Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 100 (1982)

Heft: 14

Artikel: Rotoren von Strömungsmaschinen: Kraft und Schönheit

Autor: Müller, Ulrich

DOI: https://doi.org/10.5169/seals-74786

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Rotoren von Strömungsmaschinen: Kraft und Schönheit

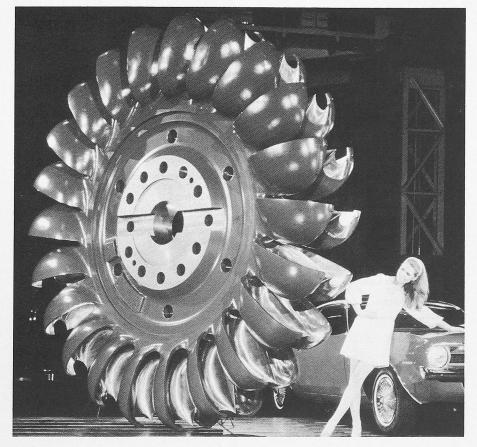
Von Ulrich Müller, Winterthur

Strömungsmaschinen (Turbomaschinen) der verschiedenen Arten und für die verschiedensten Anwendungen haben viel Gemeinsames. Diese Zusammenstellung soll dazu einen interdisziplinären Beitrag bilden.

Seit einiger Zeit wird bei Sulzer, Winterthur, viel über das Design von Maschinen diskutiert. Design und Ergonomie sind dort, wo Mensch und Maschine zusammenkommen, heute wesentliche Elemente [1]. Wie verhält er sich aber dort, wo Maschinenelemente «unter sich» sind? Die Meinung vieler Ingenieure war: Die schönsten, zweckmässigsten und interessantesten Formen entstehen dort, wo die Physik, also die «Natur», einen Vorgang bestimmt. Besonders schöne Beispiele liefern dafür die Turbomaschinen, die meistens versteckt in geschlossenen Gehäusen und Anlagen dem Menschen wertvolle Dienste erweisen. Ohne sie wären für die heutige Gesellschaft Strom und Brauchwasser undenkbar. Der aktive Teil einer Turbomaschine ist der Rotor. Seine Aufgabe ist die Umsetzung von Energie (z. B. Elektrizität) in die eine oder andere Form (z. B. mechanische

Energie) oder umgekehrt; die Arbeitsmedien sind im wesentlichen Wasser oder Gase. Turbomaschinen können also Kraftmaschinen (Turbinen) oder Arbeitsmaschinen (Pumpen, Verdichter) sein. Pumpenturbinen dienen sogar beiden Zwecken.

Gemeinsame Grundlagen

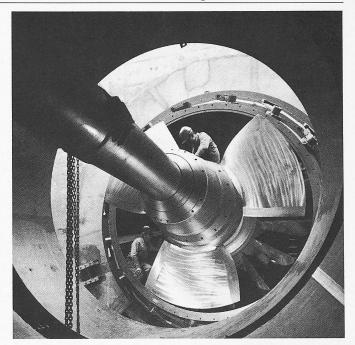

Gemeinsames bei allen Turbomaschinen zeigt sich im ähnlichen Aufbau aller entscheidenden Grundformeln auf kalorischem und hydraulischem Gebiet. Für diese Maschinen gelten summarisch nach wie vor die Grundgleichungen der Mechanik, Strömungslehre und Thermodynamik, wie sie von Newton, Bernoulli, Carnot, Euler schon vor langer Zeit aufgestellt worden sind. Das Kräftespiel in allen Maschinen wird durch diese Grundformeln generell beschrieben. Darüber gelagert erlauben Erkenntnisse und Gesetze der modernen Hydro- und Aerodynamik sowie der Grenzschichttheorie, die Gestaltung der strömungsführenden Teile in ihren Einzelheiten heute numerisch so festzulegen, dass Spitzenwirkungsgrade sicher erreicht werden können. Moderne Theorien und ausgedehnte Experimente ergänzen sich somit gegenseitig.

Die Bearbeitung von neuen Problemen im hydraulischen und thermischen Maschinenbau sowie im Apparatebau auf weitgehend gemeinsamer Grundlage hat viele Vorteile. Die Übertragung von Erkenntnissen aus einem Teilgebiet auf das andere ist bei vielen Aufgaben möglich, wie die Praxis zeigt. So können z. B. Fragen des Einflusses der Oberflächenrauhigkeit bei Beschaufelungen von Gas- und Dampfturbinen nach dem Prinzip der Ähnlichkeitstheorie rationell untersucht werden.

