Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 100 (1982)

Heft: 24

Artikel: Geologie und Geotechnik

Autor: Keller, Franz / Schneider, Toni R.

DOI: https://doi.org/10.5169/seals-74820

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Geologie und Geotechnik

Von Franz Keller und Toni R. Schneider, Uerikon

Einleitung

Der Bau des Furka-Basistunnels brachte aus geologisch-geotechnischer Sicht eine Reihe neuer Erkenntnisse und Erfahrungen, über die hier berichtet wird. Bei der Beurteilung der folgenden Ausführungen ist zu berücksichtigen, dass in der Projektierungsphase des Bauwerkes aus den allseits bekannten Gründen der Einfluss des Geologen speziell auf die Linienführung und die sich insbesondere im Kostenvoranschlag niederschlagende Beurteilung des geotechnischen Verhaltens der einzelnen Gesteinsserien nicht in einem Masse erfolgen konnte, wie dies bei modernen Tunnelbauvorhaben in der Regel der Fall ist bzw. sein sollte.

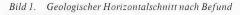
Die geologische Beratung der beiden Autoren beschränkte sich auf die Zeit nach Baubeginn. Als Grundlage für ihre Beurteilungen stand ihnen, neben Publikationen und eigenen Aufnahmen, vor allem die geologische Originalkartierung von Hafner (1975) im Massstab 1:10 000 für das geologische Atlasblatt 1251 «Val Bedretto», d.h. eine ausgesprochen moderne Geologie, zur Verfügung.

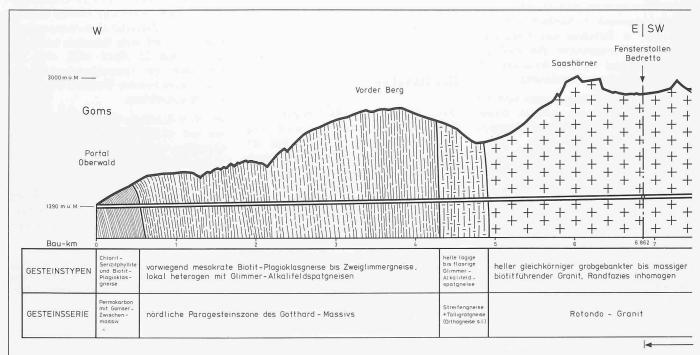
Mit dem Furka-Basistunnel wurde neben der Gotthard-Bahn- und dem Gotthard-Strassentunnel ein drittes mehr oder weniger vollständiges *Querprofil durch das Gotthard-Massiv* aufgeschlos-

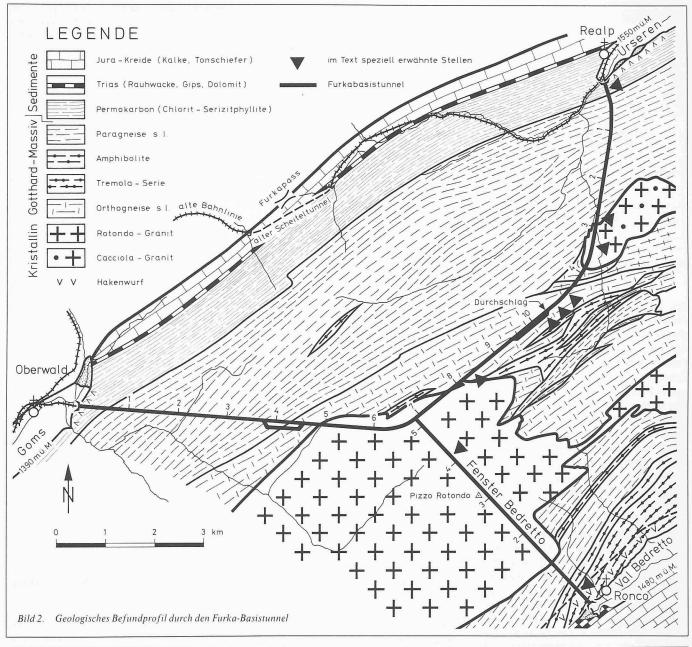
sen. Dies jedoch auf einem 300-400 m höheren Niveau. Es brachte dies mit sich, dass sich gewisse tektonische und neotektonische Einflussfaktoren mit allen ihren Konsequenzen in stärkerem Masse bemerkbar machten als in den beiden tiefer liegenden Tunnels. Ein Novum bildet ferner die erstmalige Durchfahrung des Rotondo-Granites. Die Linienführung des Tunnels, die durch ein starkes Südwärtsausbiegen von der direkten Verbindung der beiden Portale gekennzeichnet ist, liess ferner den starken Einfluss der Durchfahrungsrichtung des Hauptstrukturelementes von Gneisen, der Schieferung, erkennen. Im weiteren lieferte der Wechsel des Tunnelprofils von hufeisenförmig auf elliptisch bis kreisförmig interessante Hinweise über den Einfluss der Profilgestaltung auf die Ausbruchs- und Stabilitätsverhältnisse des neu geschaffenen Hohlraumes.

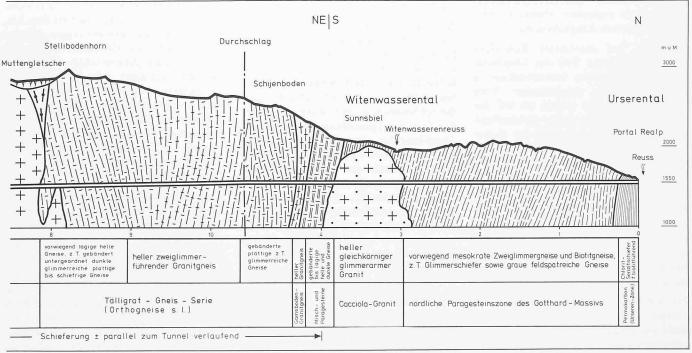
Neben einem generellen Überblick über die Geologie und die vorgefundenen geotechnischen Probleme sollen im folgenden eine Reihe von Einzelfragen beschrieben werden, die für die Verhältnisse im Furka-Basistunnel als charakteristisch bezeichnet werden können.

Geologische Übersicht


Der geologische Befund ist im geologischen Horizontalschnitt auf Projekthö-


he (Bild 1) sowie den Profilen durch den Tunnel (Bild 2) und das Fenster Bedretto (Bild 3) dargestellt. Aus ihnen geht hervor, dass sich der erfasste Gebirgsbereich tektonisch auf


- das Gomser Zwischenmassiv,
- das Permokarbon der Urseren-Zone und
- das Gotthard-Massiv


beschränkt, wobei die ersten beiden Elemente im weiteren Sinne zum Gotthard-Massiv gezählt werden. Wie aus dem Horizontalschnitt ersichtlich ist, streichen die Gesteinsserien generell alpin SW-NE. Das Einfallen der Schieferung ist durchwegs steil bis senkrecht. Diese Schichtlage und die - abgesehen von den Vergletscherungen - vorwiegend guten bis sehr guten Aufschlussverhältnisse erlauben unter Berücksichtigung der möglichen Streuungen eine Extrapolation der Oberflächengeologie auf das Tunnelniveau mit einer für Tunnelbauten ausreichenden Genauigkeit. Bei den vorliegenden Verhältnissen würden beispielsweise vertikale Sondierbohrungen in der gleichen Gesteinsserie verbleiben und somit kaum wesentliche Verbesserungen der Prognose ermöglichen. Die generelle Beurteilung anhand der Oberflächengeologie wurde in der Folge durch die Aufschlüsse im Tunnel bestätigt.

