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Gleichgewichtslosungen fiir Flachdecken
Von Peter Marti, Ziirich

Die statische Methode der Plastizititstheorie wird auf Stahlbeton-Flachdecken angewendet. Die Giiltigkeit der bekannten quadratischen Fliessbe-
dingung fiir die Biegemomente isotroper Platten wird vorausgesetzt. Die Bedingungen an Plattenriindern werden eingehend erortert. Einige neue
vollstindige Losungen fiir punktgestiitzte quadratische Platten werden mitgeteilt. Anwendungen auf Flachdecken werden diskutiert, und der Ein-
fluss endlicher Stiitzenabmessungen wird untersucht.

The static method of the theory of plasticity is applied to reinforced concrete flat slabs. The well-known square yield condition for the bending mo-
ments in isotropic slabs is supposed to be valid. The boundary conditions at the slab edges are thoroughly studied. Some new complete solutions for
point-supported square plates are presented. Applications to flat slabs are discussed and the influence of finite column diameters is investigated.

La méthode statique de la théorie de la plasticité est appliquée aux dalles plates en béton armé. La validité du critére de plasticité carré pour les mo-
ments de flexion d’une dalle isotrope est supposée. Les conditions aux bords des dalles sont examinées en détail. Quelques solutions complétes sont
présentées pour des dalles carrées qui sont appuyées ponctuellement. Des applications pour les dalles plates sont discutées et ’influence des dimen-

sions finies des poteaux est etudiée.

Einleitung

Der Bemessung von Stahlbetonplatten werden liblicherweise
die nach der Kirchhoffschen Theorie diinner elastischer Plat-
ten mit kleinen Durchbiegungen berechneten Momente zu-
grunde gelegt. Die zur sicheren Aufnahme dieser Momente
erforderliche Bewehrung wird entweder auf zuléssige Span-
nungen oder auf Bruch bemessen.

Plastische Berechnungsmethoden fiir Stahlbetonplatten wer-
den in zunehmendem Mass verwendet, sind aber noch wenig
verbreitet. Recht bekannt ist die Fliessgelenklinientheorie.
Mit ihr werden nach der kinematischen Methode der Plasti-
zitatstheorie obere Grenzwerte fiir die Traglast von Platten
berechnet. Dabei wird von als kinematisch zuldssig bezeich-
neten Bewegungszustinden ausgegangen, welche die kinema-
tischen Beziehungen und Randbedingungen erfiillen. Die
statische Methode der Plastizitdtstheorie geht von als statisch
zuldssig bezeichneten Spannungszustinden aus, welche die
Gleichgewichtsbedingungen und die statischen Randbedin-
gungen erfillen. Mit ihr werden untere Grenzwerte fiir die
Traglast berechnet.

Das oben erwidhnte Vorgehen, bei dem die mit einer elasti-
schen Berechnung ermittelten Momente einer Bruchbemes-
sung zugrunde gelegt werden, ist ein spezielles Vorgehen
nach der statischen Methode. Fiir ein gegebenes System mit
gegebener Belastungskonfiguration kénnen aus der unter
einer bestimmten Belastungsintensitét einzigen elastisch ver-
triaglichen Losung durch Uberlagerung von Eigenspannungs-
zustdnden weitere mogliche Gleichgewichtslosungen gewon-
nen werden.

Anstatt von elastisch vertrdglichen Losungen auszugehen,
um andere Gleichgewichtslosungen zu erhalten, kénnen all-
gemein geeignete Funktionen fiir die Momente angesetzt
werden, mit denen die Gleichgewichtsbedingungen und die
statischen Randbedingungen erfiillt werden. Ein einfaches
Beispiel dieser Art der Anwendung der statischen Methode
ist die Streifenmethode. Nach der der Streifenmethode zu-
grundeliegenden Vorstellung wird die auf eine Platte aufge-
brachte Belastung iiber zwei Scharen paralleler Plattenstrei-
fen in zwei zueinander senkrechten Richtungen zu den Stiit-
zungen abgetragen. In vielen Féllen fiihrt die in der Handha-

bung einfache Streifenmethode zu praktisch brauchbaren Er-
gebnissen. Fiir die Behandlung allgemeinerer Fille werden
in der Regel Polynomansitze fiir die Momente verwendet.
Die in den Ansitzen auftretenden Konstanten werden unter
Beachtung der Gleichgewichtsbedingungen, der Rand- und
allfalliger Symmetriebedingungen sowie der Fliessbedingung
derart bestimmt, dass die zugehorige Belastung moglichst
gross wird. In manchen Fillen gelingt es schliesslich, der Pro-
blemstellung gut angepasste Gleichgewichtslésungen durch
Kombination bekannter Momentenfelder zu gewinnen.

Im folgenden werden einige Gleichgewichtslosungen fir
Flachdecken dargestellt. Es wird angenommen, dass die
Querkrifte keinen Einfluss auf das Fliessen haben, d. h. als
fiir das Gleichgewicht notwendige Reaktionskréifte betrach-
tet werden konnen, gleich wie innere Krifte eines starren
Korpers. Ebenso wird der Einfluss von Membrankréften ver-
nachléssigt. Nach einer Diskussion der speziellen Bedingun-
gen bei Plattenrédndern und -ecken werden Losungen fiir an
den Ecken und in der Mitte punktgestiitzte, quadratische
Platten angegeben. Mdglichkeiten fiir die praktische Anwen-
dung der dargestellten Losungen werden erdrtert, und der
Einfluss endlicher Stiitzenabmessungen wird unter Be-
schriankung auf den Fall von Innenstiitzen untersucht.

Gleichgewichtsbedingungen

Die Spannungsresultierenden an dem in Bild 1 (a) dargestell-
ten Plattenelement sind die Biegemomente

h/2 h/2
m.= [ o.zdz, m,= [ o,zdz,
—h/2 S —h2
die Drillmomente
h/2
my=m,= [ 1,zdz
’ ’ -h2
und die Querkréfte
h/2 h/2
ve= [ t.dz, v,= [ 1,dz

—h72 —h/2
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(a)
(a)
x
ny dy Y z
vy dx
v, dy
my dx
(my +my ,dy)dx \ (b)
MyxcHMyy 5 dx ) dy
dx)d
(mygytmyy ydy)dx WitV )y s
A ) (my +m, o dx)dy
vy +vy ydy)d !
2 (vy +vy,ydy)dx
/\o}
(c) dt
(b)
v?dr I mg dr
Mo S (v +vp p dr) (r+dr)de
(Mg + Mgy dr) (r+dr)de
m, rd
ree (Vp + My y) dt
// \~(mr+mrlrdr)(r+dr)d<p (d)
- / '
e .
dp . — — (m,q,+m,?ﬂ,dqp)dr
= (Vpt Vi pdp) dr
dr—
z
Bild 1. Spannungsresultierende am Plattenelement. (a) Kartesische Koordinaten; (b) Zylinderkoordinaten Bild 2. Plattenrand. (a) Spannungsresultierende;

Kriftegleichgewicht in Vertikalrichtung verlangt

(1) v.\'.v\' + v_l‘,\‘ + q = 0 "

Dabei bedeutet ein Index x mit vorangestelltem Komma par-

tielle Ableitung nach x. Gleichgewicht der Momente liefert
m

(2) XoX

M +m il

T My = V=0
—v,=0,
und durch Einsetzen in (1) ergibt sich
B) m,..+2m +m,,,+qg=0.

