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Gleichgewichtslösungen für Flachdecken
Von Peter Marti, Zürich

Die statische Methode der Plastizitätstheorie wird auf Stahlbeton-Flachdecken angewendet. Die Gültigkeit der bekannten quadratischen Fliessbedingung

für die Biegemomente isotroper Platten wird vorausgesetzt. Die Bedingungen an Plattenrändern werden eingehend erörtert. Einige neue
vollständige Lösungen für punktgestützte quadratische Platten werden mitgeteilt. Anwendungen auf Flachdecken werden diskutiert, und der
Einfluss endlicher Stützenabmessungen wird untersucht.
The static method of the theory of plasticity is applied to reinforced concrete flat slabs. The well-known Square yield condition for the bending mo-
ments in isotropic slabs is supposed to be valid. The boundary conditions at the slab edges are thoroughly studied. Some new complete Solutions for
point-supported Square plates are presented. Applications to flat slabs are discussed and the influence of finite column diameters is investigated.
La methode statique de la theorie de la plasticite est appliquee aux dalles plates en beton arme. La validite du entere de plasticite carre pour les mo-
ments de flexion d'une dalle isotrope est supposee. Les conditions aux bords des dalles sont examinees en detail. Quelques Solutions completes sont
presentees pour des dalles carrees qui sont appuyees ponctuellement. Des applications pour les dalles plates sont discutees et l'influence des dimen-
sions f inies des poteaux est etudiee.

Einleitung

Der Bemessung von Stahlbetonplatten werden üblicherweise
die nach der Kirchhoffsehen Theorie dünner elastischer Platten

mit kleinen Durchbiegungen berechneten Momente
zugrunde gelegt. Die zur sicheren Aufnahme dieser Momente
erforderliche Bewehrung wird entweder auf zulässige
Spannungen oder auf Bruch bemessen.

Plastische Berechnungsmethoden für Stahlbetonplatten werden

in zunehmendem Mass verwendet, sind aber noch wenig
verbreitet. Recht bekannt ist die Fliessgelenklinientheorie.
Mit ihr werden nach der kinematischen Methode der
Plastizitätstheorie obere Grenzwerte für die Traglast von Platten
berechnet. Dabei wird von als kinematisch zulässig bezeichneten

Bewegungszuständen ausgegangen, welche die kinematischen

Beziehungen und Randbedingungen erfüllen. Die
statische Methode der Plastizitätstheorie geht von als statisch
zulässig bezeichneten Spannungszuständen aus, welche die
Gleichgewichtsbedingungen und die statischen Randbedingungen

erfüllen. Mit ihr werden untere Grenzwerte für die
Traglast berechnet.

Das oben erwähnte Vorgehen, bei dem die mit einer elastischen

Berechnung ermittelten Momente einer Bruchbemessung

zugrunde gelegt werden, ist ein spezielles Vorgehen
nach der statischen Methode. Für ein gegebenes System mit
gegebener Belastungskonfiguration können aus der unter
einer bestimmten Belastungsintensität einzigen elastisch
verträglichen Lösung durch Überlagerung von Eigenspannungs-
zuständen weitere mögliche Gleichgewichtslösungen gewonnen

werden.

Anstatt von elastisch verträglichen Lösungen auszugehen,
um andere Gleichgewichtslösungen zu erhalten, können
allgemein geeignete Funktionen für die Momente angesetzt
werden, mit denen die Gleichgewichtsbedingungen und die
statischen Randbedingungen erfüllt werden. Ein einfaches
Beispiel dieser Art der Anwendung der statischen Methode
ist die Streifenmethode. Nach der der Streifenmethode
zugrundeliegenden Vorstellung wird die auf eine Platte
aufgebrachte Belastung über zwei Scharen paralleler Plattenstreifen

in zwei zueinander senkrechten Richtungen zu den
Stützungen abgetragen. In vielen Fällen führt die in der Handha¬

bung einfache Streifenmethode zu praktisch brauchbaren
Ergebnissen. Für die Behandlung allgemeinerer Fälle werden
in der Regel Polynomansätze für die Momente verwendet.
Die in den Ansätzen auftretenden Konstanten werden unter
Beachtung der Gleichgewichtsbedingungen, der Rand- und
allfälliger Symmetriebedingungen sowie der Fliessbedingung
derart bestimmt, dass die zugehörige Belastung möglichst
gross wird. In manchen Fällen gelingt es schliesslich, der
Problemstellung gut angepasste Gleichgewichtslösungen durch
Kombination bekannter Momentenfelder zu gewinnen.

Im folgenden werden einige Gleichgewichtslösungen für
Flachdecken dargestellt. Es wird angenommen, dass die
Querkräfte keinen Einfluss auf das Fliessen haben, d. h. als
für das Gleichgewicht notwendige Reaktionskräfte betrachtet

werden können, gleich wie innere Kräfte eines starren
Körpers. Ebenso wird der Einfluss von Membrankräften
vernachlässigt. Nach einer Diskussion der speziellen Bedingungen

bei Plattenrändern und -ecken werden Lösungen für an
den Ecken und in der Mitte punktgestützte, quadratische
Platten angegeben. Möglichkeiten für die praktische Anwendung

der dargestellten Lösungen werden erörtert, und der
Einfluss endlicher Stützenabmessungen wird unter
Beschränkung auf den Fall von Innenstützen untersucht.