Von NW nach SE sind folgende Gesteinsserien am Aufbau des Gotthard-Massivs beteiligt: Noch ausserhalb des Tunnelbereichs liegen der Jura und die Trias der Urseren-Zone. Ihnen schliesst sich das Permokarbon an. Im Bereich

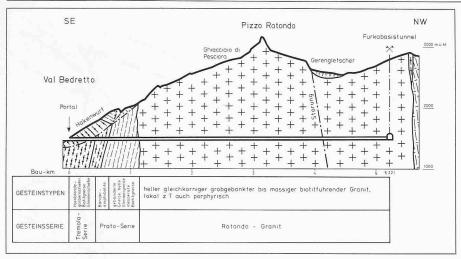


Bild 3. Geologisches Befundprofil durch den Fensterstollen Bedretto

des Fensters Oberwald ist dieses mit Gesteinen des Gomser Zwischenmassivs verschuppt. Das vorwiegend schiefrige bis phyllitische, teils auch gneisige Permokarbon wird zusammen mit der Trias und dem Jura zur postherzynischen Sedimenthülle des Gotthard-Massivs gezählt. Weiter SE-wärts folgt das Altkristallin des Massivs. Zuerst besteht dieses aus der nördlichen Paragneis-Zone. Sie setzt sich vorwiegend aus reglimmerreichen Biotit-Plagioklasgneisen bis Zweiglimmergneisen zusammen. Vereinzelt enthalten sie Einschlüsse von Amphiboliten. Der Glimmergehalt nimmt in SE-licher Richtung ab und es erscheinen Gesteine, die als Misch- und Orthogneise s.l. bezeichnet werden. Diese Zone umfasst vor allem die sogenannten Tälligrat-Gneise und Streifengneise, d.h. lagige bis gebänderte Gneise, Glimmer-Alkaund lifeldspatgneise helle glimmerführende Granitgneise. Diese glimmerärmeren quarzfeldspatreicheren Gneise enthalten ebenfalls Einschaltungen von Amphiboliten.

Mit zum Teil markanten Kontakten sind im zentralen Teil des Gotthard-Massivs herzynische Intrusivkörper in das Altkristallin eingeschaltet. Vom Tunnel angefahren wurde im NE der Cacciola-Granit, ein heller gleichkörniger, glimmerarmer Granit, der Gamsboden-Granitgneis, ein heller, gut gerichteter Granitgneis und als jüngster Intrusivkörper des Massivs der Rotondo-Granit, ein grob gebankter bis massiger biotitführender Granit.

Alle angeführten Gesteinsserien enthalten als basische Gänge Lamprophyre. Diese treten in den granitoiden Gesteinen und hellen Gneisen häufiger auf als in den glimmerreichen.

Für den Furka-Basistunnel ist charakteristisch, dass die Vortriebe von Oberwald und Realp in den bautechnisch ungünstigen schiefrigeren Randpartien des Gotthard-Massivs aufgenommen werden mussten. Hinzu kam in beiden Portalzonen, dass die oberflächennäheren Bereiche durch Hakenwurf entfestigt sind. Weiter gegen das Berginnere gelangten die Vortriebe in zunehmend kompaktere, bautechnisch günstigere Gesteine.

In der Gegend des Fensters Bedretto folgt SE-lich des Rotondo-Granites die südliche Paragneiszone des Massivs, die Prato-Serie. Sie besteht aus gebänderten Gneisen, hellen Glimmergneisen und mesokraten Biotitgneisen sowie im südlichen Teil aus Bänderamphiboliten. Weiter gegen das Val Bedretto schliesst die Tremola-Serie an. Sie besteht aus granatführenden Hornblendegarbenschiefern, Biotitgneisen und Glimmergneisen. Gleich wie die Vortriebe des Bahntunnels begann der Vortrieb des Fensters Bedretto unter anfänglich sehr schwierigen Bedingungen, die erst im Berginnern von zunehmend günstigeren Felsverhältnissen abgelöst wurden.

Alle beschriebenen Gesteinsserien erhielten ihre heutige Ausbildung im Laufe der alpinen Gebirgsbildung durch eine oder mehrere Metamorphosen. Erhöhte Drucke und Temperaturen führten zu Mineralneu- und -umbildungen, die schliesslich in den heute vorliegenden Gesteinstypen resultierten. In einer Spätphase der alpinen Gebirgsbildung wurde der zentrale Alpenraum, insbesondere jedoch das Gotthard-Massiv, nochmals ausgesprochen stark mechanisch beansprucht; dies jedoch ohne Temperaturerhöhungen, die Rekristallisationen ermöglicht hätten. Die Beanspruchungen hatten die Bildung von Klüften, Ruschelzonen, Zerrüttungszonen und eigentlichen Verwerfungen sowie lokalen Zertrümmerungen des Korngefüges zur Folge.

Im Furka-Basistunnel war deutlich zu erkennen, dass die allgemeinen Hebungstendenzen (nach Schaer und Jeanrichard (1967) etwa 1 mm/Jahr), die sich mit grosser Wahrscheinlichkeit seit dem Ende der eigentlichen alpinen orogenen Phase abspielen, im Felskörper zu einer stärkeren Entspannung führten. Dies konnte selbst in grösseren Tiefen beobachtet werden. So waren zweifellos kaum mehr tektonische Restspannungen im Felskörper zu erkennen, dessen Beanspruchung auf den Überlagerungsdruck normalen schränkt blieb. Es zeigte sich dies zum Beispiel auch darin, dass in beidseitig von festem Fels begrenzten Kernzonen von Ruschel- oder Zerrüttungszonen die zertrümmerten Felskomponenten mehr oder weniger locker in ihren eigenen oder eingeschwemmten tonigen Verwitterungsprodukten eingebettet vorgefunden wurden. Dieses weitgehende Fehlen von stärkeren Einspannungen war einer der Hauptgründe für die zahlreichen Niederbrüche im Zuge des Tunnelvortriebes.

Die Auswirkungen der Entspannung des Felskörpers und der teilweise hohe Wasseranfall, auf den in den folgenden Kapiteln eingegangen wird, waren in dem höher gelegenen Furka-Basistunnel ausgeprägter als in den entsprechenden Serien des tiefer liegenden Gotthard-Strassentunnels.