XXV X)X 1Y
In Zylinderkoordinaten erhdlt man gemass Bild 1(b) die ent-
sprechenden Beziehungen
@) () o+ Vet ar =0,

(rm) ,—m,+ m

row = =10,

2 1
(5) Tm"“’+ Mgyt — Mg~ Vo= 0
und

1 1 1
(6) 7(rm,)' o me,@— 7;11‘%, i

2
+F(rm,q,),,w+ q=0.

Fiir hinsichtlich Belastung und Lagerung rotationssymmetri-
sche Flle verschwinden die Gréssen m,, und v, und die ver-
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(b) Ersatzkrdfte fiir Drillmoment; (c) Resultierende
Snitzkraft; (d) Eckkraft 2m,,

bleibenden Spannungsresultierenden m,, m,, und v, sind nur
von rabhingig. Aus (6) folgt

(). m,). e, + fqrdr=0.
0

Randbedingungen

Um die folgende Diskussion zu erleichtern ist es zweckmés-
sig, von den Randbedingungen nach der Kirchhoffschen Plat-
tentheorie [2, 7, 11] auszugehen. Bekanntlich geniigt die
Durchbiegung w (x, y) der Plattenmittelebene der inhomoge-
nen Bipotentialgleichung

B W ext2w

JXXXX

=AAw =

Yyyy

- 1

LXXYY

der sogenannten Plattengleichung. Der Ausdruck
Eh?

12(1-v?)

bezeichnet die sogenannte Plattensteifigkeit, E den Elastizi-
tdtsmodul und v die Querdehnungszahl. Fiir die Spannungs-
resultierenden erhilt man in Abhédngigkeit von w

© D=

m, =—D(w,+Vvw,),
(10) m, =-D (WN TVW.L),
Mgy = M= =i = V).DW

und
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=—D(w,tw

Vy ) x =
(1 l) X IY)%
V), =-D (w._\‘_\' it W,,\)') by

-D(Aw) .,
-D(Aw) .

An einem eingespannten Rand verschwinden die Durchbie-
gung wund die Neigung der Durchbiegungsfldche in der zum
Rand orthogonalen Richtung. Bezeichnen geméss Bild 2 (a) n
die zum Rand orthogonale und t die randparallele Richtung,
so lauten die Randbedingungen

(12) w=0,

Da w, dem Rand entlang verschwindet, folgt weiter w,, = 0.
Somit verschwindet geméss (10); das Drillmoment m,, am
eingespannten Rand. Wegen w = 0 ist ferner auch w, am
Rand gleich Null. Zusammenfassend erhélt man gemaéss (10)
und (11) die Spannungsresultierenden

m,= - Dw,nn 5
= —Dw

,nnn > V=

w,=0.

m, =0,

m,=vm o

= Dw? ,
An einem einfach gelagerten (frei gestiitzten) Rand ver-
schwinden die Durchbiegung und das am Plattenrand angrei-
fende Biegemoment, d. h.

(13) w=0,

Wie beim eingespannten Rand folgt aus w = 0 das Ver-
schwinden der Kriimmung w,, in der zum Rand parallelen
Richtung t. Aus m, = 0 folgt gemiss (10), die Beziechung w ,,
+ vw, = 0. Da w, verschwindet, ist auch w ,, und gemaéss
(10), ferner m gle1ch null. Anstatt (13) konnen die dquivalen-
ten Randbedlngungen

Aw=10

verwendet werden. Wahrend die beiden Biegemomente m,
und m, verschwinden, treten im allgemeinen sowohl Quer-
kréfte als auch Drillmomente m,, auf. Da sich Losungen der
Plattengleichung (8) nur zwei Bedingungen fiir die Durchbie-
gung w beziehungsweise deren Ableitungen anpassen lassen,
was zwei Bedingungen fiir die geméss Bild 2(a) auftretenden
drei Spannungsresultierenden m,, m,, und v, entspricht,
muss eine weitere Bedingung eingefiihrt werden. Nach einem
Vorschlag von Thomson und Tait[8] werden die Drillmomen-
te m,, geméss Bild 2(b) in Anlehnung an das Prinzip von de
Saint Venant durch eine stetige Verteilung von Kréftepaaren
ersetzt. An den Grenzen zwischen den Elementen mit der
Linge dt heben sich die Krifte jeweils gegenseitig bis auf den
Zuwachs m,,, , dtauf. Der auf die Lingeneinheit bezogene Zu-
wachs m,,  ergibt zusammen mit der Querkraft v, die im Bild
2(c) eingetragene resultierende Stutzkraft v, + m,, ,, fiir wel-
che nach (2), und unter Beachtung der Symmetrierelation
’n”l - ml”

(14)

folgt. An einer Plattenecke addieren sich die m,, geméiss Bild
2(d) zur Eckkraft

(15) 2m,,

An einem freien (kriftefreien) Rand wiirde man eigentlich
erwarten, dass alle Spannungsresultierenden verschwinden
und

(16) mn=07 mln=07 vl1=0

setzen. Damit hdtte man indessen fiir die der Plattenglei-
chung (8) geniigenden Losungen w eine Randbedingung zu-
viel eingefiihrt. Wie beim einfach gelagerten Rand fasst man
deshalb die Querkrifte und die Drillmomente zusammen
und verlangt

.hnt *

m,=0.

w=0,

m,  +2m

v” + ml” 1 nn nti

(17) mn=07 V"+ m”M:O.
Unter Beachtung von (10) und (2), erhilt man aus (17)
Mll + vw N 0 > 'llll‘l + (2 V)w nnt 0 L

Diese Randbedingungen erhilt man ebenso wie die fiir den
einfach gelagerten und den eingespannten Rand zusammen

mit der Plattengleichung (8) auch durch Anwenden des Prin-
zips der virtuellen Verschiebungen und Betrachten der Varia-
tion der in der Platte aufgespeicherten Formédnderungsener-
gie[11]. Dieser sehr elegante Weg wurde von Kirchhoff einge-
schlagen und zwar fiir allgemeine Belastungen durch Volu-
men-, Oberflichen- und Triagheitskrifte [2].

Aus der Sicht der statischen Methode der Plastizitédtstheorie
vermag die beschriebene Behandlung von Drillmomenten
am Plattenrand nicht zu befriedigen. Ausgehend von Unter-
suchungen tber den Widerstand torsionsbeanspruchter
Stahlbetontrager wurde deshalb kiirzlich versucht, eine nur
auf Gleichgewichtsiiberlegungen beruhende Erkliarung fiir
die Tragwirkung im Bereich von Plattenrdndern zu geben, an
denen Drillmomente auftreten [1, 4]. Tatsdchlich muss ge-
miéss Bild 3 in einer schmalen Zone der Breite b am Platten-
rand aus Gleichgewichtsgriinden eine in z-Richtung wirken-
de Querkraft ¥V, existieren, deren Betrag gleich dem Drillmo-
ment m,, beziiglich der zum Rand normalen und tangentia-
len Richtungen nund tist,

(18)  Vi=my,,

sofern die Spannungen o, in der Randzone beim Fortschrei-
ten in -Richtung nicht verdndert werden, d. h.