Gleichgewichtsbedingungen

Die Spannungsresultierenden an dem in Bild 1 (a) dargestellten

Plattenelement sind die Biegemomente

h/2 h/1

mx= \ axz dz, m. J er, zdz,
-h/2

'
-h/2

die Drillmomente
h/1

mv, m J" Txzdz
-h/2

und die Querkräfte
h/2 h/2

vk= f xzxdz, v
'• T-^dz.

-h/2
*

-h/2
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(a)

n, dy/ ' v„dx
vxdy

mxy dx

•n.. dx

+myx, dxldy

(v.+v. ,dx)dyx ¦ 'X,X
(mxv+mxv vdy)dxxy •¦¦¦xy,y ^(mx+mx xdx)dy

tvy+vyiydy)dx

c*

(my+myiydy)dx

(b)

"V,p dr

m,„drv_dr -ri,V

mr rd<p
d<jp rdr Ö(p

Xdmrru.r

09

(vr + vrir dr)(r + dr)d<p

m,pr+m,pr)rdr)(r + dr)d<p

mr + mr r dr)(r + dr)d(p

.p+rry.pdmldr u (mr(p+mrw,dcp)dr

(*lp+y,pd<p)dr
^^»

fz
dr-

(a)

?tndl
cw

Y-dt

(b)

(c)

V (vn+mtn,t)dt

(d)

dn .dt

mtn

Bild 1 Spannungsresultierende am Plattenelement, (a) Kartesische Koordinaten

Kräftegleichgewicht in Vertikalrichtung verlangt

(1) v+V«"°-
Dabei bedeutet ein Index x mit vorangestelltem Komma
partielle Ableitung nach x. Gleichgewicht der Momente liefert

mv.v +mUil- vv 0,
»1,\v+m,., - v, =0,

und durch Einsetzen in (1) ergibt sich

(3) m v vv + 2m v,.v, + m,,, + q 0

In Zylinderkoordinaten erhält man gemäss Bild l(b) die
entsprechenden Beziehungen

(4) (rvr)_r+v^9+qr =0,
(rm,) ,.- m^+ mr<Pi(p - rv,.= 0,

2 1

(5) —rn^+mri9J+—m^-Vy r)

und

1
^

1 1

(6) —(rmr): + ^«w- 7'«<p,, +

(b) Zylinderkoordinaten Bild 2 Plattenrand, (a) Spaiinuiigsiesultierende;
(b) Eisatzkrdfte für Drillmoment; (c) Resultierende
Stüt-kraft; (d) Eckkraft 2mm

bleibenden Spannungsresultierenden mr, m^ und vrsind nur
von r abhängig. Aus (6) folgt

(7) (rmr),r-m<p+ jqrdr=0.
0

Randbedingungen

Um die folgende Diskussion zu erleichtern ist es zweckmässig,

von den Randbedingungen nach der Kirchhoffschert
Plattentheorie [2, 7, 11] auszugehen. Bekanntlich genügt die
Durchbiegung w (x, y) der Plattenmittelebene der inhomogenen

Bipotentialgleichung

(8) wxxxx + 2 w xxyy + w., j,, AAw _ _£.

D '

Für hinsichtlich Belastung und Lagerung rotationssymmetrische
Fälle verschwinden die Grössen mrv und v^, und die ver-

der sogenannten Plattengleichung. Der Ausdruck

Eh3
<9> D=i2(T^)
bezeichnet die sogenannte Plattensteifigkeit, E den
Elastizitätsmodul und v die Querdehnungszahl. Für die
Spannungsresultierenden erhält man in Abhängigkeit von w

mx -D(wxx + vw.,,),
(10) m, =-D(w,,+ vw,vv),

mu m,v= -(1 -v)Dw,x,
und
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(11)
~D(wxx+ w.,,) v= -D(Aw),,,
-D(w.,A+w.,v)., -D(Aw).,.

An einem eingespannten Rand verschwinden die Durchbiegung

w und die Neigung der Durchbiegungsfläche in der zum
Rand orthogonalen Richtung. Bezeichnen gemäss Bild 2 (a) n
die zum Rand orthogonale und t die randparallele Richtung,
so lauten die Randbedingungen

(12) w=0, 0.

Da w.„ dem Rand entlang verschwindet, folgt weiter w.„, 0

Somit verschwindet gemäss (10)3 das Drillmoment m„t am
eingespannten Rand. Wegen w 0 ist ferner auch w„ am
Rand gleich Null. Zusammenfassend erhält man gemäss (10)
und (11) die Spannungsresultierenden

mn=-Dw„n, m, vm„ 0,
va -Dwiimn,v,= -Dw,wl.

An einem einfach gelagerten (frei gestützten) Rand
verschwinden die Durchbiegung und das am Plattenrand angreifende

Biegemoment, d. h.

(13) w=0, m„ 0.

Wie beim eingespannten Rand folgt aus w 0 das
Verschwinden der Krümmung w „ in der zum Rand parallelen
Richtung /. Aus m„ 0 folgt gemäss (10), die Beziehung w„„
+ vw„ 0. Da w„ verschwindet, ist auch w„„ und gemäss
(10) 2 ferner m, gleich null. Anstatt (13) können die äquivalenten