Generelle geotechnische Probleme

Allgemeines geotechnisches Verhalten der einzelnen Gesteinsserien

Abgesehen von den weiter hinten beschriebenen Spezialproblemen entsprach das geotechnische Verhalten der durchfahrenen Gesteinsserien den bisherigen Erfahrungen bei Untertagebauten im Aar- und Gotthard-Massiv. Es zeigte sich die übliche starke Abhängigkeit der Standzeit von der Festigkeit, die ihrerseits eng mit der Textur und dem Glimmeranteil verknüpft ist. Ferner war der Einfluss der Überlagerung sowie der Form und Lage des ausgebrochenen Hohlraumes bezüglich der Durchtrennung des Felskörpers deutlich zu erkennen.

Zwei allgemeine Phänomene, die für die örtlichen Verhältnisse typisch sind, verdienen eine besondere Erwähnung:

Im Permokarbon des Vortriebes Realp entstanden hinter der Einbaustrecke im Hakenwurf in den nach wie vor schiefrigen bis phyllitischen Gesteinen eine Reihe von Niederbrüchen, die jeweils nur mit grosser Mühe im Teilausbruch überwunden werden konnten. Felsmechanisch sind die Vorkommnisse so zu

erklären, dass die der Vortriebsbrust vorauseilende Deformation des Felskörpers in den an und für sich wenig festen Gesteinen längs den ausgeprägten Schieferungsflächen zu einer weitgehenden Festigkeitsreduktion und damit zu einer ausgedehnten Auflockerungszone führte. In den schwächsten, d.h. meist phyllitischen oder stärker verlehmten serizitreichen Serien, entstanden so, kaum waren sie vom Vortrieb durchfahren, Niederbrüche und in der Folge Kamine, die bis 11 m über den Tunnelscheitel hinausreichten. Die starke Störung des Felsverbandes und damit das Abfallen auf die Restfestigkeit hörte erst auf, nachdem rund 20 m mit einem starren, kräftigen, mit Beton hinterfüllten Stahleinbau vorgetrieben worden waren, der zu starke Deforma-

Im Rotondo-Granit erreicht die Überlagerung rund 1500 m. Es ist dies eine Grössenordnung, bei der in gesunden Graniten meist mehr oder weniger heftige Bergschläge in Form von spontanen, von einem Knall begleiteten, von den Wänden abspringenden Abplatzungen auftreten. Dieses Phänomen wurde im Rotondo-Granit höchst selten beobachtet. Die hohe Überlagerung machte sich hauptsächlich in Abschalungen, die einige Stunden bis Tage nach dem Auffahren einsetzten, bemerkbar. Der Ablösungsvorgang war höchstens von einem Knistern begleitet. Die einzelnen Gesteinsplatten fielen, sofern es überhaupt dazu kam, an den Fuss der Paramente. Diese milde Form des Bergschlages ist im Rotondo-Granit zweifellos auf die erwähnte star-

tionen vor der Brust verhinderte.

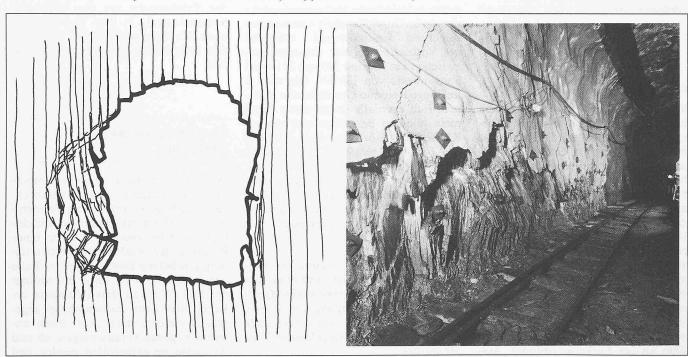
ke Durchtrennung infolge tektonischer Beanspruchung und die Entspannung des Massivkörpers zurückzuführen. Beide Faktoren verhinderten den Aufbau extremer Spannungsspitzen.

Einfluss der Schichtlage

Wie dem geologischen Horizontalschnitt (Bild 1) zu entnehmen ist, schneidet der Tunnel in den Losen Oberwald und Realp und im Fensterstollen Bedretto die steilstehende Schieferung grösstenteils günstig, d.h. unter Winkeln von mehr als 30°. Der ganze mittlere Tunnelabschnitt (Los Bedretto sowie hinterster Teil des Loses Realp) verläuft dagegen ungünstig mehr oder weniger parallel zur Schieferung (Schnittwinkel 0-20°). Der Mittelteil des Tunnels weist gleichzeitig die grösste Überlagerung auf. In ihm musste somit mit einer allgemeinen Reduktion der Standfestigkeit gerechnet werden. Die Parallelität von Schieferung und Tunnel wirkte sich jedoch nicht auf das gesamte Tunnelprofil aus. Beim Tunnelvortrieb wurde nämlich die Erfahrung gemacht, dass in den vorliegenden Gneisen die Standfestigkeit im Kalottenbereich kaum beeinträchtigt wurde (ausreichend eingespannte Schichten). In den Paramenten begannen dagegen die Schichtplatten gegen das Tunnelinnere auszuknicken; dies um so stärker, je dünnplattiger das Gestein war (Bild 4).

Im Extremfall kam es zu einem Verbruch der Paramente (Einbaustrecken bei Tm 8500 und Tm 8900 des Loses Bedretto). Die Strecken mit schieferungsparallelem Verlauf des Tunnels erfor-

derten deshalb im Bereich der Paramente, verglichen mit den mehr querschlägig durchfahrenen Strecken, allgemein einen erhöhten Sicherungsaufwand (vorwiegend Ankerung und armierter Spritzbeton, lokal Stützringe oder Einbau).


Der schieferungsparallele bis spitzwinklige Verlauf des Tunnels bei hoher Überlagerung war einer der massgebenden Gründe dafür, dass zuerst im Los Realp, später auch im Los Bedretto vom ursprünglichen bahntechnisch vorgegebenen Hufeisenprofil zu einem statisch günstigeren elliptischen bzw. kreisförmigen Profiltyp übergegangen wurde.

Etwas günstiger als die schiefrigen Gesteine verhielten sich in dieser Zone die grobgebankten granitischen Typen, in denen oft Platten nur angerissen wurden, ohne dass sie niederbrachen. Es war aus diesem Grunde eine erfreuliche Überraschung, als im Mittellos neben dem Rotondo-Granit innerhalb der Tälligratgneisserie ein weiterer gebankter bis grobgebankter Granitgneis angetroffen wurde. Er erstreckte sich von Tm 8970 bis 10370, d.h. über eine Länge von 1400 m. Der Granitgneis ermöglichte es, die Doppelspurstrecke des Loses Bedretto ohne spezielle Schwierigkeiten im Vollausbruch aufzufahren.