Der Sulzer-Konzern verfügt über eine nahezu vollständige Palette von Turbomaschinen. Der rege interdisziplinäre Austausch von Ideen bringt dabei immer wieder Pioniertaten hervor oder rationalisiert Konstruktion und Fertigung.

Kraft- und Arbeitsmaschinen haben ein gegenüber früher nur wenig verändertes Aussehen, denn die Bauformen für Radial- und Axialmaschinen haben sich, oberflächlich betrachtet, wenig geändert. Die Leistungsdichte hat sich jedoch durch höhere Drehzahlen stark erhöht. Dazu hat vor allem die Werkstoffentwicklung beigetragen. Raschlaufende moderne Turbomaschinen können aber nur dann mit hohen Wirkungsgraden ausgeführt werden, wenn die strömungsführenden Teile peinlich genau entworfen und gefertigt sind. So führte die Strömungsforschung für Turbomaschinen, die stark von der Aerodynamik beeinflusst wurde, in den letzten Jahrzehnten nicht in erster Linie zu grundsätzlich neuen Entdeckungen, sondern zu einer Verfeinerung der Ausbildung aller von der Stömung berührten Maschinenteile [2].

Peltonturbine mit tangentialer Beaufschlagung


Schaufeln

Strömungsmaschinen enthalten im allgemeinen zwei Schaufelsysteme, von denen das eine mit dem Rotor, das andere mit dem Gehäuse verbunden ist. Man unterscheidet somit die bewegte Laufschaufel und die ruhende Leitschaufel (Leitapparat, Leitkranz, Leit-

Die Schaufeln gehören zu den wichtigsten Bauelementen aller Strömungsmaschinen. Ihre Hauptaufgabe ist die Umlenkung der Strömung (Kraftlinien).

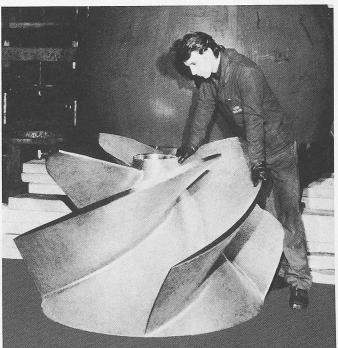
Kaplanturbine mit dreischaufeligem Laufrad

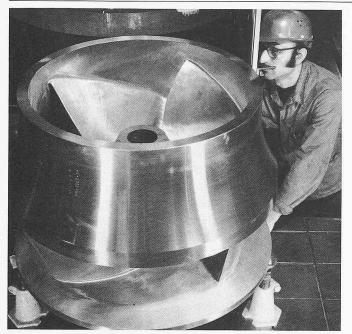
Meist sind mehrere gleichartige Schaufeln aneinandergereiht, und zwar in der Regel so, dass zwischen ihnen Kanäle entstehen. Tritt bei Strömung auf konstantem Radius keine Beschleunigung oder Verzögerung im Schaufelkanal auf, so handelt es sich um Gleichdruckschaufeln, im anderen Fall um Reaktionsbzw. Diffusorschaufeln. Die Schaufelkanäle lassen sich in axial (also der Achse entlang), halbaxial (meist doppelt gekrümmt) und radial (dem Radius entlang) durchströmte einteilen. Bei radialer Durchströmung ist zwischen Zentrifugal- und Zentri-

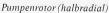
petalwirkung zu unterscheiden, also Beaufschlagung von innen nach aussen oder umgekehrt.

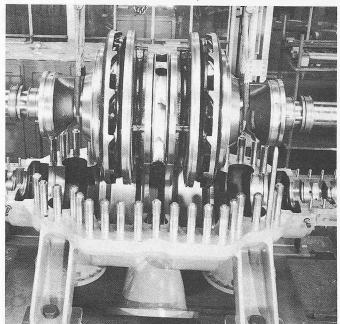
Bei den Schaufelformen gibt es bei offenen sowie geschlossenen Rädern erstaunliche Variationen: Vom typischen Doppellöffel beim Peltonrad bis zu fast völlig ebenen Flügeln bei Ventilatoren.

Wasserturbinen


Bei den Wasserturbinen unterscheidet man im wesentlichen drei Rotortypen benannt nach deren jeweiligen Erfindern *Pelton*, *Francis* und *Kaplan*. Peltonturbinen (Freistrahlturbinen) sind tangential teilbeaufschlagte Gleichdruckturbinen. Ihre Becher sorgen für die mechanische Kraftumsetzung durch bis zu 180°-Umlenkung des Wasserstrahls. Der Leitapparat besteht aus einer runden Düse; sie ist verschliessbar durch eine längsverschiebbare kegelige oder zwiebelförmige Nadel.