Randbedingungen

w 0, Aw 0

verwendet werden. Während die beiden Biegemomente mn
und m, verschwinden, treten im allgemeinen sowohl
Querkräfte als auch Drillmomente m„t auf. Da sich Lösungen der
Plattengleichung (8) nur zwei Bedingungen für die Durchbiegung

w beziehungsweise deren Ableitungen anpassen lassen,
was zwei Bedingungen für die gemäss Bild 2(a) auftretenden
drei Spannungsresultierenden m„, mln und v„ entspricht,
muss eine weitere Bedingung eingeführt werden. Nach einem
Vorschlag von Thomson und Tait [8] werden die Drillmomente

mtll gemäss Bild 2(b) in Anlehnung an das Prinzip von de

Saint Venant durch eine stetige Verteilung von Kräftepaaren
ersetzt. An den Grenzen zwischen den Elementen mit der
Länge dt heben sich die Kräfte jeweils gegenseitig bis auf den
Zuwachs m,„, dt auf. Der auf die Längeneinheit bezogene
Zuwachs m,„, ergibt zusammen mit der Querkraft v„ die im Bild
2(c) eingetragene resultierende Stützkraft v„ + mw,, für welche

nach (2), und unter Beachtung der Symmetrierelation

v„ + m„ mnn + 2mnl,(14)

folgt. An einer Plattenecke addieren sich die mm gemäss Bild
2(d) zur Eckkraft

(15) 2mnl.

An einem freien (kräftefreien) Rand würde man eigentlich
erwarten, dass alle Spannungsresultierenden verschwinden
und

0(16) m„ 0, m,„ 0,
setzen. Damit hätte man indessen für die der Plattengleichung

(8) genügenden Lösungen w eine Randbedingung
zuviel eingeführt. Wie beim einfach gelagerten Rand fasst man
deshalb die Querkräfte und die Drillmomente zusammen
und verlangt

(17) m„ 0, v,,+ m„,, 0.

Unter Beachtung von (10) und (2), erhält man aus (17)

w,w + vwu 0, w.,„,„ + (2-v)w.„„, 0

Diese Randbedingungen erhält man ebenso wie die für den
einfach gelagerten und den eingespannten Rand zusammen

mit der Plattengleichung (8) auch durch Anwenden des Prinzips

der virtuellen Verschiebungen und Betrachten der Variation

der in der Platte aufgespeicherten Formänderungsenergie
[11]. Dieser sehr elegante Weg wurde von Kirchhoff

Eingeschlagen und zwar für allgemeine Belastungen durch
Volumen-, Oberflächen- und Trägheitskräfte [2].

Aus der Sicht der statischen Methode der Plastizitätstheorie
vermag die beschriebene Behandlung von Drillmomenten
am Plattenrand nicht zu befriedigen. Ausgehend von
Untersuchungen über den Widerstand torsionsbeanspruchter
Stahlbetonträger wurde deshalb kürzlich versucht, eine nur
auf Gleichgewichtsüberlegungen beruhende Erklärung für
die Tragwirkung im Bereich von Plattenrändern zu geben, an
denen Drillmomente auftreten [1, 4]. Tatsächlich muss
gemäss Bild 3 in einer schmalen Zone der Breite b am Plattenrand

aus Gleichgewichtsgründen eine in z-Richtung wirkende

Querkraft V, existieren, deren Betrag gleich dem Drillmoment

mnt bezüglich der zum Rand normalen und tangentialen

Richtungen n und t ist,

(18) V,= mnn

sofern die Spannungen a, in der Randzone beim Fortschreiten

in /-Richtung nicht verändert werden, d. h.

(19) a,, 0 [-b^n^O]
vorausgesetzt wird, und an den Aussenflächen n 0 und z

± h/2 der Randzone keine Schubspannungen x,„ beziehungsweise

x,. auftreten. Zum Beweis wird die Randzone im
Schnitt n —b von der Platte abgetrennt und irgend eine
Lamelle der Dicke dzt im Abstand z, von der Plattenmittelebene
betrachtet, in der die Schubspannung x,„ wirke. Der elementare

Schubfluss tllldzi verursacht den Beitrag x,„ z, dz] zum
Drillmoment mm. Da in der Randzone (19) gilt und an ihren
Aussenflächen keine in «-Richtung wirkenden Kräfte
übertragen werden, kann der betrachteten Lamelle eine zweite
Lamelle im Abstand -z2 von der Plattenmittelebene
zugeordnet werden, die den Schubfluss x„, dzl in entgegengesetzter

Richtung aufnimmt und einen Beitrag x,„ z2 dzt zum
Drillmoment mnt liefert. Die Schubflüsse x„, dz{ in den Ebenen

z, und -z2 werden in der Randzone bis zum Rand n 0

auf Null abgebaut. Dadurch entstehen in der Randzone
Schubspannungen x,_, denen ein über die Höhe (z, + z2)

in Randzoneild3. Querkraft V

^
t'ii :

>-

r._dz^
r^ >K

z.-fz\ 2
tdz

dV.

rtndZi^"~^

c H
dmnL rntdz1 (Z1+V =dVt
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wirksamer elementarer Schubfluss mit Betrag x„, dzx und
damit eine elementare Querkraft

dV, x„, (z, + z2)

entspricht, die der Summe der Beiträge der beiden betrachteten

Lamellen zu m,„ gleich ist. Integration über alle Lamellen
bringt (18).

Die Breite b der Randzone kann nicht mit Gleichgewichtsüberlegungen

allein bestimmt werden. Nach der statischen
Methode der Plastizitätstheorie verlangt man eine minimale
Breite, damit die berechneten unteren Grenzwerte der Traglast

möglichst gross werden. Weitere Ausführungen zu dieser
Frage sind in [4] enthalten, wo speziell auf den Fall von
Stahlbetonplatten eingetreten wird.

Aus der Existenz der Querkräfte (18) folgen das Ergebnis (15)
für die Eckkraft und der zweite Summand linkerhand in
Gleichung (14) für den Beitrag der Drillmomente zu den
resultierenden Stützkräften.