Hakenwurf

Die Erscheinung, dass steilstehende plattige bis gebankte Gesteinsserien bei hangparallelem Streichen paketweise gegen aussen in eine flache Lage kippen, was als Hakenwurf bezeichnet wird, ist in den Längstälern des Urseren-

Bild 4. Ausknicken der Gneisplatten in den Paramenten bei schieferungsparallelem Tunnelverlauf

tals, des Goms und des Bedrettotals weit verbreitet. Tunnelbautechnisch führt die Auflockerung des Gebirges, die bis zu einer Auflösung in Einzelblöcke gehen kann, zu einer erheblichen Reduktion der Standfestigkeit.

Aufgrund der geologischen Situation musste in allen drei Portalzonen Hakenwurf durchfahren werden. Während diese Zone in Oberwald und Realp mit 50 m relativ kurz war, wurde im Fenster Bedretto ein ausserordentlich tiefgreifender Hakenwurf angetroffen. Bis Tm 357 fallen die Schichten mit 40-60° bergeinwärts, dann erfolgt an einer scharfen Ablösungsfläche der Übergang zu steilem Südfallen (Bild 3). Die Ablösungsfläche fällt mit 30° talwärts. Der Tiefgang des Hakenwurfs ist deshalb so bemerkenswert, weil das Stollenportal praktisch auf der Höhe des heutigen Talbodens liegt und die Grenzfläche zwischen Hakenwurf und gesundem Fels dort in einer Tiefe von 150-200 m liegen muss.

Als geologische Ursachen für den tiefgründigen Hakenwurf im Bereich des Fensters Bedretto kommen zwei Faktoren bzw. ihre Kombination in Frage:

- Im Bereich des Talbodens sind morphogenetisch wenig widerstandsfähige Gesteine vorhanden (Trias, Bündnerschiefer), so dass die Möglichkeit einer glazialen Übertiefung gegeben
- Die Trias besteht zu einem guten Teil aus Rauhwacke. Sondierbohrungen längs der Furkastrasse sowie die Tunnelaufschlüsse im Gotthard-Strassentunnel haben gezeigt, dass in Gebieten mit oberflächlich anstehender Rauhwacke in der Tiefe immer Gips vorhanden ist, d.h. die Rauhwacke entstand durch die Auslaugung von dolomitführendem Gips. Die damit verbundene Volumenreduktion könnte den für den Hakenwurf notwendigen Raum geschaffen haben.

Wasseranfall

Das Gotthard-Massiv wird im Bereich des Furka-Basistunnels sowohl im Norden wie im Süden durch Paragneise und Schiefer begrenzt. Es sind dies Gesteine, die allgemein eine eher geringe Durchlässigkeit aufweisen. Sie verhalten sich zudem bezüglich der Durchlässigkeit anisotrop, indem sie quer zur Schieferung schlechter durchlässig sind als parallel dazu. Im Zentrum des Massivs finden sich dagegen geklüftete granitische Gesteine, die besser durchlässig sind und zudem aufgrund ihres Klufthohlraums ein gewisses Speichervermögen besitzen. Die beiden als natürliche Vorfluter wirkenden Quertäler, das Witenwasserental und das Gerental, liegen höher als der Furka-Basistunnel. Auf-

grund dieser generellen hydrogeologischen Situation mit einem von wenig durchlässigen Schiefern und Gneisen eingeschlossenen Speichergestein, musste in den zentralen Teilen des Massivs mit einer Drainagewirkung des Furka-Basistunnels und einem entsprechend erhöhten Wasseranfall gerechnet werden. Dies betrifft vor allem die granitischen Körper des Cacciola-Granits und des Rotondo-Granits sowie die granitischen Gneise innerhalb der Ortho- und Mischgesteinszone. In diesem Zusammenhang fällt auf, dass die entsprechenden Oberflächengebiete deutlich weniger Oberflächengewässer aufweisen als die Zonen mit Paragneisen und Permokarbon.

Tatsächlich war im Los Realp der Wasseranfall bereits auf den ersten 500 m des Cacciola-Granits grösser als auf der gesamten 3000 m langen vorangegangenen Strecke in den Paragneisen und im Permokarbon. Bis zum Durchschlag erreichte die gesamte Bergwasserführung 150-180 1/s, eine Wassermenge, die seither im Rahmen der saisonalen Schwankungen unverändert blieb.

Im Los Oberwald stieg die Wassermenge nach dem Anfahren des Rotondo-Granits von 10-15 1/s bis auf 63-66 1/s an. Im Mittellos Bedretto betrug der Wasseranfall rund 60-80 1/s (März 1981); er war während des Vortriebs zeitweise höher. Durch das Entleeren von wasserführenden Klüften erreichte die im Vortriebsbereich anfallende Wassermenge kurzfristig zusätzlich 20-30 l/s. Eine 1981 durchgeführte Einzelmessung beim Portal Oberwald ergab eine Gesamtwassermenge inklusive Brauchwasser von 240 1/s.

Im Fensterstollen Bedretto besitzt die ganze aufgelockerte Hakenwurfstrecke eine hohe Durchlässigkeit und war entsprechend wasserführend. Während des Vortriebs stieg der Gesamterguss zwischen Tm 180 und 360 von 15 1/s auf Spitzenwerte von 130 1/s. Die rund 4 km lange Rotondo-Granitstrecke zeichnete sich ebenfalls durch einen allgemein höheren Bergwasserandrang auf Klüften und Störungen aus. Allein in der Zone zwischen Tm 2815 und 2850 wurden unmittelbar nach dem Vortrieb Spitzen von bis zu 57 1/s gemessen. Heute fliessen beim Portal des Fensterstollens 90-100 1/s aus, mit Spitzenwerten (Schneeschmelze, Starkregen), von bis zu 140 1/s.

Durch die Drainagewirkung des Fensterstollens versiegten während des Durchörterns des Hakenwurfes Quellen der Wasserversorgung von Ronco. Die Gemeinde wird aus diesem Grunde bis heute mit im Stollen gefasstem Wasser versorgt.

Temperaturen

Die Berechnung der voraussichtlichen Felstemperaturen nach dem von Andreae (1958) beschriebenen Verfahren von Köngisberger und Thoma ergab zu erwartende Maximaltemperaturen von 37,5 °C bei Tm 3100 des Fensterstollens Bedretto (unter dem Pizzo Rotondo) und 33,2 °C im Mittellos. Den Berechnungen lag ein aus den Daten des Gotthard-Bahntunnelbaus für das Gotthard-Massiv ermittelter Gradient von 0,028 °C/m zu Grunde.

Im Fenster Bedretto durchgeführte Felstemperaturmessungen zeigten einen Anstieg von 8°C bei Tm 200 auf 18°C bei Tm 2300. Bis zum Einstellen der Messungen bei Tm 4200 schwankte die Felstemperatur zwischen 18 und 19 °C.