Francis- und Kaplanturbinen sind vollbeaufschlagte Überdruckturbinen. Das Wasser tritt ins Laufrad ein, bei langsamlaufenden Francisturbinen radial


Pumpenturbinen-Rotor (radial)



Pumpenrotor (axial)

Pumpenrotor (radial)

von aussen nach innen, bei schnellaufenden halbaxial von aussen nach innen und bei Kaplanturbinen (und bei Propellerturbinen) axial. Der Wasseraustritt ist bei beiden Bauarten axial. Das Leitrad wird mit schwenkbaren Schaufeln ausgeführt und dient als Regel- und auch Absperrorgan.

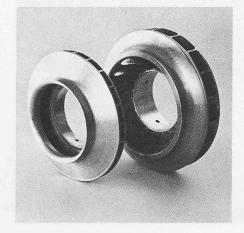
Pumpen (Kreiselpumpen)

Kreiselpumpen – ein- oder mehrstufig – nutzen die Fliehkraft. Das Laufrad erteilt der Förderflüssigkeit potentielle (Druck) und kinetische (Geschwindigkeit) Energie. Die Fliehkraft erzeugt die Druckenergie, während die Geschwindigkeitsenergie der Geschwindigkeitsdifferenz der angesaugten und fortgeschleuderten Flüssigkeit entspricht. Die aus dem Laufrad austretende Flüssigkeit wird entweder unmittelbar vom Pumpengehäuse aufgenommen oder sie durchströmt (bevor sie in das Gehäuse gelangt) einen feststehen-

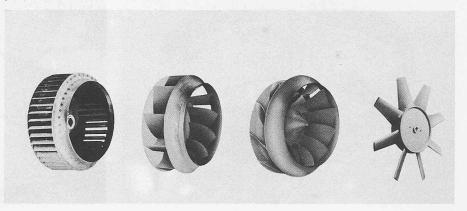
den Leitapparat. Die Pumpenlaufräder gibt es in allen Formen, von radial über halbaxial bis zu axial.

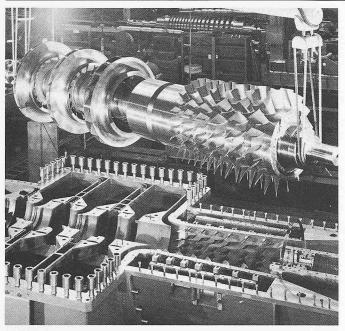
Kompressoren (Verdichter)

Die Verdichtung von Luft und Gasen hat in der Industrie immer mehr Bedeutung erlangt. Im Gegensatz zu den volumetrischen Kompressoren wie Kolben-, Drehkolben- und Schraubenverdichtern (deren Arbeitsprinzip auf der Verdrängerwirkung von hin- und hergehenden oder rotierenden Kolben beruht) erfolgt die Verdichtung bei den Turbokompressoren (Radialoder Axialkompressoren) rein dynamisch durch die Nutzung der Beschleunigungs- und Trägheitskräfte der Gasströmung. Der Fördermenge ist bei den Turbokompressoren nach oben im Prinzip keine Begrenzung gesetzt.

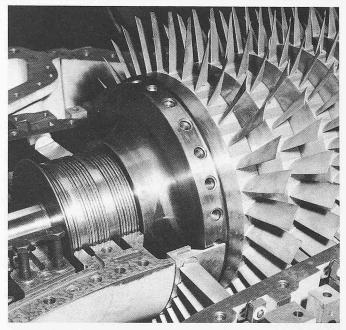

Radialkompressoren gleichen im Aufbau den mehrstufigen Pumpen. Die Stufen und damit die Laufräder und

ihre Beschaufelungen werden mit zunehmendem Druck enger. Auch bei hohen Geschwindigkeiten zeichnen sich die Räder durch ruhigen Lauf und günstige Betriebseigenschaften aus. Am Austritt des Rades gelangt das gasförmige Medium ebenfalls in einen Diffusor und von hier aus durch besondere Rückführkanäle zur Eintrittsöffnung des nächstfolgenden Rades.


Die Axialkompressoren kamen wesentlich später als die Radialkompressoren auf den Markt. Ihre Entwicklung ist mit der der Gasturbine eng verbunden, ihre Wirkungsgrade sind denen anderer Kompressoren überlegen.