Aufgrund der bisherigen Überlegungen werden für die im
vorliegenden Artikel enthaltene Behandlung nach der
statischen Methode der Plastizitätstheorie folgende statische
Randbedingungen unterschieden. An einem eingespannten
Rand gibt es keine statischen Randbedingungen, d. h. es können

beliebige Spannungsresultierende m„, m,„ und v„ gemäss
Bild 2(a) auftreten. An einem einfach gelagerten Rand
verschwindet das Biegemoment m„. Drillmomente und
Querkräfte können auftreten. Zusammen verursachen sie resultierende

Stützkräfte (14). An einem freien Rand müssen das

Biegemoment und die resultierende Stützkraft gemäss (17)
verschwinden. Sowohl Drillmomente als auch Querkräfte
können demnach auftreten, sind aber an die Bedingung (17)2
gebunden.

Wird an einem einfach gelagerten oder freien Rand einer
Stahlbetonplatte mit Drillmomenten gerechnet, so ist
grundsätzlich zur Aufnahme der Querkräfte V, eine entsprechende
Bewehrung anzuordnen [4, 6]. Diese kann beispielsweise aus
Steckbügeln gebildet werden, mit denen die Bewehrungen an
der Plattenunter- und -Oberseite miteinander verbunden werden

oder mit ZI-förmigen Enden der in Richtung der
Randnormalen verlegten Bewehrungsstäbe.

Zur Veranschaulichung dient das in Bild 4 dargestellte
Fachwerkmodell für eine im Grundriss rechtwinklige Ecke einer
bezüglich der Richtungen der beiden Randnormalen durch
reine Drillung beanspruchten Stahlbetonplatte. An der
Plattenoberseite und an der Plattenunterseite bilden sich zueinander

senkrechte, unter 45° zu den Plattenrändern geneigte
Betondruckstreben aus. Die Komponenten der Druckstrebenkräfte

in Richtung der Randnormalen werden durch zur
Plattenebene parallele Bewehrungen aufgenommen. Die zu
den Plattenrändern parallelen Komponenten werden durch
Betondruckstreben in den vertikalen Randebenen weitergeleitet.

Die Vertikalkomponenten der Strebenkräfte in den

Bild 4. Fachwerkmodell für Ecke einer Stahlbetonplatte

\.^^P=/-

Randebenen entsprechen der Querkraft V, m,„, vgl. (18).
Zu ihrer Aufnahme dient eine zur Plattenebene orthogonale
Bewehrung am Plattenrand.

Fliessbedingung

Der in Bild 5(a) dargestellte Mohrsche Kreis erlaubt die
graphische Deutung der Transformationsformeln

m„ mx cos29 + m, sin2 cp + mxx sin 2 cp

m,„ (m, - mx) sin cp cos cp + mxcos 2 cp

(20)

für die Biege- und Drillmomente in einem beliebigen Schnitt
mit der Normalen n, deren Richtung im kartesischen
Koordinatensystem x,y durch den Winkel cp festgelegt ist. Der
Punkt Q bezeichnet den Pol des Mohrschen Kreises.
Drillmomente mln werden positiv gerechnet, wenn der ihnen
entsprechende (rechtsdrehende) Momentenpfeil in die negative
//-Richtung, also zum betrachteten Schnittrand weist. Die
Hauptrichtungen sind durch

(21) tan2(p, 2m„/(m, - m,)

bestimmt.

Im folgenden wird vorausgesetzt, dass die betrachteten Platten

in beliebigen Richtungen positive Biegemomente bis zum
Betrag m0 und negative Biegemomente bis zum Betrag Xm0
aufnehmen können, mithin die Hauptmomente den Relationen

(22) — XmQ ^m, ^ m0, —XmQ ^ m2^ m0

genügen. In der Ebene Bild 5(b) mit den kartesischen
Koordinaten m,/m0 und m2/m0 begrenzen die Bedingungen (22)
das Quadrat ABCD. Bei Verwendung der Grössen mx, m,
und mx. erhält man anstelle von (22) die Bedingungen

(23)
(m0- mx)(m0- m,)^ m\y, mf^mx, mo^tn,,
(Xm0 + mx)(Xm0 + w,)^ m2X] ,Xm0^ —mx,Xmf^ - m.

Als Fliessflächen im Raum mit den kartesischen Koordinaten

mx/m0, ni, /m0 und m„ /m0 ergeben sich die in Bild 5 (c)
dargestellten, entlang BED sich schneidenden elliptischen
Kegel ABED und CDEB mit Spitzen A und C. Die Gleichungen

der Kegelflächen erhält man durch Ersetzen der Un-
gleichheitszeichen in (23), und (23)4 durch Gleichheitszeichen.

Die isotropen Fliessbedingungen (22) entsprechen jenen, die
in der Fliessgelenklinientheorie für «isotrop bewehrte»
Stahlbetonplatten verwendet werden [3, 9, 10]. Als «isotrope
Bewehrung» wird beispielsweise eine orthogonale Bewehrung

in x- und >-Richtung bezeichnet, die zur Aufnahme der
plastischen Momente m0 und —Xm0 in diesen beiden
Richtungen bemessen ist. Mit den Fliessbedingungen (22) wird
der Widerstand solcher Platten näherungsweise erfasst. Die
Näherung ist desto besser gerechtfertigt, je kleiner die
Bewehrungsgehalte und die Querkräfte sind [3, 6, 10].