(19) o,=0 [-b£nZ0]

vorausgesetzt wird, und an den Aussenflichen n =0 und z =
+ h/2 der Randzone keine Schubspannungen t,, beziehungs-
weise T,, auftreten. Zum Beweis wird die Randzone im
Schnitt n = —b von der Platte abgetrennt und irgend eine La-
melle der Dicke dz, im Abstand z, von der Plattenmittelebene
betrachtet, in der die Schubspannung t,, wirke. Der elemen-
tare Schubfluss 1,, dz, verursacht den Beitrag 1, z; dz, zum
Drillmoment m,,. Da in der Randzone (19) gilt und an ihren
Aussenflichen keine in +-Richtung wirkenden Krafte iiber-
tragen werden, kann der betrachteten Lamelle eine zweite
Lamelle im Abstand —z, von der Plattenmittelebene zu-
geordnet werden, die den Schubfluss t,, dz; in entgegenge-
setzter Richtung aufnimmt und einen Beitrag t,, z, dz; zum
Drillmoment m,, liefert. Die Schubfliisse t,, dz; in den Ebe-
nen z,; und —z, werden in der Randzone bis zum Rand n =0
auf Null abgebaut. Dadurch entstehen in der Randzone
Schubspannungen t,., denen ein iiber die Hohe (z; + z)

Bild 3. Querkraft V, = m,, in Randzone

nt

dmm = s dz1
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wirksamer elementarer Schubfluss mit Betrag t,, dz, und da-
mit eine elementare Querkraft

dVr =T (ZI it 22)

entspricht, die der Summe der Beitréige der beiden betrachte-
ten Lamellen zu m,, gleich ist. Integration iiber alle Lamellen
bringt (18).

Die Breite b der Randzone kann nicht mit Gleichgewichts-
iiberlegungen allein bestimmt werden. Nach der statischen
Methode der Plastizitdtstheorie verlangt man eine minimale
Breite, damit die berechneten unteren Grenzwerte der Trag-
last moglichst gross werden. Weitere Ausfithrungen zu dieser
Frage sind in [4] enthalten, wo speziell auf den Fall von Stahl-
betonplatten eingetreten wird.

Aus der Existenz der Querkréfte (18) folgen das Ergebnis (15)
fiir die Eckkraft und der zweite Summand linkerhand in
Gleichung (14) fiir den Beitrag der Drillmomente zu den re-
sultierenden Stiitzkréften.

Aufgrund der bisherigen Uberlegungen werden fiir die im
vorliegenden Artikel enthaltene Behandlung nach der stati-
schen Methode der Plastizitatstheorie folgende statische
Randbedingungen unterschieden. An einem eingespannten
Rand gibt es keine statischen Randbedingungen, d. h. es kon-
nen beliebige Spannungsresultierende m,,, m,, und v, gemiss
Bild 2(a) auftreten. An einem einfach gelagerten Rand ver-
schwindet das Biegemoment m,,. Drillmomente und Quer-
krifte konnen auftreten. Zusammen verursachen sie resultie-
rende Stiitzkrafte (14). An einem freien Rand miissen das
Biegemoment und die resultierende Stitzkraft geméss (17)
verschwinden. Sowohl Drillmomente als auch Querkrifte
kénnen demnach auftreten, sind aber an die Bedingung (17),
gebunden.

Wird an einem einfach gelagerten oder freien Rand einer
Stahlbetonplatte mit Drillmomenten gerechnet, so ist grund-
sdtzlich zur Aufnahme der Querkréfte V,eine entsprechende
Bewehrung anzuordnen [4, 6]. Diese kann beispielsweise aus
Steckbiigeln gebildet werden, mit denen die Bewehrungen an
der Plattenunter- und -oberseite miteinander verbunden wer-
den oder mit -formigen Enden der in Richtung der Rand-
normalen verlegten Bewehrungsstibe.

Zur Veranschaulichung dient das in Bild 4 dargestellte Fach-
werkmodell fiir eine im Grundriss rechtwinklige Ecke einer
beziiglich der Richtungen der beiden Randnormalen durch
reine Drillung beanspruchten Stahlbetonplatte. An der Plat-
tenoberseite und an der Plattenunterseite bilden sich zuein-
ander senkrechte, unter 45° zu den Plattenrdndern geneigte
Betondruckstreben aus. Die Komponenten der Druckstre-
benkréfte in Richtung der Randnormalen werden durch zur
Plattenebene parallele Bewehrungen aufgenommen. Die zu
den Plattenrdndern parallelen Komponenten werden durch
Betondruckstreben in den vertikalen Randebenen weiterge-
leitet. Die Vertikalkomponenten der Strebenkrifte in den

Bild4. Fachwerkmodell fiir Ecke einer Stahlbetonplatte
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Randebenen entsprechen der Querkraft ¥V, = m,,, vgl. (18).
Zu ihrer Aufnahme dient eine zur Plattenebene orthogonale
Bewehrung am Plattenrand.

Fliessbedingung

Der in Bild 5(a) dargestellte Mohrsche Kreis erlaubt die gra-
phische Deutung der Transformationsformeln

m, = m,cos’@ + m,sin’ @ + m,,sin2 @

20 .
a0 my, = (m,— m,)sin @ cos @ + m,, cos 2 ¢

fiir die Biege- und Drillmomente in einem beliebigen Schnitt
mit der Normalen n, deren Richtung im kartesischen Koor-
dinatensystem x,y durch den Winkel ¢ festgelegt ist. Der
Punkt Q bezeichnet den Pol des Mohrschen Kreises. Drill-
momente m,, werden positiv gerechnet, wenn der ihnen ent-
sprechende (rechtsdrehende) Momentenpfeil in die negative
n-Richtung, also zum betrachteten Schnittrand weist. Die
Hauptrichtungen sind durch

(21) tan2¢,=2m,/(m.—m,)
bestimmt.

Im folgenden wird vorausgesetzt, dass di¢ betrachteten Plat-
ten in beliebigen Richtungen positive Biegemomente bis zum
Betrag m, und negative Biegemomente bis zum Betrag Amy
aufnehmen konnen, mithin die Hauptmomente den Relati-
onen

(22)
gentiigen. In der Ebene Bild 5(b) mit den kartesischen Koor-
dinaten m,/m, und m,/m, begrenzen die Bedingungen (22)

das Quadrat ABCD. Bei Verwendung der Grossen m,, m,
und m,, erhilt man anstelle von (22) die Bedingungen

—MmgLmg Lmy, —Amg<L my<L my

2
(mog=—my(mg—m)>my, my>m,, moy=m,,

Amg+ m)(Amg+ m)>mi, Amog>—m , Amo> —m,.

Als Fliessflichen im Raum mit den kartesischen Koordina-
ten m,/my, m,/myund m,, /mgergeben sich die in Bild 5 (c)
dargestellten, entlang BED sich schneidenden elliptischen
Kegel ABED und CDEB mit Spitzen A und C. Die Gleichun-
gen der Kegelflichen erhélt man durch Ersetzen der Un-
gleichheitszeichen in (23), und (23), durch Gleichheitszei-
chen.