Bei den Axialverdichtern wird die Druckerhöhung nicht durch Zentrifugalkräfte, sondern ausschliesslich durch die Nutzbarmachung des Tragflügeleffektes und die Diffusorwirkung der Schaufelkränze erreicht. Dementsprechend und im Gegensatz zu den Radialverdichtern strömen die Gase in

Kompressorlaufräder (radial)



Laufräder verschiedener Ventilatoren (von links: zentrifugal mit vorwärtsgekrümmten Schaufeln, zentrifugal mit rückwärtsgekrümmten Schaufeln, diagonal mit rückwärtsgekrümmten Schaufeln und Propellerlaufrad)

Axial-Radial-Kompressor. Auf dem Rotor sind sechs axiale und drei radiale Stufen erkennbar

Rotor eines Axialkompressors

der Hauptsache in Richtung Maschinenachse durch einen Kanal ringförmigen Querschnitts. In diesem Kanal sind abwechselnd Lauf- und Leiträder angeordnet, die je mit einem Kranz radial gerichteter Schaufeln mit tragflügelähnlichem Profil versehen sind. Die Laufschaufeln werden auf der inneren Seite von einem trommelförmigen Rotor getragen, die Leitschaufeln aussen im Gehäuse oder in einem eingesetzten Schaufelträger.

Die zum Fördern gas- und dampfförmiger Medien dienenden Maschinen fallen unter den Sammelbegriff Kompressoren. Die Bezeichnung bringt die Tatsache zum Ausdruck, dass die Förderung solcher Stoffe stets mit einer Volumenkontraktion verbunden ist. Je nach dem Druckverhältnis der Förderung werden die Kompressoren eingeteilt in:

- Ventilatoren,
- Gebläse,
- Kompressoren.

Die Ventilatoren arbeiten im Gebiet kleiner und kleinster Druckdifferenzen. Ihre Anwendung erstreckt sich jedoch bis zu grössten Fördervolumen. Den Kompressoren sind die grössten Druckverhältnisse vorbehalten, wogegen die Gebläse den mittleren Bereich abdecken.

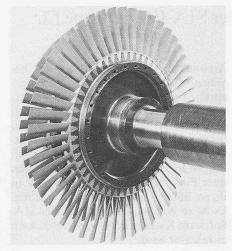
Gasturbinen

Die Gasturbine ist im Rahmen dieser Betrachtungen nicht als einzelne Strömungsmaschine anzusehen, sondern als kompaktes Aggregat, das mindestens aus Kompressor, Brennkammer(n) und eigentlicher Turbine besteht. Der Gasturbinen-Kompressor ist

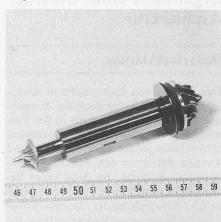
im wesentlichen ein Axialkompressor (wie beschrieben). Auch die Turbine ist ähnlich aufgebaut. In ihr laufen jedoch die Vorgänge umgekehrt ab. Die in der Brennkammer erhitzten Gase werden in den dicht stehenden Schaufelreihen entspannt. Eine besondere Ausführung der Gasturbine sind Heliumturbinen (Gaslagerturbinen) für die Tieftemperaturtechnik. Das einstufige halbaxiale Zentripentalrad erreicht für die Expansion 300 000 U/min.

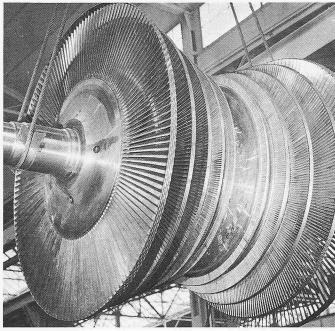
Dampfturbinen

Die Dampfturbine besteht im wesentlichen aus dem Rotor, der sich innerhalb des (zylindrischen) Gehäuses dreht. Rund um die Turbinenwelle sind Laufradschaufeln angebracht. Strömt Dampf mit hohem Druck durch die Turbine, treibt er die Laufradschaufeln und damit die Turbinenwelle an. Innen

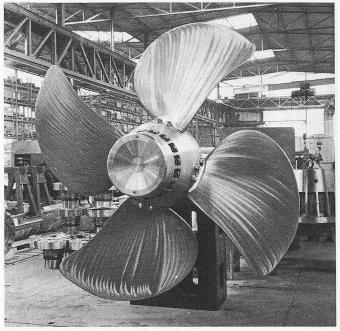

am Gehäuse befinden sich die Leitschaufeln. Die Beschaffenheit der Turbinenschaufeln variiert. Bei der Gleichdruckturbine sind die Schaufeln stark gekrümmt, bei der Überdruckturbine sind sie flacher.