Bei kleinen Bewehrungsgehalten ergeben sich verhältnismässig

dünne Betondruckzonen. Dies erlaubt einerseits eine

grosse Rotationsfähigkeit. Andererseits bleiben die möglichen

Fehler bei der Ermittlung der Hebelarme der inneren
Kräfte klein. Bei mittleren bis grossen Bewehrungsgehalten
kann der Widerstand von orthogonal «isotrop bewehrten»
Platten mit den Bedingungen (22) zum Teil erheblich
überschätzt werden, wenn die Hauptrichtungen der Momente
von den Bewehrungsrichtungen abweichen. Beim Auftreten
beträchtlicher Drillmomente bezüglich der Bewehrungsrichtungen

ist deshalb bei grösseren Bewehrungsgehalten
Vorsicht am Platz [4, 6].
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Wie bereits in der Einleitung erwähnt, wird hier angenommen,
dass die Querkräfte als Reaktionskräfte behandelt werden

dürfen, die keinen Einfluss auf das Fliessen haben. Diese
Annahme ist nur bei verhältnismässig kleinen Querkräften
zulässig und muss in jedem Fall auf ihre Berechtigung
geprüft werden. Eine entsprechende, für die Praxis geeignete
Kontrolle besteht in der Beschränkung nomineller
Schubspannungen [6]. Dabei stützt man sich auf die Modellvorstellung

einer Sandwichplatte, deren die Querkräfte übertragender
Kern nicht überbeansprucht werden darf. Für den Fall

grosser Querkräfte, wie sie bei der Einleitung konzentrierter
Kräfte oder Stützenreaktionen auftreten, sind spezielle
Überlegungen und Massnahmen erforderlich, um der Gefahr
eines Durchstanzens zu begegnen [6].

Punktgestützte Quadratplatten

An den Ecken gestützte Quadratplatte unter gleichmässig
verteilter Flächenlast

Dem Ansatz

mx m0(l -
AxL \
l2 )'

(24) m, m„ (l - 4j2\
l2 )'

Axy

für die in Bild 6 (a) dargestellte, in den Eckpunkten B, D, F
und H gestützte quadratische Platte mit freien Rändern
entspricht nach der Gleichgewichtsbedingung (3) die gleichmässig

verteilte Flächenlast

(25) q o ,2
m,
l2

Aus (2) folgen die Querkräfte

Ax
vx=-m0-jT,

Ay
l2

An den Plattenrändern werden die Randbedingungen (17)
erfüllt. Den gemäss (15) resultierenden Eckreaktionen 2m0
entsprechen nach (18) Querkräfte V, in den Plattenrandzonen,
deren Beträge von den Plattenecken bis zu den Randmitten
linear von m0 auf Null abnehmen. Die Fliessbedingung (23),
für die positiven Momente wird in sämtlichen Punkten der
Platte gerade erfüllt. Die Fliessbedingung (23)4 für die negativen

Momente wird mit X 1 nirgends verletzt und nur in
den Eckpunkten der Platte gerade erfüllt. Die in Bild 6 (b)
eingetragenen Hauptmomententrajektorien sind Hyperbeln
mit den Gleichungen

(x —y)(x +y) konst., xy konst.

Der betrachtete Gleichgewichtszustand ist mit Bruchmechanismen

verträglich, welche Fliessgelenklinien entlang der
Geraden AOE oder COG in Bild 6 (a) aufweisen. Mithin
entspricht die Gleichung (25) nicht lediglich einem unteren
Grenzwert, sondern im Rahmen der vorausgesetzten Annahmen

dem exakten Wert der Traglast. Die damit beschriebene
vollständige Lösung des Problems geht auf Nielsen zurück [5].

In einer neuen Untersuchung wurden nicht die Fliessbedingungen

(22) vorausgesetzt, sondern die Annahmen, dass der
Beton eine unbeschränkte Druckfestigkeit, aber keine
Zugfestigkeit besitzt [4], Unter dieser Voraussetzung wird die auf
die Platte aufgebrachte Belastung nicht wie bei einer
Sandwichplatte über den schubbeanspruchten Kern, sondern im
Sinne einer Sprengwerkwirkung zu den Plattenrändern und
diesen entlang zu den Eckstützen übertragen.

J£
+ n

2 |y

l,m tn

£
,N

zKJ^ r/ M mn

T V^~7L

Q

T»Y^

(a)

//

o
1 A

/
#Z

1 m^_ -X
m,

-X D

B

"m0
1 A

'mxy\
Kmo\

-X \ \ \\^ \\ 1 mx^\ \\ mo

C -X D

(b) (c)

Bild 5. Spannungstransformation und Fliessbedingung, (a) Mohrscher
Momentenkreis; (b) Fliessbedingung in der Ebene m ] /m q m 2/m q ; (c) Fhessßäche im
Raummx/mQ m /»Iq m xy /mj

Bild 6. An den Ecken gestützte Quadratplatte unter gleichmässig verteilter
Flächenlast, (a) Bezeichnungen; (b) Hauptmomententrajektorien
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Bild 7 An den Ecken gestützte Quadratplatte unter gleichmässig verteilten
Randlasten, (a) Zwei gegenüberliegende Ränder belastet; (b) Alle Ränder belastet

Bild 8. In der Mute gestützte Quadratplatte, (aj Mohrscher Momentenkreis;
(b) Gleichmässig verteilte Randlasten und Ecklasten; (c) Gleichmässig verteilte
Randlasten

mtna

Z<p

¦P x dp ]R mn

^
*T

.q /

V 1/2-

=>H.