Die isotropen Fliessbedingungen (22) entsprechen jenen, die
in der Fliessgelenklinientheorie flir «isotrop bewehrte»
Stahlbetonplatten verwendet werden [3, 9, 10]. Als «isotrope
Bewehrung» wird beispielsweise eine orthogonale Beweh-
rung in x- und y-Richtung bezeichnet, die zur Aufnahme der
plastischen Momente m, und —Am, in diesen beiden Rich-
tungen bemessen ist. Mit den Fliessbedingungen (22) wird
der Widerstand solcher Platten niherungsweise erfasst. Die
Niaherung ist desto besser gerechtfertigt, je kleiner die Be-
wehrungsgehalte und die Querkrifte sind [3, 6, 10].

Bei kleinen Bewehrungsgehalten ergeben sich verhéltnismaés-
sig diinne Betondruckzonen. Dies erlaubt einerseits eine
grosse Rotationsfahigkeit. Andererseits bleiben die mogli-
chen Fehler bei der Ermittlung der Hebelarme der inneren
Krifte klein. Bei mittleren bis grossen Bewehrungsgehalten
kann der Widerstand von orthogonal «isotrop bewehrten»
Platten mit den Bedingungen (22) zum Teil erheblich iiber-
schitzt werden, wenn die Hauptrichtungen der Momente
von den Bewehrungsrichtungen abweichen. Beim Auftreten
betrichtlicher Drillmomente bezliglich der Bewehrungsrich-
tungen ist deshalb bei grosseren Bewehrungsgehalten Vor-
sicht am Platz [4, 6].
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Wie bereits in der Einleitung erwihnt, wird hier angenom-
men, dass die Querkréfte als Reaktionskrifte behandelt wer-
den diirfen, die keinen Einfluss auf das Fliessen haben. Diese
Annahme ist nur bei verhdltnisméssig kleinen Querkriften
zuldssig und muss in jedem Fall auf ihre Berechtigung ge-
priift werden. Eine entsprechende, fiir die Praxis geeignete
Kontrolle besteht in der Beschrdnkung nomineller Schub-
spannungen [6]. Dabei stiitzt man sich auf die Modellvorstel-
lung einer Sandwichplatte, deren die Querkrifte iibertragen-
der Kern nicht iiberbeansprucht werden darf. Fiir den Fall
grosser Querkrifte, wie sie bei der Einleitung konzentrierter
Krifte oder Stiitzenreaktionen auftreten, sind spezielle Uber-
legungen und Massnahmen erforderlich, um der Gefahr
eines Durchstanzens zu begegnen [6].

Punktgestiitzte Quadratplatten

An den Ecken gestiitzte Quadratplatte unter gleichmissig
verteilter Flichenlast

Dem Ansatz
‘ 4x?
m, = my (1 - 12 ) s
4y?
(24) my = my (1 ]2 )a
mx) = mO %Z

fiir die in Bild 6 (a) dargestellte, in den Eckpunkten B, D, F
und H gestiitzte quadratische Platte mit freien Rindern ent-
spricht nach der Gleichgewichtsbedingung (3) die gleichmis-
sig verteilte Fldchenlast

(25) q=8 .
Aus (2) folgen die Querkrifte
4x 4y
Ve=TMo T, VS Moy

An den Plattenrdndern werden die Randbedingungen (17) er-
fiillt. Den gemaéss (15) resultierenden Eckreaktionen 2m ent-
sprechen nach (18) Querkréfte V, in den Plattenrandzonen,
deren Betrdge von den Plattenecken bis zu den Randmitten
linear von m, auf Null abnehmen. Die Fliessbedingung (23),
flir die positiven Momente wird in simtlichen Punkten der
Platte gerade erfiillt. Die Fliessbedingung (23), fiir die negati-
ven Momente wird mit A = 1 nirgends verletzt und nur in
den Eckpunkten der Platte gerade erfiillt. Die in Bild 6 (b)
eingetragenen Hauptmomententrajektorien sind Hyperbeln
mit den Gleichungen

(x —y)(x +y) = konst., xy= konst.

Der betrachtete Gleichgewichtszustand ist mit Bruchmecha-
nismen vertrdglich, welche Fliessgelenklinien entlang der
Geraden AOE oder COG in Bild 6 (a) aufweisen. Mithin ent-
spricht die Gleichung (25) nicht lediglich einem unteren
Grenzwert, sondern im Rahmen der vorausgesetzten Annah-
men dem exakten Wert der Traglast. Die damit beschriebene
vollstandige Losung des Problems geht auf Nielsen zuriick [5].

In einer neuen Untersuchung wurden nicht die Fliessbedin-
gungen (22) vorausgesetzt, sondern die Annahmen, dass der
Beton eine unbeschrankte Druckfestigkeit, aber keine Zugfe-
stigkeit besitzt [4]. Unter dieser Voraussetzung wird die auf
die Platte aufgebrachte Belastung nicht wie bei einer Sand-
wichplatte iiber den schubbeanspruchten Kern, sondern im
Sinne einer Sprengwerkwirkung zu den Plattenrdndern und
diesen entlang zu den Eckstiitzen ibertragen.

Schweizer Ingenieur und Architekt 38/81
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Bild5. Spannungstransformation und Fliessbedingung. (a) Mohrscher Momen-
tenkreis; (b) Fliessbedingung in der Ebene m | /mg, my/m ; (c) Fliessfliche im
Raumm, /mg, m ‘,/mo ) m_\,v/mo

Bild 6. An den Ecken gestiitzte Quadratplatte unter gleichmdssig verteilter Fli-
chenlast. (a) Bezeichnungen; (b) Hauptmomententrajektorien
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Bild 7. An den Ecken gestiitzte Quadratplatte unter gleichmdssig verteilten
Randlasten. (a) Zwei gegeniiberliegende Rdnder belastet; (b) Alle Rander bela-
stet

Bild 8. In der Mitte gestiitzte Quadratplatte. (a) Mohrscher Momentenkreis;
(b) Gleichmdssig verteilte Randlasten und Ecklasten; (c) Gleichmdssig verteilte
Randlasten
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An den Ecken gestiitzte Quadratplatte unter gleichmissig
verteilten Randlasten

Die in Bild 7(a) dargestellte, an den Ecken punktformig ge-
stiitzte quadratische Platte mit freien Rédndern wird an den
beiden gegeniiberliegenden Réndern HAB und DEF durch
die gleichméssig verteilten Linienlasten g belastet. Die voll-
stdndige Losung fiir dieses Problem wurde ebenfalls von
Nielsen angegeben [5]. Den Momenten

4y? 4xy
(26) m,=0, m,=m,(1- T)’ Mgy =My ~ 3

entsprechen gemass (2) die Querkrafte

4y
1"“ = =My 1_%' 5
Die Flachenlast g verschwindet nach (3) in allen Punkten der
Platte. An den Réndern BCD und FGH werden die Randbe-
dingungen (17) erfiillt. An den Rdndern HAB und DEF erge-

ben sich nach (14) die Linienlasten

@7 q=4

e
Ve= Moy

mg
]

die mit den Eckreaktionen 2m, im Gleichgewicht sind. Die
Fliessbedingung (23), fir die positiven Momente ist entlang
der x-Achse und an den beiden belasteten Randern gerade er-
fullt und sonst nirgends verletzt. Die Fliessbedingung (23),
fir die negativen Momente wird mit A = 1 nirgends verletzt
und nur in den Eckpunkten der Platte gerade erfiillt. Der be-
trachtete Gleichgewichtszustand ist mit einem Bruchmecha-
nismus mit einer Fliessgelenklinie entlang der x-Achse ver-
traglich.