Im Tunnel kann aus den Bergwassertemperaturen geschlossen werden, dass die Temperatur des Gesteins 22° im Los Realp und 21° im Los Bedretto nicht überschritt. Die Temperaturen lagen somit noch in oder nahezu in der Behaglichkeitszone (Suva, Merkblatt 1974.d.), was die schweren körperlichen Arbeiten im Tunnel wesentlich erleichterte. Bezüglich der Baukosten ist zu bemerken, dass damit wesentliche Auslagen für eine Klimatisierung der Arbeitsstellen eingespart werden konn-

Das Nichterreichen der prognostizierten hohen Werte dürfte vor allem auf Faktoren wie starkes Gebirgsrelief und damit Temperaturausgleich auf tieferem Niveau, Vergletscherung, zirkulierende Gebirgswässer sowie eventuell einen anderen Temperaturgradienten als im Gotthard-Bahntunnel zurückzufiihren sein

Die Beobachtungen entsprechen jedoch den Erfahrungen aus dem Gotthard-Strassentunnel, in dem ebenfalls die nach den Berechnungen zu erwartenden Temperaturen nicht erreicht wur-

Spezielle geotechnische Probleme

Während sich das allgemeine geotechnische Verhalten von zu durchfahrenden Schichtserien anhand der Petrographie, Trennflächenverhältnisse, Schichtlage und Überlagerung in Form einer Prognose der Ausbruchsklassenverteilung abschätzen lässt, ist dies im Falle von Störungen in der Regel nur bedingt der Fall. Wohl ist deren Existenz bekannt und kann zahlenmässig abgeschätzt werden, doch ist es meist unmöglich, genau vorauszusagen, ob und wo genau sie angetroffen werden und

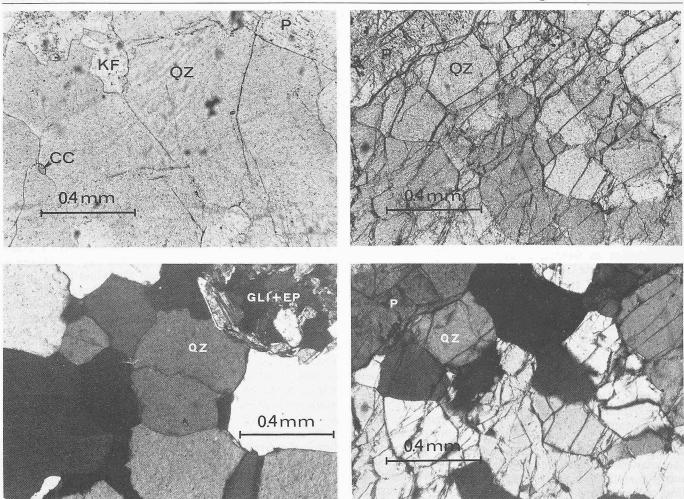


Bild 5. Dünnschliffphotos von gesundem (links) und desaggregiertem entfestigtem Cacciola-Granit (rechts) im Durchlicht (obere Reihe) und in polarisiertem Licht (X Nicols, untere Reihe). QZ: Quarz, KF: Kalifeldspat, P: Plagioklas, CC: Kalzit, GLI + EP = Glimmer+Epidot.

Vergrösserung: rund 60fach (Dünnschliffe Nat. Museum Bern, Prof. Stalder)

wie sie sich im einzelnen beim Durchörtern verhalten.

Geologische Faktoren bei Störungen

Störungen des normalen Felsverbandes waren im Furka-Basistunnel die Ursache von mehreren Niederbrüchen oder von geotechnisch schwierigen Strecken. Meistens war eine Kombination der folgenden vier geologischen Faktoren die Ursache der Schwierigkeiten:

- Lamprophyre,
- junge Störungen,
- desaggregierte Gesteine,
- Wasseranfall.

Lamprophyre

Lamprophyre sind dunkle Gangesteine. Sie entstanden durch Intrusion eines basischen Magmas in vorhandene Klüfte und Störungen. Im Gotthard-Massiv sind sie vor allem in den granitischen Gesteinen verbreitet. Die ursprünglich massigen Gangesteine wurden im Zuge der alpinen Orogenese in unterschiedlichem Ausmass verschiefert. Die querschlägig oder schief zum alpinen Streichen verlaufenden Lamprophyre haben ihre massige Struktur weitgehend beibehalten und sind mit

dem Nebengestein fest verbunden. Die parallel zur alpinen Schieferung streichenden Lamprophyre wurden im Gegensatz dazu als mechanisch schwächstes Glied des Felsverbandes häufig von Bewegungen erfasst und in dünnblättrige Biotitschiefer umgewandelt. Die Grenzfläche zum Nebengestein fühlt sich in diesen Fällen oft seifig an und besitzt eine geringe Festigkeit. Aus diesem Grunde verhielten sich die schieferungsparallelen Lymprophyre geotechnisch generell ungünstig und waren sowohl im Gotthard-Strassentunnel wie auch im Furka-Basistunnel die Ursache von Niederbrüchen.

Junge Störungen

Zonen, längs denen der Gesteins- und Gefügeverband gestört ist, wirken sich bautechnisch besonders dann negativ aus, wenn sie «jung», d.h. rezent und nicht verheilt sind und damit keine echte Kohäsion aufweisen. Derartige junge Störungen, die z.T. eiszeitliche Moränen verstellt haben, sind im Bereich der Zentralalpen durch die Arbeiten von Eckardt (1957) und Jäckli (1951) bekannt geworden. Sie stehen mindestens zum Teil im Zusammenhang mit Hebungstendenzen, die in

jüngster Zeit auch geodätisch nachgewiesen wurden (Schaer und Jeanrichard [1967]). An der Oberfläche sind die wenig erosionsresistenten Störungen meist unter Schutt verborgen und treten morphologisch als Runsen, Nackentäler und Senken sowie Schutt- und Vegetationsstreifen in Erscheinung. Eine mit Feldaufnahmen verbundene photogeologische Auswertung des zentralen Teils erbrachte den Nachweis, dass im Bereich des Furkatunnels mehrere derartige Störungen vorkommen.

Im Tunnelaufschluss zeigte es sich, dass der von der Bewegung erfasste Bereich von einer glatten, mm-mächtigen Harnischfläche bis zu einer verlehmten Zone von einigen dm Mächtigkeit variieren kann. Ferner war zu beobachten, dass die Störungen sehr oft an das Vorkommen eines schiefrigen Lamprophyrs gebunden sind. Die Bewegungen, die zur Bildung der jungen Störungen führten, erfolgten somit häufig entlang bereits vorgezeichneten mechanischen Schwächezonen des Gebirgskörpers.