1/2

1/2

1/2 -I

F
G H

t
t/2

\ LV /-L
V

E o[

V/
L \q\\

A 1lB X

—L/2-
c

An den Ecken gestützte Quadratplatte unter gleichmässig
verteilten Randlasten

Die in Bild 7(a) dargestellte, an den Ecken punktförmig
gestützte quadratische Platte mit freien Rändern wird an den
beiden gegenüberliegenden Rändern HAB und DEF durch
die gleichmässig verteilten Linienlasten q belastet. Die
vollständige Lösung für dieses Problem wurde ebenfalls von
Nielsen angegeben [5], Den Momenten

(26) mx 0 m0(l-
4v
p). mvl. mn

Axy

entsprechen gemäss (2) die Querkräfte

Ax
»o/2

Ay
l2

Die Flächenlast q verschwindet nach (3) in allen Punkten der
Platte. An den Rändern BCD und FGH werden die
Randbedingungen (17) erfüllt. An den Rändern HAB und DEF ergeben

sich nach (14) die Linienlasten

(27) q A ?f,
die mit den Eckreaktionen 2m 0 im Gleichgewicht sind. Die
Fliessbedingung (23), für die positiven Momente ist entlang
der x-Achse und an den beiden belasteten Rändern gerade
erfüllt und sonst nirgends verletzt. Die Fliessbedingung (23)4
für die negativen Momente wird mit X 1 nirgends verletzt
und nur in den Eckpunkten der Platte gerade erfüllt. Der
betrachtete Gleichgewichtszustand ist mit einem Bruchmechanismus

mit einer Fliessgelenklinie entlang der x-Achse
verträglich.

Werden gemäss Bild 7(b) alle Ränder belastet, so erhält man
mit dem Ansatz

2r/i 2* \ /i 2y \(28) mx= m0 ^~ - -p-j m, m0 |- - -Jr 1

Axy
l2

anstelle von (27) die Randlasten

(29) q 2
l

und die Querkräfte vx und v, verschwinden zusammen mit
der Flächenlast q in allen Punkten der Platte. Die
Fliessbedingungen (23), und (23)4 werden beide nirgends verletzt und
sind nur in den Eckpunkten der Platte gerade erfüllt.
Betrachtet man Bruchmechanismen mit unter 45° zu den
Plattenrändern geneigten geraden Fliessgelenklinien bei den
Plattenecken, so erhält man obere Grenzwerte für die
Traglast q. Lässt man den Abstand der Fliessgelenklinien von
den Plattenecken gegen null gehen, so folgt wieder (29). Der
untersuchte Gleichgewichtszustand ist mit dem Grenzfall
der betrachteten Bruchmechanismen verträglich, und (29) ist
der exakte Wert der Traglast.

In der Mitte gestützte Quadratplatte unter gleichmässig
verteilter Flächenlast

Der Mohrsche Kreis Bild 8 (a) entspricht den Momenten

(30) mx 0, m,. —0 (1- >J ™„

beziehungsweise

mr rn 0
tan2 cp, ™<t> - m0, mrv 0

Dieser Ansatz wurde (mit umgekehrten Vorzeichen) von
Nielsen der vollständigen Lösung für das Problem der im
Zentrum durch eine Einzellast F belasteten, am Rand
einfach gelagerten, regelmässig vieleckigen Platte zugrunde
gelegt [5], Die Traglast einer n-eckigen Platte ist
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F= 2n mn tan OD-

Für den Fall der quadratischen Platte, n 4, werden die
Verhältnisse mit Bild 8 (b) näher untersucht. Aus Symmetriegründen

kann man sich auf die Betrachtung des Dreiecks
OAB beschränken. Aus (30) folgen mit (2) und (3) die
Beziehungen

i y
vx= m0— v, m0 —$¦, q 0.

Im Zentrum 0 der Platte wird die Stützenreaktion 8m0
eingetragen. An den Plattenrändern wirken nach (14) die Linienlasten

q A -y>

und in den Ecken gemäss (15) nach oben gerichtete Eckkräfte
2m0 Die Fliessbedingung (22) ist mit X 1 für die negativen
Hauptmomente mv über die ganze Platte gerade erfüllt. Die
Fliessbedingung für die positiven Hauptmomente mr wird
nirgends verletzt und nur entlang den Diagonalen BOF und
DOH gerade erfüllt (cp ± ti/4). Der betrachtete
Gleichgewichtszustand ist mit einem Bruchmechanismus mit
Fliessgelenklinien entlang den Diagonalen BOF und DOH verträglich.

Bildet man die Differenz der Momentenfelder (30) und (28)
und multipliziert man das Ergebnis mit dem Faktor 2/3, so
erhält man

(31)
/4x" 1\

/2V2 Ay2 \

(2y Sxy\

Diese Momente entsprechen dem in Bild 8 (c) dargestellten
Fall einer in der Mitte gestützten quadratischen Platte, die an
den freien Rändern mit den Linienlasten

Amn
(32) q -3
belastet wird. Aus (31) folgen mit (2) und (3) die Gleichungen

2
v mf v, mr q 0.zzL.

°3x' l<~"'° 3x2

An den Plattenrändern verschwinden die Biege- und
Drillmomente. Die Fliessbedingung (23)! für die positiven
Momente wird nirgends verletzt. Die Fliessbedingung (23)4 für
die negativen Momente wird mit X 1 ebenfalls nicht
verletzt und nur für v 0 gerade erfüllt. Der betrachtete
Gleichgewichtszustand ist mit einem Bruchmechanismus verträglich,

der Fliessgelenklinien entlang AOE und/oder COG
aufweist.