Werden gemass Bild 7(b) alle Rander belastet, so erhilt man

mit dem Ansatz
1 2x? 1 2y?

28) m,= m, (E = 12), m, = mg (5— 7),

4xy

my, = My 12

X)

anstelle von (27) die Randlasten

g=2"2,
[

und die Querkrifte v, und v, verschwinden zusammen mit
der Flachenlast ¢ in allen Punkten der Platte. Die Fliessbe-
dingungen (23), und (23), werden beide nirgends verletzt und
sind nur in den Eckpunkten der Platte gerade erfiillt. Be-
trachtet man Bruchmechanismen mit unter 45° zu den Plat-
tenrdndern geneigten geraden Fliessgelenklinien bei den
Plattenecken, so erhilt man obere Grenzwerte fiir die Tra-
glast §. Lasst man den Abstand der Fliessgelenklinien von
den Plattenecken gegen null gehen, so folgt wieder (29). Der
untersuchte Gleichgewichtszustand ist mit dem Grenzfall
der betrachteten Bruchmechanismen vertraglich, und (29) ist
der exakte Wert der Traglast.

(29)

In der Mitte gestiitzte Quadratplatte unter gleichmissig
verteilter Flichenlast

Der Mohrsche Kreis Bild 8 (a) entspricht den Momenten

2
b2

G0 me=0, m=-m (1= L), my=m, L.

beziehungsweise

2 = ey
m,=moytan” @, my=—mq, m,=0.

®
Dieser Ansatz wurde (mit umgekehrten Vorzeichen) von
Nielsen der vollstaindigen Losung fiir das Problem der im
Zentrum durch eine Einzellast F belasteten, am Rand ein-
fach gelagerten, regelmissig vieleckigen Platte zugrunde ge-
legt [5]. Die Traglast einer n-eckigen Platte ist
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F=2nmgtan (E) .
n
Fiir den Fall der quadratischen Platte, n = 4, werden die Ver-
héltnisse mit Bild 8 (b) ndher untersucht. Aus Symmetrie-
grilnden kann man sich auf die Betrachtung des Dreiecks
OAB beschrianken. Aus (30) folgen mit (2) und (3) die Bezie-
hungen

B y
=My, v=my 7,

q=0.
Im Zentrum 0 der Platte wird die Stiitzenreaktion 8m  einge-
tragen. An den Plattenrdndern wirken nach (14) die Linienla-
sten
my

l
und in den Ecken geméss (15) nach oben gerichtete Eckkrafte
2m . Die Fliessbedingung (22) ist mit A = 1 fiir die negativen
Hauptmomente m , iber die ganze Platte gerade erfiillt. Die
Fliessbedingung fiir die positiven Hauptmomente m, wird
nirgends verletzt und nur entlang den Diagonalen BOF und
DOH gerade erfiillt (¢ = = n/4). Der betrachtete Gleichge-
wichtszustand ist mit einem Bruchmechanismus mit Fliess-
gelenklinien entlang den Diagonalen BOF und DOH vertrag-
lich.

Bildet man die Differenz der Momentenfelder (30) und (28)
und multipliziert man das Ergebnis mit dem Faktor 2/3, so
erhilt man

4x? 1
@l m, = mo(ﬁ = 5) .
2y 4y?
m, =m (y + 32 —1) .
2y  8xy
my, = ’/'10(;C - 372 )

Diese Momente entsprechen dem in Bild 8 (c) dargestellten
Fall einer in der Mitte gestiitzten quadratischen Platte, die an
den freien Radndern mit den Linienlasten

g=4

_ 4dm
(32) g= 3]
belastet wird. Aus (31) folgen mit (2) und (3) die Gleichungen
2y
V= moﬁ , V=M 32 qg=0.

An den Plattenrdndern verschwinden die Biege- und Drill-
momente. Die Fliessbedingung (23), fiir die positiven Mo-
mente wird nirgends verletzt. Die Fliessbedingung (23), fiir
die negativen Momente wird mit A = 1 ebenfalls nicht ver-
letzt und nur fiir y = 0 gerade erfiillt. Der betrachtete Gleich-
gewichtszustand ist mit einem Bruchmechanismus vertrag-
lich, der Fliessgelenklinien entlang AOE und/oder COG auf-
weist.

Multiplikation der Gleichungen (31) mit dem Faktor 3/2 und
Addition der Momente

90 B2 D
33) m.= mo(i = 7), m, = m (5 - 2 ) , M, =0

fiihrt zu

2
/ y  4xy
(34) m«"=0’ my = hto (;2_1)’ ,n.\'j‘=m0(;_T}).

Die Momente (33) entsprechen einem Ansatz nach der Strei-
fenmethode fiir eine an den Rédndern einfach gelagerte qua-
dratische Platte, die durch die konstante Flachenlast

m
35 q=38 1—20
belastet wird. Die nach (33), (2), und (14) resultierenden
Stiitzkréfte 2m,/l werden durch Kombination mit den um

(a) F G H_f
\-\ Ve V)
E 0 X
e . /2
4 4
D c B
l——L/z——h—L/z»]
y
MO q

i

oK
Vy

Bild 9. In der Mitte gestiitzte Quadratplatte unter gleichmdssig verteilter Fld-
chenlast. (a) Bezeichnungen, (b) Hauptmomententrajektorien

den Faktor 3/2 vergrosserten Momenten (31) eliminiert. So-
mit entsprechen die Momente (34) dem in Bild 9 (a) darge-
stellten Fall einer in der Mitte gestiitzten Quadratplatte mit
freien Randern, die mit der gleichmassig verteilten Fliachen-
last (35) belastet wird. Aus (2) und (34) folgen die Querkréfte

4“,2 )
vx=ﬂx0(1 = L), V= Wy L

Wie man feststellt, werden die Randbedingungen (16) erfiillt,
d. h., die Plattenrdnder sind génzlich kréftefrei. Bild 9 (b)
zeigt die zu (34) gehorigen Hauptmomententrajektorien. Die
Fliessbedingung (23), fiir die positiven Momente wird nir-
gends verletzt und ist lediglich im Plattenzentrum 0 gerade
erfillt. Die Fliessbedingung (23), fiir die negativen Momente
wird mit A = 1 ebenfalls nicht verletzt und nur fiir y = 0 gera-
de erfiillt. Das Momentenfeld (34) ist mit Bruchmechanis-
men vertraglich, die Fliessgelenklinien entlang AOE und/
oder COG aufweisen. Mithin entspricht (35) dem exakten
Wert der Traglast.