Desaggregierte Gesteine

Im Los Realp war der Cacciola-Granit im Bereich von Störungen ausgebleicht,

d.h. weisslich verfärbt. Bei Tm 3385 (Niederbruch, siehe unten) konnte im Aufschluss festgestellt werden, dass die mittelgrossen Mineralkörner in ihrer ursprünglichen Grösse und Anordnung vorliegen und den Anschein eines völlig intakten Gesteinsgefüges erwecken. Das Gestein als Ganzes ist in diesem Falle eindeutig nicht durchbewegt, d.h. es handelt sich nicht um Mylonite im eigentlichen Sinne. Das bröckelige Gestein kann jedoch ohne weiteres von Hand zu Silt bis Sand zerrieben werden. Eine Korngrenzenbindung ist offensichtlich nicht mehr vorhanden. Der Kornverband ist desaggregiert, ähnlich wie dies bei der Verwitterung von Graniten zu Granitgrus der Fall ist. Das ausgelaugte Gestein glich somit dem Vorkommen eines hydrothermal zersetzten Granits im Gotthard-Strassentunnel (km 2,309 Los Nord), bei dem der Quarz vollständig ausgelaugt war und als sekundärer Hauptgemengteil Laumontit auskristallisierte. Aus chemischen Vergleichsanalysen ging hervor, dass im Falle des ausgebleichten Cacciola-Granits des Furka-Basistunnels kein signifikanter Materialabtransport stattfand (Bild 5).

Im Dünnschliffbild zeigt der gesunde Cacciola-Granit neben den bis mehrere mm grossen Feldspaten ein schönes alentstandenes granoblastisches Quarzgefüge (Bild 5c). Ebenfalls auf die alpine Metamorphose zurückzuführen ist das nesterweise Vorkommen von feinschuppigen Glimmern (grüner Biotit, Serizit, Chlorit) und Epidot sowie z.T. Granat und Kalzit. Im desaggregierten Granit sind im wesentlichen die gleichen Mineralgemengteile vorhanden. Das Gestein ist jedoch intensiv von Rissen durchzogen (Bilder 5b und 5d) und zwar sind bemerkenswerterweise auch die einzelnen Mineralkörner bis in den 0,01-mm-Bereich zerbrochen, wobei die Hauptgemengteile kaum Bewegungsspuren aufweisen. Die Biotite sind dagegen stark verbogen und z.T. in Chlorit, die Muskowite in ein feinschuppiges wirres Serizitgemenge umgewandelt. Der Kalifeldspat ist stärker bestäubt als im gesunden Gestein. Längs durchgehenden diskreten Scherflächen finden sich feine opake Körnchen (Erz). Das Ganze sieht aus wie ein eingeschlagenes Sicherheitsglas, d.h. der Betrachter erhält den Eindruck eines schockartig bis in den 0,01-0,1mm-Bereich zertrümmerten Gesteins, dessen Korngefüge jedoch nicht durchbewegt wurde (Kataklase).

Bei anderen Störungen zeigten gekernte Sondierbohrungen, dass zersetzte weissliche Gneise auch porös und löcherig sein können. In diesen Fällen waren hydrothermale Lösungsvorgänge an der Ausbildung des heutigen Ge-

steinszustandes mitbeteiligt.

Bei einem weiteren Typ von postmetamorphen Störungen geht die steilstehende Schieferung der Gneise knickartig in eine anormale flache Lagerung über. Im ganzen anormal gelagerten Bereich ist das Gestein bröckelig, chloritisiert und lehmig zersetzt.

Wasseranfall

Im Bereich der Störungen mit ihrem zerbrochenen, zerrütteten und z.T. auch porösen Gestein sind sowohl die Wasserwegsamkeit wie das Speichervermögen gegenüber dem Nebengestein erhöht. Die steile bis senkrechte Lage der meist im allgemeinen Streichen verlaufenden Störungen führte im Falle eines Anfahrens durch den Tunnel zu einer bis in den Oberflächenbereich wirkenden Drainage des Gebirges. Dies äusserte sich z.B. in einer gegenüber benachbarten Stollenquellen z.T. um 1-2 °C tieferen Wassertemperatur. Im zentralen Teil des Massivs, d.h. ab Beginn Rotondo-Granit bzw. Cacciola-Granit, zeichneten sich die meisten Störungen sowie jene Lamprophyre, deren Begleitgestein stärker geklüftet ist, durch einen grossen Wasserandrang aus, der bis zu eigentlichen Wassereinbrüchen reichte. Spektakulär war in dieser Hinsicht z.B. ein 30 cm mächtiger schiefriger, weicher Lamprophyr bei Tm 10166 des Loses Bedretto, bei dem das strömende Wasser (5-10 1/s) innerhalb von zwei Wochen eine 2 m tiefe Rinne in das Parament erodierte.

Spezielle Vorkommnisse beim Vortrieb

Niederbruch Tm 4130, Fensterstollen Bedretto

Bei Tm 4130 stiess der Vortrieb des Fensterstollens im Rotondo-Granit auf eine Störung, die einen quer zum Stollen streichenden schiefrigen Lamprophyr begleitet. Das Gestein bestand in der Störzone aus einem in eine sandiglehmige Matrix eingebetteten Blockwerk mit Blöcken von bis zu 3 m³ Grösse. Durch einen starken Wasseranfall (etwa 20 1/s) wurden die Feinanteile ausgeschwemmt und das Material dadurch kohäsionslos. Da der die Störung begrenzende Granit standfest war, wurde - als einfachste Lösung - vorerst versucht, die Störung auszubaggern, ein Experiment, das nach 3tägigem Schottern aufgegeben werden musste. In einer nächsten Phase begann die Unternehmung die Niederbruchstrecke mit einem Einbau bei vollständigem Brustverzug zu durchörtern. Bei Tm 4133 blieb der Vortrieb infolge des ständigen

hohen Wasserandranges und der einsetzenden Deformationen des Einbaus stecken.

Mit einem als Drainagestollen geplanten Umgehungsstollen auf der Ostseite sollte das Gebirge im Bereich der Störzone entwässert werden. Obwohl die Distanz zum Hauptstollen nur 9 m betrug, stiess der Vortrieb des Umgehungsstollens in der entsprechenden Zone auf keine ausserordentlichen Schwierigkeiten. Zwar waren die drei angetroffenen 0,6-3 m mächtigen Lamprophyre verlehmt und zerdrückt und der Granit z.T. in dm grosse Kluftkörper zerlegt, so dass die Strecke von Tm 4126,5-4141 eingebaut werden musste. Die Bergwasserführung beschränkte sich jedoch auf Nässe und Tropf. In der Folge wurde darauf verzichtet, eine Durchörterung in der ursprünglichen Achse zu erzwingen und der Vortrieb in der Achse des Umgehungsstollens fortgesetzt.