Multiplikation der Gleichungen (31) mit dem Faktor 3/2 und
Addition der Momente

/l 2x2\
ix=m0(--ir) 2f\

l2 m.. 0

-{ 2 _ fen
X f)

(33)

führt zu

(34) mx 0, m, m0(^-l),
Die Momente (33) entsprechen einem Ansatz nach der
Streifenmethode für eine an den Rändern einfach gelagerte
quadratische Platte, die durch die konstante Flächenlast

(35) 4 8 Ä
belastet wird. Die nach (33), (2), und (14) resultierenden
Stützkräfte 2m0/l werden durch Kombination mit den um

a

1/2

<
L/2

f1/2 H- /2

M

b)
t> *

Bild 9. In der Mitte gestützte Quadratplatte unter gleichmässig verteilter
Flächenlast, (a) Bezeichnungen; (b) Hauptmomententrajektorien

den Faktor 3/2 vergrösserten Momenten (31) eliminiert.
Somit entsprechen die Momente (34) dem in Bild 9 (a)
dargestellten Fall einer in der Mitte gestützten Quadratplatte mit
freien Rändern, die mit der gleichmässig verteilten Flächenlast

(35) belastet wird. Aus (2) und (34) folgen die Querkräfte

m(
x (-£)• y_

X

Wie man feststellt, werden die Randbedingungen (16) erfüllt,
d. h., die Plattenränder sind gänzlich kräftefrei. Bild 9 (b)
zeigt die zu (34) gehörigen Hauptmomententrajektorien. Die
Fliessbedingung (23) i für die positiven Momente wird
nirgends verletzt und ist lediglich im Plattenzentrum 0 gerade
erfüllt. Die Fliessbedingung (23)4 für die negativen Momente
wird mit X 1 ebenfalls nicht verletzt und nur für y 0 gerade

erfüllt. Das Momentenfeld (34) ist mit Bruchmechanismen

verträglich, die Fliessgelenklinien entlang AOE und/
oder COG aufweisen. Mithin entspricht (35) dem exakten
Wert der Traglast.

Anwendungen

Unendlich ausgedehnte Flachdecken

Durch Zusammenfügen unendlich vieler Einzelplatten Bild
9 (a) erhält man eine unendlich ausgedehnte Flachdecke,
deren punktförmige Stützungen in einem quadratischen Raster
mit Stützenabstand / angeordnet sind. An den Verbindungsstellen

der einzelnen Platten dürfen aus Symmetriegründen
keine Querkräfte und keine Drillmomente auftreten. Hinge-
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gen können Biegemomente von einer Einzelplatte auf die
benachbarten übertragen werden. Die erste der drei bei den
Platten Bild 9 (a) erfüllten Randbedingungen (16) wird damit
aufgehoben, und die Fortsetzung der an den Verbindungsstellen

wirkenden Biegemomente in den einzelnen Platten ist
zu diskutieren. Aus Symmetriegründen genügt die Betrachtung

der Strecke AB in Bild 9 (a), an der Biegemomente mx
auftreten dürfen. Als einfachste Möglichkeit bietet sich der
Ansatz eines über die Strecke AB konstanten Moments mx

Am an, das im Innern der Einzelplatten eine Vergrösserung

aller Biegemomente um Am bewirkt. Wird die Fliessbedingung

(22) vorausgesetzt, so erhält man auf diese Weise aus
(35) die untere Eingrenzung

(36) q±A(\+X) ^
für die Traglast der unendlich ausgedehnten Flachdecke unter

gleichmässig verteilter Belastung.

Der Beweis von (36) stützt sich auf die Feststellung, dass (35)
einen unteren Grenzwert für die Traglast der am Rand
zusätzlich mit dem Biegemoment Am beanspruchten Einzelplatte

Bild 9(a) darstellt, wenn die Fliessgrenzen -m0 und
m0 um den Betrag Am vergrössert, d. h. die Fliessbedingungen

(22) durch

-AM0^m,^M0, -AM0^m2^M0
mit

AM0 m0 —Am, M0=m0 + Am "[IAml^m0]
ersetzt werden. Das Anbringen der Randmomente Am
bewirkt eine Vergrösserung der Biegemomente mx und m, in
(34) um Am und entsprechend eine Verschiebung des Mohr-
schen Kreises Bild 5 (a) um Am nach rechts. Die Änderung
der Fliessgrenzen entspricht einer Verschiebung des Quadrates

ABCD in Bild 5 (b) um den Betrag V2 A m in Richtung der
hydrostatischen Achse COB. Keiner der verschobenen
Spannungsbildpunkte liegt ausserhalb der verschobenen
Fliessgrenzen. Mithin folgt mit (35)

iL l2

und daraus unter Beachtung von

(1 + A) M0 2m0

die Relation

q^4(l+A)^
Ersetzen der grossen Buchstaben M und A durch die bisher
verwendeten kleinen m und X bringt (36).

Da das Ergebnis (36) für punktförmige Stützungen gilt und
eine Vergrösserung der Stützenabmessungen bei sonst
gleichen Bedingungen nicht eine Verminderung der Traglast
nach sich ziehen kann, ist (36) für beliebige Stützenabmessungen

gültig. Zusammen mit dem im folgenden Abschnitt
ermittelten oberen Grenzwert erhält man für die Traglast
unendlich ausgedehnter Flachdecken mit quadratischem
Stützenraster und punktförmigen Stützungen die Eingrenzung

(37) 4^ ql2
(l+X)ml

^2%.