Anwendungen

Unendlich ausgedehnte Flachdecken

Durch Zusammenfiigen unendlich vieler Einzelplatten Bild
9 (a) erhilt man eine unendlich ausgedehnte Flachdecke, de-
ren punktformige Stiitzungen in einem quadratischen Raster
mit Stiitzenabstand / angeordnet sind. An den Verbindungs-
stellen der einzelnen Platten diirfen aus Symmetriegriinden
keine Querkréfte und keine Drillmomente auftreten. Hinge-
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gen kdnnen Biegemomente von einer Einzelplatte auf die be-
nachbarten iibertragen werden. Die erste der drei bei den
Platten Bild 9 (a) erfiillten Randbedingungen (16) wird damit
aufgehoben, und die Fortsetzung der an den Verbindungs-
stellen wirkenden Biegemomente in den einzelnen Platten ist
zu diskutieren. Aus Symmetriegriinden geniigt die Betrach-
tung der Strecke AB in Bild 9 (a), an der Biegemomente m,
auftreten diirfen. Als einfachste Moglichkeit bietet sich der
Ansatz eines iiber die Strecke AB konstanten Moments m,
= Am an, das im Innern der Einzelplatten eine Vergrdsse-
rung aller Biegemomente um Am bewirkt. Wird die Fliessbe-
dingung (22) vorausgesetzt, so erhélt man auf diese Weise aus
(35) die untere Eingrenzung

(36) q;4a+x)%?

fiir die Traglast der unendlich ausgedehnten Flachdecke un-
ter gleichmaéssig verteilter Belastung.

Der Beweis von (36) stiitzt sich auf die Feststellung, dass (35)
einen unteren Grenzwert fiir die Traglast der am Rand zu-
sidtzlich mit dem Biegemoment Am beanspruchten Einzel-
platte Bild 9 (a) darstellt, wenn die Fliessgrenzen —m, und
my um den Betrag Am vergrossert, d. h. die Fliessbedingun-
gen (22) durch

—AMoém]éMo, _AMo.émzéMo
mit
AMy=my—Am, My=my+Am [IAml Lm,]

ersetzt werden. Das Anbringen der Randmomente Am be-
wirkt eine Vergrosserung der Biegemomente m, und m, in
(34) um Am und entsprechend eine Verschiebung des Mohr-
schen Kreises Bild 5 (a) um Am nach rechts. Die Anderung
der Fliessgrenzen entspricht einer Verschiebung des Quadra-
tes ABCD in Bild 5 (b) um den Betrag v2 Am in Richtung der
hydrostatischen Achse COB. Keiner der verschobenen Span-
nungsbildpunkte liegt ausserhalb der verschobenen Fliess-

grenzen. Mithin folgt mit (35)
q=>38 %%

und daraus unter Beachtung von
(I+A)My=2m,

die Relation

q;4U+A)%%m

Ersetzen der grossen Buchstaben M und A durch die bisher
verwendeten kleinen mund A bringt (36).

Da das Ergebnis (36) fiir punktfoérmige Stiitzungen gilt und
eine Vergrosserung der Stiitzenabmessungen bei sonst glei-
chen Bedingungen nicht eine Verminderung der Traglast
nach sich ziehen kann, ist (36) fiir beliebige Stiitzenabmes-
sungen giiltig. Zusammen mit dem im folgenden Abschnitt
ermittelten oberen Grenzwert erhélt man fiir die Traglast un-
endlich ausgedehnter Flachdecken mit quadratischem Stiit-
zenraster und punktférmigen Stiitzungen die Eingrenzung

2
o L27.

(37) 4z« Trm <

Randfelder und Eckfelder von Flachdecken

Die bisherigen Untersuchungen kdénnen fiir Randfelder und
Eckfelder von Flachdecken angepasst und weiter verwendet
werden.

Fiir den Fall einfach gelagerter oder eingespannter Rénder
konnen die Momentenfelder von den dusseren Innenfeldern
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im Sinne einer Streifen- oder Balkentragwirkung bis zum
Rand fortgesetzt werden. Entspricht beispielsweise der Punkt
O in Bild 9 (a) einer der dussersten Innenstiitzen einer Flach-
decke, die einen zur y-Achse parallelen Rand x = L > [/2
hat, so kann die im Bereich I/2 £ x £ L aufgebrachte Bela-
stung gemdss (3) durch eine entsprechende Verdnderung der
Biegemomente m, allein zum Rand abgetragen werden.

Fiir Decken mit freien Aussenrdndern, die in regelméssigen
Absténden gestiitzt werden, konnen ebenfalls statisch zuléssi-
ge Spannungszustinde angegeben werden. Zu diesem Zweck
trennt man die in Bild 9(a) dargestellte Platte in Gedanken
entlang dem Schnitt AOE in zwei gleiche Teile. Die gemiss
(34), im Schnitt AOE auftretenden Momente m, = —m,
bringt man durch Superposition des konstanten Spannungs-
zustandes m, = m, mit entsprechenden Randmomenten an
den Rindern BCD und FGH zum Verschwinden. Fiigt man
nun die beiden getrennten Plattenteile an den eben erwdhn-
ten Rindern neu zusammen, so erhélt man einen statisch zu-
lassigen Spannungszustand fiir eine in den Mitten zweier ge-
geniiberliegender Rédnder gestiitzte quadratische Platte unter
der gleichmissig verteilten Flachenlast (35). An den Rédndern
dieser Platte sind die Randbedingungen (16) erfiillt. Aus
Symmetriegriinden kann man sich auf die Betrachtung der
Dreiecke OAB und OBC in Bild 9 (a) beschranken. Die Mo-
mente im Teil OAB sind

2 4 2
(38a) m,=0, m,=m, %, m,, = mg J;) (1 —l—ﬁ)
und jene im Teil OBC
52
@86 m, =my (27 - 1),
W
m, =myg,

x 4y2
m:\.y=m07(l_ 12 ) .

Der Fliachenlast (35) entsprechen die Stiitzenreaktionen 4m,,.
Wie man leicht nachpriift, verletzen die Momente (38a) und
(38 b) die Fliessbedingungen (22) oder (23) in bestimmten Be-
reichen im Innern der Platte. Die Fliessbedingungen werden
nicht verletzt, wenn die Momente (382) und (38b) mit dem
Faktor (v/5 — 1)/2 multipliziert werden. Da (35) mit dem
oberen Grenzwert fiir die Traglast iibereinstimmt, der sich
fiir einen Bruchmechanismus mit einer Fliessgelenklinie ent-
lang der Kontaktstelle BCD der beiden Plattenteile ergibt,
folgt die Eingrenzung

V-1 gqI”

B9 7 £ gy <1

Der in (39) angegebene untere Grenzwert kann vermutlich
durch Uberlagern von Spannungszustédnden, denen Drillmo-
mente und damit nach (18) Querkréfte an den unterstiitzten
Rindern entsprechen, noch betrichtlich gesteigert werden.
Dieses Problem wird hier aber nicht weiter untersucht. Zum
urspriinglichen Problem der Fortsetzung der Momentenfel-
der von den dussersten Innenfeldern zu den am freien Aus-
senrand gestiitzten Randfeldern zuriickkehrend ist lediglich
zu bemerken, dass man #hnlich wie bei einfach gelagerten
und eingespannten Rindern vorgehen kann, indem man die
betrachteten statisch zuldssigen Spannungszustinde am
Rand mit jenen im Innern der Decke vereint.