Geologische Ursachen des Niederbruches waren in diesem Beispiel die an einen Lamprophyr gebundene junge postalpine Störung und vor allem der hohe Wasserandrang. Die Störung konnte mittels Luft- und Satellitenphotos vom oberen Gerental über Witenwasserenpass, Sattel zwischen Siwerbenhorn und Stegenhorn, Lago di Lucendro, Furche nördlich Mottolone bis auf die Höhe der Einbruchstelle Gotthard-Strassentunnel – Sunnig Lücke verfolgt werden. Weiter gegen Osten wird der Verlauf unsicher.

Niederbruch bei Tm 3385, Los Realp

Bei Tm 3385 ereignete sich im Zusammenhang mit einer jungen unverfestigten Störung im Cacciola-Granit, verbunden mit schiefrigen Lamprophyren, desaggregiertem Gestein und zusickerndem Wasser, ein Niederbruch, dessen Bewältigung rund ein halbes Jahr in Anspruch nahm.

Nach dem Antreffen einer quer zum Tunnel streichenden glatten Harnischfläche sowie desaggregiertem Granit mit einem verschieferten Lamprophyr auf der linken Tunnelseite war die Unternehmung daran, den Tunnelausbruch mit Stahleinbau zu sichern, als am 30. Juni 1977 Niederbrüche einsetzten. Sie weiteten sich rasch rückwärts bis Tm 3376 aus, wobei durch das niederbrechende, den Tunnel füllende Material drei bereits gestellte Stahlbogen zerstört wurden. Kurzzeitig konnte ein mehr als 8 m hoher Kamin beobachtet werden. Erschwerend wirkte sich aus, dass das ursprünglich trockene Material sich nach fünf Tagen zu durchnässen begann. Der Wasserandrang stieg in der Folge auf 9-12 1/s an. Das Ausspülen der Feinanteile aus dem

Niederbruchmaterial führte in Verbindung mit dem ständig nachströmenden Wasser zu einem kohäsionslosen «schwimmenden» Gebirge.

Ein erster Versuch, die Niederbruchstrecke mit einem Firststollen zu überwinden, musste aufgegeben werden, nachdem dieser 50 cm tief in das liegende kohäsionslose Niederbruchmaterial niedergedrückt worden war. In der Folwurde das lockergesteinsartige Niederbruchmaterial ausinjiziert und das über dem injizierten Bereich liegende Gebirge mit Drainagebohrungen entwässert. Anschliessend konnte der Ausbruch zweiphasig (Kalotte/Strosse) wieder in Angriff genommen werden. Eine vorgängig ausgeführte horizontale Kernbohrung ergab eine Länge der gebrächen Zone von rund 40 m.

Weitere geotechnisch schwierige Strecken

Im Los Realp war bei Tm 2800 eine in den Paragneisen liegende Störzone durchfahren worden, die geologisch vor allem deshalb bemerkenswert ist, weil das Gestein auf einer Länge von 33 m anormal flach gelagert ist. Es besteht in dieser Zone aus Gneisen und Glimmerschiefern mit Linsen von bröckeligem Quarz. Das von Hand zerreibbare Gestein ist chloritisiert und stark verlehmt. Es konnte deshalb mit dem Spitzhammer abgebaut werden. Der geringe Wasseranfall erlaubte einen Vortrieb mit Stahleinbau im Vollprofil. Die starken und z.T. nach einem Jahr immer noch anhaltenden Verformungen des hufeisenförmigen Einbaus mit Konvergenzen bis zu 35 cm erforderten einen Ersatz durch einen mit Spritzbeton verstärkten elliptischen Einbau.

Nach dem schon geschilderten Niederbruch bei Tm 3385 traf der Vortrieb des Loses Realp noch mehrmals auf grössere Störungen, die z.T. weitere Niederbrüche zur Folge hatten. Solche mit einem Ausmass, das zu einem längeren Vortriebsstillstand geführt hätte, konnten jedoch aufgrund der gewonnenen Erfahrungen und dank sorgfältigem Vorgehen vermieden werden. Mit zu den Vorsichtsmassnahmen gehörten unter anderem bis zu 97 m lange horizontale Kernbohrungen, die erlaubten, die Länge von gebrächen Zonen abzuschätzen.

In dem auf den Cacciola-Granit folgenden Abschnitt biegt der Tunnel zusehends in eine schieferungsparallele Lage ein (Schnittwinkel Tunnelachse/ Schieferung 5-35°). Schieferungsparallele Störungen und verschieferte Lamprophyre blieben somit über längere Strecken im Tunnelprofil. Aus diesem Grunde musste z.B. die Strecke von Tm 4502-4670 praktisch durchgehend eingebaut werden. Ursache waren schieferungsparallele Lamprophyre, begleitet von Störungen, und z.T. anormale flache Lagerung mit porösem entfestigtem Gestein, dies bei ständigem Wasserandrang. Niederbrüche ereigneten sich dabei bei Tm 4512 und 4578. Der letztere war mit einem Wassereinbruch von 200 l/s verbunden, der innerhalb von fünf Tagen auf 120 l/s zurückging. Die Niederbruchzone eigentliche einem 3-4 m hohen Kamin konnte mit Sika-Shot so lange konsolidiert werden, bis der Einbau erstellt war.

Dass ausgerechnet im Bereich des Durchschlages, d.h. ab Tm 4810 auf Seite Realp und ab Tm 10314 auf Seite Oberwald, wieder gebrächer Fels angetroffen wurde, ist auf eine weitere schieferungsparallele Störung mit brökkeligem, zersetztem Fels und örtlich hohem Wasserandrang zurückzuführen. Die Situation veranlasste die Bauleitungen, das restliche Teilstück von beiden Seiten her mit einem Firststollen aufzufahren. Der Durchschlag zwischen Los Bedretto und Los Realp erfolgte deshalb in diesem Firststollen. Geotechnisch hatte das späte Antreffen einer ausgedehnten Störung zur Folge, dass mit dem Ausbau nicht bis zu einem vollständigen Abklingen der Bewegungen abgewartet werden konnte. Es bedingte dies, dass der definitive Ausbau entsprechend dimensioniert werden musste.

Ausbruchsklassen

Aus den geologischen Faktoren, wie Petrographie, Durchtrennungsverhältnisse, Lage der Trennfläche, Zahl und Ausmass der Störungen und Überlagerung, sowie aus technischen Faktoren, wie Ausbruchsquerschnitt, Profilgestaltung, vorhandene Vortriebsinstallatio-

nen und evtl. unternehmerische Einflüsse (Präferenz einer bestimmten Sicherungsart oder eines bestimmten Vorgehens), resultieren die Ausbruchsklassen. Im Falle des Furka-Basistunnels entspricht die sechsstufige Klassierung weitgehend der Norm SIA 198. In Abweichung von der Klassifikation im Gotthard-Strassentunnel (Schneider, T.R. [1980]) fällt neben dem Stahleinbau auch ein armierter oder nicht armierter Spritzbeton in die Klasse IV, falls der Aufwand ein gewisses Mass überschreitet und die erreichte Stützwirkung im Bereich jener eines Stahleinbaus liegt.

