von Baustoffen und Bauteilen; Zusammenstellung und Anwendung klassifizierter Baustoffe, Bauteile und Sonderbauteile, Ausgabe März 1981 (108 Seiten)
- [3] DIN 4102 Beiblatt 1 Brandverhalten von Baustoffen und Bauteilen; Inhaltsverzeichnisse; Ausgabe Mai 1981 (5 Seiten)
- [4] DIN 18 230 Baulicher Brandschutz im Industriebau. Vornorm erscheint in Kürze
- [5] DIN 18 232 Teil 2 (Entwurf) Baulicher Brandschutz; Rauch- und Wärmeabzugsanlagen; Rauchabzüge; Bemessung, Anforderungen und Einbau; Ausgabe September 1981 (5 Seiten)
- [6] DIN 18 232 Teil 3 (Entwurf) Baulicher Brandschutz; Rauchabzüge; Prüfungen; Ausgabe September 1981 (6 Seiten)
- [7] Kordina, K., Meyer-Ottens, C.: «Beton-Brandschutz-Handbuch». Beton-Verlag, Düsseldorf, 1981 (437 Seiten)
- [8] Brux, G., Linder, R., Ruffert, G.: «Spritzbeton - Spritzmörtel - Spritzputz, Herstellung, Prüfung und Ausführung». Verlagsges. Rudolf Müller, Köln, 1981 (280 Seiten) - Besprochen in Schweizer Ingenieur und Architekt 1981. Nr. 38. S. 827
- [9] Neck, U.: "Baulicher Brandschutz mit Beton". Beton-Verlag, Düsseldorf, 1979 (14 Seiten)
- [10] Neck, U.: «Die Bewertung des Betons für

- den Brandschutz in der neuen DIN 4102». Beton 28 (1978) Nr. 5 und 6, S. 171-174 und 214-217
- [11] Ruffert, G.: «Brandschäden an Betonbauten – Feststellung, Beurteilung und Sanierung». Beton 26 (1976) Nr. 7, S. 239–243
- [12] Richtlinien für die Ausbesserung und Verstärkung von Betonbauteilen mit Spritzbeton. Fassung 1976. Zement-Mitteilungen Nr. 4, September 1976. Beton 26 (1976) Nr. 6, S. 217-218
- [13] Brandverhalten von Bauteilen; Teil I und II. Heft 22 der Schriftenreihe «Brandschutz im Bauwesen» (Braba). Erich Schmidt-Verlag, Berlin – Bielefeld – München, 1981
- [14] Meyer-Ottens, C.: «Feuerwiderstandsdauer von Betonkonstruktionen, Betonfertigteil- und Mauerwerksbau». Betonwerk+Fertigteil-Technik 42 (1976) Nr. 6 und 7, S. 275–281 und 350–356
- [15] Kordina, K.: «Baulicher Brandschutz in Strassen- und U-Bahn-Tunnels». Bauingenieur 56 (1981) Nr. 5, S. 189-191
- [16] Peissard, G.: «Probleme der Brandsicherheit in Strassentunnels». Schweizer Ingenieur und Architekt, Heft 29, 1981, S. 648-650
- [17] Mettler, H.: «Brand im Strassentunnel Katastrophe oder beherrschbares Ereignis?». Schweizer Ingenieur und Architekt, Heft 50, 1980, S. 1301–1303