Das Vorgehen zur Gewinnung statisch zuldssiger Spannungs-
zustinde in Eckfeldern entspricht jenem bei Randfeldern.
Fiir einfach gelagerte und eingespannte Rénder kénnen be-
kannte statisch zuldssige Spannungsfelder fiir quadratische
und rechteckige Platten beniitzt werden. Fiir den Fall einer
an der Ecke gestiitzten Flachdecke steht der Ansatz (24) zur
Verfiigung.
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Bild 10.  Endliche Stiitzenabmessungen. (a) Am Innenrand eingespannte Kreisringplatte unter gleichmdssig verteilter Flichenlast und Randmoment am freien Aus-
senrand, (b) Radius des Fliessgelenkkreises; (c) Traglast in Abhdingigkeit des Stiitzenradius; (d) Flachdecke mit regelmiissig sechseckigem Stiitzenraster; (e) Quadrati-

scher Stiitzenraster

Endliche Stiitzenabmessungen

Um den bisher vernachldssigten Einfluss der Stiitzenabmes-
sungen zu untersuchen, wird die in Bild 10 (a) dargestellte,
am Innenrand eingespannte Kreisringplatte betrachtet, an
deren Aussenrand die Randmomente m, = m, aufgebracht
werden und die mit der gleichmaéssig verteilten Flachenlast g
belastet wird. Unter Voraussetzung der Fliessbedingung (22)
wurde die vollstandige Losung dieses Problems in [3] gege-
ben.

Fiir den inneren Plattenteil ry £ r £ r, wird der die Gleichge-
wichtsbedingung (7) erfiillende Ansatz

. y2 -
40 = LA L)
(40) m, Amo+ — 6+2,m
verwendet und fiir den dusseren Teil r, £ » £ r, der die
Gleichgewichtsbedingung (7) und die Randbedingungen am
Aussenrand befriedigende Ansatz

o= —Amy

2 2
41) m,=my, M= _qzr = qTrz+m0.

Bezeichnet man die Hauptmomente m, und m, mit m, und
m,, so entsprechen die Momente (40) Punkten, die auf der
Seite CD des Quadrats ABCD in Bild 5 (b) liegen und die Mo-
mente (41) Punkten auf der Seite DA. Aus der Randbedin-
gung m, (rg) = —A m, und den Ubergangsbedingungen
m,(r;) = mgsowie m,(r; ) = —A m, folgen die Beziehungen

=%(”0_3"0 3,
A+ mo= Fri=24rt + L (-3,
(10 mo= L (3-r

Es folgt weiter
3 1
42) 7= %ro ri— 7r3

und
2(1+X) my

3 1 2/3°
- (7 rorl— 7#0)

Der in Bild 10 (a) dargestellte Bruchmechanismus ist mit
dem betrachteten Spannungszustand vertraglich. Der innere
kreisringformige Plattenteil ry £ r £ r, wird zum Mantel
eines Kegelstumpfs. Der dussere Plattenteil r, £ r £ r, wird
als starrer Korper rein translatorisch in Richtung der z-Achse
verschoben. An den Stellen r = r, und r = r, ergeben sich
Fliessgelenkkreise.

In Bild 10 (b) ist der auf den Plattenradius », bezogene Radius
r, des dusseren Fliessgelenkkreises in Abhdngigkeit des bezo-
genen Stiitzenradius r,/r, aufgetragen. Fir punktférmige
Stiitzung, r, = 0, verschwindet auch 7, d. h., die beiden

(43) q=
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Fliessgelenkkreise, in denen positive und negative plastische
Momente in radialer Richtung auftreten, fallen im Platten-
zentrum zusammen. Der flr die praktische Anwendung bei
Flachdecken {ibliche Bereich der Stiitzenabmessungen kann
etwa mit 0,04 < r,/r, £ 0,12 eingegrenzt werden. Innerhalb
dieser Grenzen misst der Fliessgelenkradius r; 39 bis 56% des
Plattenradius r, .

Die Gleichung (43) ist in Bild 10 (c) ausgewertet. Mit zuneh-
mendem Stiitzenradius ergibt sich eine betrdchtliche Steige-
rung der Traglast. Im Vergleich zum Wert fir punktformige
Stiitzung erhélt man im Bereich 0,04 £ r, /r, £ 0,12 einen Zu-
wachs von 18 bis 47%.

Die fiir die Kreisringplatte diskutierten Ergebnisse kénnen
leicht auf Flachdecken angewendet werden.

Zunichst wird mit Bild 10(d) eine Flachdecke betrachtet, de-
ren kreiszylindrische Stiitzen in einem regelméssig sechsecki-
gen Raster mit Stiitzenabstand [ angeordnet sind. Wird die
Flachdecke nur innerhalb der den sechseckigen Flichen A
=+/3 I%/2 bei jeder Stiitze einbeschriebenen Kreise mit Radi-
us [/2 mit der gleichméssig verteilten Fldchenlast g belastet,
so stellt (43) mit », = [/2 den exakten Wert der Traglast dar.
In den unbelasteten Spickeln zwischen den Kreisen, deren
Anteil an der gesamten Flache der Flachdecke 9 % betragt,
herrscht ein hydrostatischer Spannungszustand m, = m, =
m,. Wird die ganze Flachdecke mit der gleichméssig verteil-
ten Fldchenlast g belastet, so erhilt man aus der Betrachtung
von Bruchmechanismen gemass Bild 10 (a) bei jeder einzel-
nen Stiitze obere Grenzwerte fiir die Traglast. Der kleinste
obere Grenzwert folgt durch Einsetzen von r, = v 4/min (43).
Andererseits ergibt sich aus der Betrachtung der dem Sechs-
eck mit Flache A umschriebenen Kreisplatte mit Radius », =
1/+/3 aus (43) ein unterer Grenzwert fiir die Traglast der voll-
belasteten Decke. Fiir punktférmige Stiitzung folgt die Ein-
schrankung

4n
\/§ 5

deren untere Grenze um 17% unter der oberen liegt.

gl
) 6 ho—<

Fiir Flachdecken, deren Stiitzen gemaéss Bild 10 (¢) in einem
quadratischen Raster mit Stiitzenabstand ! angeordnet sind,
kénnen dhnliche Uberlegungen angestellt werden. Wird die
Flachdecke nur innerhalb der den Flichen A4 = I? einbe-
schriebenen Kreise belastet, d. h. auf einer Fliche von 79%
der Gesamtflache, so folgt aus (43) mit , = [/2 der exakte
Wert der Traglast. Zwischen den einzelnen Kreisen herrscht
der hydrostatische Spannungszustand m, = m, = m,. Fir
Vollbelastung der Decke erhilt man mit », = VA/n und
B = 1/7/2 aus (43) wiederum obere und untere Grenzwerte
fiir die Traglast. Fiir punktformige Stiitzung ergibt sich die
mit (37) zusammenfallende Einschrankung
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deren untere Grenze um 36% unter der oberen liegt.

Bemerkungen

Im Rahmen der Theorie starr-plastischer Platten, die der
Fliessbedingung (22) folgen, sind alle im Abschnitt «Punkt-
gestiitzte Quadratplatten» beschriebenen Losungen vollstdn-
dige Losungen, d.h., die betrachteten statisch zuldssigen
Spannungszustdnde sind mit kinematisch zuldssigen Bruch-
mechanismen vertraglich. Die Losungen fiir die drei in den
Bildern 7(b), 8 (¢) und 9 (a) dargestellten Probleme sind neu.