Man teilt Dampfturbinen ein in teilund vollbeaufschlagte Turbinen sowie ähnlich wie Kompressoren - in Axialund Radialturbinen. Die axialen Bauarten (Dampf strömt entlang der Welle) sind dabei weit häufiger anzutreffen als die radialen Bauarten (Dampf strömt im rechten Winkel zur Turbinenwelle).


Schiffspropeller


Der Propellerdurchmesser wird vor allem durch Grösse und Form des Hecks sowie durch den Tiefgang des Schiffes bestimmt. Ihre Form ähnelt Kaplan-Wasserturbinen. Die Schaufeln sind

Axialer Rotor einer Gasturbine



Rotor einer Heliumturbine (Drehzahl bis 300 000 U/min); links der Expanderrotor, rechts der Bremskompressor

Schiffspropeller (verstellbar) mit sogenannten «Skew»-Schaufeln

Dampfturbinenrotor

zur Anpassung an den Schiffskörper und aus Fertigkeitsgründen häufig nach hinten gebogen (axiale Verschiebung). Zur Verbesserung der Kavitationseigenschaften sind die Propellerschaufeln zudem noch häufig asymmetrisch verzogen (radiale Verschiebung). Verstellbare Propeller erhöhen die Wendigkeit eines Schiffes und den Wirkungsgrad seines Antriebs.

Flugzeugpropeller (Luftschrauben)

Der Flugzeugpropeller ist im Gegensatz zum Schiffspropeller besonders

Literatur

- [1] Meyer-Hayoz, W. K .: «Industrial Design und Ergonomie im Investitionsgüterbereich». Technische Rundschau Sulzer, Winterthur, Bd. 63 (1981), H. 4
- [2] Forschung im Wandel der Zeit, 175 Jahre Escher Wyss. Escher Wyss Mitteilungen, Zürich, Bd. 53 (1980), H. 1/2

leicht (schmale Propellerflügel), um sein Gewicht zu begrenzen und dadurch Fliehkräfte beherrschen zu können. Wie beim Schiff werden Verstellpropeller bevorzugt für bessere Startund Landeeigenschaften des Flugzeugs und wirtschaftlichen Brennstoffverbrauch im Flug.

Bilder: Escher Wyss und Sulzer

Adresse des Verfassers: U. Müller, Gebrüder Sulzer Aktiengesellschaft, 8401 Winterthur.

Computereinsatz im Architekturbüro

Ergebnisse einer Umfrage der SIA-Fachgruppe für Architektur

Bedarfsabklärung

Der Einsatz von Computern in Architekturbüros ist heute noch die Ausnahme. Der rasante Fortschritt in der Entwicklung von Mikro- und Minicomputern erlaubt jedoch auch mittleren und kleinen Betrieben den Einsatz kostengünstiger Systeme. Im Sinn einer Bedarfsabklärung führte die Arbeitsgruppe C5 «Anwendung der Datenverarbeitung im Bauwesen» der Fachgruppe für Architektur im Jahre 1981 eine begrenzte Umfrage über den «Computereinsatz im Architekturbüro» durch. Basierend auf den Umfrageergebnissen plant die Arbeitsgruppe als nächsten Schritt eine Ausschreibung. Die Software-Anbieter sollen mit den Vorstellungen und Wünschen der Architekten über Einsatzmöglichkeiten der EDV in ihren Büros vertraut gemacht werden. Es ist zu hoffen, dass dadurch der SIA-Software-Katalog auch für Architekten attraktiver wird.

Ergebnisse der Umfrage

Es wurden 420 Fragebogen verschickt, von denen 51 zurückkamen. Die Rücklaufquote von ungefähr 12% liegt im üblichen Rahmen. Die Umfrage kann wegen der geringen Anzahl Fragebogen nicht repräsentativ sein, doch lassen sich aus den Antworten gewisse Trends ablesen.

Die eingegangenen Antworten wurden getrennt nach Bürogrössen in 3 Gruppen ausgewertet:

A = Büros bis 5 Mitarbeiter 32% 49% B = Büros mit 6-20 Mitarbeitern C = Büros mit mehr als 20 Mitarb.

Zunächst wurde gefragt, wie häufig jetzt schon EDV angewendet wird