Die in Tabelle 1 zusammengestellte, nach den verschiedenen Gesteinsserien Ausbruchsklassenverteigegliederte lung spricht weitgehend für sich. Insbesondere kommen folgende Abhängigkeiten von geologischen Faktoren klar zum Ausdruck:

- Der Einfluss der Petrographie bei gleicher Schichtlage und ähnlicher Überlagerung geht aus dem Vergleich Permokarbon-Paragneise der Lose Oberwald und Realp hervor. Während im Permokarbon 50 bzw. 36% in die leichteren Ausbruchsklassen I bis III fallen, macht deren Anteil in den Paragneisen 98% bzw. 85%
- Der Einfluss der Schichtlage zeigt sich sowohl bei den Ortho-Mischgneisen wie beim Rotondo-Granit, wenn das Los Oberwald (querschlägig) mit dem Los Bedretto (parallel) verglichen wird. Beide wurden zudem vom gleichen Unternehmer mit gleichen Installationen ausgeführt. Während bei querschlägigem Tunnelverlauf in den Gneisen 25% und im Rotondo-Granit sogar 45% der Strecke aus standfestem bis leicht gebrächem Gestein bestand (Klassen I und II), war dies bei schieferungspar-

Tabelle 1. Ausbruchsklassenverteilung

Gesteinsserie (Ausbildung)	Los	Länge (m)	∢ zu S (°)	Anteile der Ausbruchsklassen (%)					
		(111)		I	II	III	IV	V	VI
Permokarbon*	Oberwald	542	30-45	44	_	16	40	_	-
(schiefrig-plattig)	Realp	248	50-90	-	11	25	33	31	-
Paragneise	Oberwald	3758	40-60	38	33	27	2	-	-
(plattig - dünn gebankt)	Realp	2710	40-60	10	21	54	11	4	0,2
Ortho-Mischgneise	Oberwald	610	35-50	5	20	36	33	6	-
(grob gebankt - schiefrig)	Bedretto	2566	0-20	_	_	24	72	4	-
	Realp	536	5-35	-	-	48	37	7	8
Cacciola-Granit	Realp	882	40-60	-	9	61	20	1	9
(massig, intensiv geklüftet)									
Rotondo-Granit	Oberwald	1952	40-50	13	32	49	5	1	-
(massig - gebankt)	Bedretto) -	998	0-20	-	2	87	11	-	-
	Bedretto 3	4076	50-90	95	1	2	1	1	-
Tremola- und Prato-Serie	Bedretto a	786	60-90	94	-	5	1	_	-
(schiefrig - gebankt) Tremola-Serie, Hakenwurfzone (schiefrig-gebankt, aufgelockert)	Bedretto Bedretto Bedretto	357	60-90	-	-	4	59	37	-

^{*} inklusive verschieferte Gesteine des Gomser Zwischenmassivs

- allelem Tunnelverlauf in den Gneisen, trotz vorwiegend günstigerem rundem Profil, überhaupt nicht und im Rotondo-Granit nur noch bei 2% der Strecke der Fall.
- Der grösste Unterschied besteht aufgrund des unterschiedlichen Ouerschnittes zwischen den querschlägig zur Schieferung verlaufenden Rotondo-Granitstrecken des Fensterstollens Bedretto (8 m² Ouerschnitt) und des Tunnels im Los Oberwald (26 m² Querschnitt). Im Fensterstollen wurden 95%, im Tunnel lediglich 13% in der Klasse I aufgefahren.
- Ebenfalls augenfällig ist die Auswirkung des Hakenwurfs auf die Standfestigkeit beim Fensterstollen Bedretto, wo im gesunden Fels 94% der Strecke in die Klasse I fallen, im Hakenwurf dagegen 96% in die Klassen IV und V.

Zusammenfassung

Der Furka-Basistunnel durchörtert kristalline Gesteine des Gotthard-Massivs: Schiefer, Paragneise, Orthogneise und Granite. Während ein Teil der geotechnischen Schwierigkeiten aufgrund der

geologischen Situation zu erwarten und in ihrem Ausmass abschätzbar war (Schiefer des Permokarbons, Hakenwurf, schieferungsparalleler Verlauf des Tunnels), konnte bei Störungen im Felsverband die Ausbildung, das genaue Antreffen und vor allem die Auswirkung auf den Tunnelvortrieb nie exakt vorausgesagt werden. Ein Musterbeispiel für das unterschiedliche und nicht im Detail prognostizierbare Verhalten war die querschlägige Störung bei Tm 4130 des Fensterstollens Bedretto. Sie verursachte in der Achse des Stollens einen schweren Niederbruch und konnte in einem nur 9 m entfernten Umgehungsstollen ohne spezielle Schwierigkeiten durchfahren werden. Bei jungen und daher nicht verheilten Störungen, deren Auftreten in weitgehend entfestigtem Zustande für das durchfahrene Gebirge geradezu als charakteristisch bezeichnet werden darf, führte das Zusammenwirken von Bewegungsfläche, schiefrigen Lamprophyren, desaggregiertem entfestigtem Gestein und hohem Wasserandrang zu erheblichen Schwierigkeiten beim Vortrieb und z.T. zu schwerwiegenden Niederbrüchen. Probleme ergaben sich auch aufgrund der langanhaltenden Deformationen im Bereich dieser Stö-

Literatur

Andreae C. (1958): «La prévision des températures souterraines». Annales des Ponts et Chaussées, 1958, Nr. 1

Eckardt P. (1957): «Zur Talgeschichte des Tavetsch, seine Bruchsysteme und jungquartären Verwerfungen». Diss. Univ. Zürich Hafner S. et al. (1975): «Geologischer Atlas

der Schweiz, Blatt Nr. 1251 Val Bedretto (Atlasblatt 68)». Schweiz. Geol. Kommission Jäckli H. (1951): «Verwerfungen jungquartä-

ren Alters im südlichen Aarmassiv bei Somvix-Rabius». Eclogae geol. Helv., 44/2

Schaer J.P. et Jeanrichard F. (1967): Mouvements verticaux anciens et actuels dans les Alpes suisses». Eclogae geol. Helv., 67/1

Schneider T.R. (1980): «Vergleich der Ausbruchsklassen im Sicherheitsstollen und Strassentunnel, Los Nord Gotthard-Strassentunnel», Schweiz, Ing. Architekt, 50/80

rungen. Als positiv kann andererseits gewertet werden, dass die Felstemperatur in Abweichung zur Prognose 20-22° nicht überschritt und das Antreffen eines grobbankigen Granitgneises das Auffahren der östlichen Doppelspurstrecke im vollen Profil erlaubte.

Adresse der Verfasser: Dr. F. Keller und Dr. T.R. Schneider, Büro Dr. T.R. Schneider, Beratender Geologe, Rütihofstr. 53, 8713 Uerikon.