Gemiss (31); und (34); treten an den freien Réndern der
Platten Bild 8 (c¢) und Bild 9 (a) keine Drillmomente auf. Die
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Felder (31) und (34) lassen sich deshalb besonders leicht fort-
setzen und mit anderen Momentenfeldern kombinieren. Fiir
viele praktische Anwendungen wird damit die Ermittlung
statisch zuldssiger Spannungszustédnde erleichtert [10].

Die Anwendung der dargestellten Gleichgewichtsldsungen
ist nicht an die Bedingung gekniipft, dass die Platten einen
iber ihre ganze Fliche konstanten Widerstand aufweisen.
Vielmehr kann die Bewehrung innerhalb der konstruktiven
Grenzen dem Momentenverlauf entsprechend derart abge-
stuft werden, dass die Fliessbedingungen (22) oder (23) mit
iiber die Platte verdnderlichen Werten m, und A nicht ver-
letzt werden. h

Punktférmige Stiitzungen sind in Wirklichkeit unméglich.
Die unter der Annahme verschwindender Stiitzenabmessun-
gen ermittelten Losungen entsprechen einem theoretischen
Grenzfall, konnen aber mit einfachen Anpassungen zur Ge-
winnung statisch zuldssiger Spannungszustidnde fiir den Fall
endlicher Stiitzenabmessungen verwendet werden [10].

Auf die wichtige Frage, inwiefern die Anwendung der Fliess-
bedingungen (22) auf Stiitzenbereiche von Flachdecken an-
gemessen ist, und auf die Zusatzfrage, wodurch die Bedin-
gungen (22) allenfalls zu ersetzen sind, wird hier nicht ndher
eingegangen. Im Rahmen des Forschungsprojektes «Vorge-
spannte Platten» sind am Institut fiir Baustatik und Kon-
struktion der Eidgendssischen Technischen Hochschule Ziirich
unter der Leitung von Prof. Dr. Bruno Thiirlimann seit eini-
ger Zeit theoretische und experimentelle Untersuchungen im
Gange, die der Abklarung dieser Fragen dienen. Erste Ergeb-
nisse dieser Untersuchungen wurden im Normvorschlag [6]
beriicksichtigt.

Nach der Theorie dinner elastischer Platten mit kleinen
Durchbiegungen ergeben sich im Stiitzenbereich von Flach-
decken grosse Spannungskonzentrationen. Damit kann er-
klart werden, dass sich bei vielen praktischen Anwendungen
bereits unter verhéltnisméssig kleinen Lasten, meist schon
unter Eigengewicht, Risse in den Stiitzenbereichen einstel-
len. Mit der Rissbildung verbunden ist eine Umlagerung der
inneren Krifte und ein entsprechendes Abweichen von dem
flir die homogene elastische Platte berechneten Spannungs-
zustarid. Durch Zwingungen, die stets vorhanden sind, rech-
nerisch aber praktisch nicht erfasst werden konnen, und
durch die in Wirklichkeit wechselnden Belastungszustdnde
ergeben sich weitere Kréfteumlagerungen. Es ist deshalb
vollkommen unrichtig, wenn man das heute {ibliche Bemes-
sungsvorgehen damit begriinden will, dass man mit den nach
der elastischen Plattentheorie berechneten Momenten den
wirklichen Spannungszustand «mit ausreichender Genauig-
keit» erfasse. Dieses Vorgehen findet seine Rechtfertigung
vielmehr darin, dass die elastische Plattentheorie statisch zu-
lassige Spannungszustidnde liefert, die nach der statischen
Methode der Plastizitdtstheorie fiir eine Bruchbemessung
verwendet werden konnen.

Beschriankt man sich fiir die Bemessung auf die Betrachtung
der nach der elastischen Plattentheorie ermittelten Momen-
te, so ergeben sich erfahrungsgemaiss oft wenig rationelle Lo-
sungen. Dem Wunsch nach grosserer Freiheit bei der prakti-
schen Bemessung kommt die statische Methode der Plastizi-
titstheorie, nach der irgendeine Gleichgewichtsldsung zu
verwenden ist, die nicht zu einer Uberbeanspruchung des
Materials fiihrt, in hochst willkommener Weise entgegen.
Wird eine Platte auf dieser Grundlage bemessen, so liegt ihre
Traglast, sofern ihr Verformungsvermdgen ausreicht, nach
dem statischen Grenzwertsatz in keinem Fall unter der zur
betrachteten Gleichgewichtslosung gehorigen Belastung. Der
Krifteverlauf kann bis ins Detail verfolgt werden, und eine
entsprechende konstruktive Durchbildung wird ermdglicht.

Jede Gleichgewichtslosung enthdlt Aussagen iiber die Mo-
mente in allen Punkten der betrachteten Platte. Fiir die Be-
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messung kénnen Gleichgewichtslosungen deshalb unmittel-
bar verwendet werden. Im Gegensatz dazu erscheinen in
einer Fliessgelenklinienlésung jeweils nur die Momente, die
bei der Formulierung des Prinzips der virtuellen Leistungen
fiir den untersuchten Bruchmechanismus im Ausdruck fiir
die virtuelle Leistung der inneren Krifte auftreten. Bei Ver-
wendung der Fliessbedingungen (22) sind dies die Biegemo-
mente entlang den Fliessgelenklinien. Im Vergleich zu einer
Gleichgewichtslosung liefert deshalb die Betrachtung eines
einzelnen Bruchmechanismus hinsichtlich der der Bemes-
sung zugrunde zu legenden Momente keine gleichwertigen
Aussagen. Allerdings ist auch der fiir eine Fliessgelenklinien-
l6sung erforderliche Aufwand geringer als der fiir eine
Gleichgewichtslosung notwendige. Darum ist es meist viel
leichter, gute obere Grenzwerte fiir die Traglast zu gewinnen
als gleich gute untere Grenzwerte. Erst die Variation iiber
alle kinematisch zuldssigen Bewegungszustinde und die Va-
riation iiber alle statisch zulédssigen Spannungszustinde ent-
sprechen zwei zueinander dualen Betrachtungsweisen, die zu
zusammenfallenden oberen und unteren Grenzwerten fiir
die Traglast und zu vertrdglichen Spannungs- und Verfor-
mungsfeldern fithren. Aus dem Gesagten geht hervor, dass
sich Fliessgelenklinienlésungen in erster Linie fiir die Uber-
priifung einer im Entwurf vorliegenden, nach der statischen
Methode der Plastizitdtstheorie durchgefiihrten Bemessung
eignen. Fur hinsichtlich Geometrie und Belastungskonfigu-
ration einfache Systeme und insbesondere fiir den in der Pra-
xis hdufig auftretenden Fall, dass in einer Platte von vornher-
ein bereichsweise konstante Widerstinde auftreten, deren
Grossen noch festzulegen sind, leisten Fliessgelenklinienld-
sungen aber auch bei der Bemessung direkt niitzliche Dien-
ste.

Der geschickte Ingenieur wird nicht die eine oder andere Me-
thode bevorzugen, sondern versuchen, diese je nach der Pro-
blemstellung derart einzusetzen, dass sie sich gegenseitig er-
gdnzen und bei moglichst geringem Aufwand zu einer der
Problemstellung angepassten, sicheren Bemessung fiihren.
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