Randfelder und Eckfelder von Flachdecken

Die bisherigen Untersuchungen können für Randfelder und
Eckfelder von Flachdecken angepasst und weiter verwendet
werden.

Für den Fall einfach gelagerter oder eingespannter Ränder
können die Momentenfelder von den äusseren Innenfeldern

im Sinne einer Streifen- oder Balkentragwirkung bis zum
Rand fortgesetzt werden. Entspricht beispielsweise der Punkt
O in Bild 9 (a) einer der äussersten Innenstützen einer Flachdecke,

die einen zur j-Achse parallelen Rand x L > 1/2
hat, so kann die im Bereich 1/2 ^ x ^ L aufgebrachte
Belastung gemäss (3) durch eine entsprechende Veränderung der
Biegemomente mx allein zum Rand abgetragen werden.

Für Decken mit freien Aussenrändern, die in regelmässigen
Abständen gestützt werden, können ebenfalls statisch zulässige

Spannungszustände angegeben werden. Zu diesem Zweck
trennt man die in Bild 9(a) dargestellte Platte in Gedanken
entlang dem Schnitt AOE in zwei gleiche Teile. Die gemäss
(34)2 im Schnitt AOE auftretenden Momente m, -m0
bringt man durch Superposition des konstanten Spannungszustandes

m, m0 mit entsprechenden Randmomenten an
den Rändern BCD und FGH zum Verschwinden. Fügt man
nun die beiden getrennten Plattenteile an den eben erwähnten

Rändern neu zusammen, so erhält man einen statisch
zulässigen Spannungszustand für eine in den Mitten zweier
gegenüberliegender Ränder gestützte quadratische Platte unter
der gleichmässig verteilten Flächenlast (35). An den Rändern
dieser Platte sind die Randbedingungen (16) erfüllt. Aus
Symmetriegründen kann man sich auf die Betrachtung der
Dreiecke OAB und OBC in Bild 9 (a) beschränken. Die
Momente im Teil OAB sind

(38a) mv 0, my=m0 -^j mxr=m0 ^ (\

und jene im Teil OBC

(38b) mx =m0 (^~ -l),

4x2
l2

m, m.

mxy m0 —

Der Flächenlast (35) entsprechen die Stützenreaktionen 4m 0.

Wie man leicht nachprüft, verletzen die Momente (38a) und
(38b) die Fliessbedingungen (22) oder (23) in bestimmten
Bereichen im Innern der Platte. Die Fliessbedingungen werden
nicht verletzt, wenn die Momente (38a) und (38b) mit dem
Faktor (V5 - l)/2 multipliziert werden. Da (35) mit dem
oberen Grenzwert für die Traglast übereinstimmt, der sich
für einen Bruchmechanismus mit einer Fliessgelenklinie
entlang der Kontaktstelle BCD der beiden Plattenteile ergibt,
folgt die Eingrenzung

(39)
VInl y JA^ im. ^1

Der in (39) angegebene untere Grenzwert kann vermutlich
durch Überlagern von Spannungszuständen, denen Drillmomente

und damit nach (18) Querkräfte an den unterstützten
Rändern entsprechen, noch beträchtlich gesteigert werden.
Dieses Problem wird hier aber nicht weiter untersucht. Zum
ursprünglichen Problem der Fortsetzung der Momentenfelder

von den äussersten Innenfeldern zu den am freien Aus-
senrand gestützten Randfeldern zurückkehrend ist lediglich
zu bemerken, dass man ähnlich wie bei einfach gelagerten
und eingespannten Rändern vorgehen kann, indem man die
betrachteten statisch zulässigen Spannungszustände am
Rand mit jenen im Innern der Decke vereint.

Das Vorgehen zur Gewinnung statisch zulässiger Spannungszustände

in Eckfeldern entspricht jenem bei Randfeldern.
Für einfach gelagerte und eingespannte Ränder können
bekannte statisch zulässige Spannungsfelder für quadratische
und rechteckige Platten benützt werden. Für den Fall einer

an der Ecke gestützten Flachdecke steht der Ansatz (24) zur
Verfügung.
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ß/7rf 70. Endliche Stützenabmessungen, (a) Am Innenrand eingespannte Kreisringplatte unter gleichmässig verteilter Flächenlast und Randmoment am freien
Aussenrand; (b) Radius des Fliessgelenkkreises; (c) Traglast in Abhängigkeit des Stützenradius; (d) Flachdecke mit regelmässig sechseckigem Stützenraster; (e) Quadratischer

Stützenraster

Endliche Stützenabmessungen

Um den bisher vernachlässigten Einfluss der Stützenabmessungen

zu untersuchen, wird die in Bild 10 (a) dargestellte,
am Innenrand eingespannte Kreisringplatte betrachtet, an
deren Aussenrand die Randmomente mr m0 aufgebracht
werden und die mit der gleichmässig verteilten Flächenlast q
belastet wird. Unter Voraussetzung der Fliessbedingung (22)
wurde die vollständige Lösung dieses Problems in [3] gegeben.

Für den inneren Plattenteil r0 d rL /-, wird der die
Gleichgewichtsbedingung (7) erfüllende Ansatz

(40) m,.= —Xm0+ — - qr_
6

qr\ Xmt

verwendet und für den äusseren Teil r\ d r d. r2 der die
Gleichgewichtsbedingung (7) und die Randbedingungen am
Aussenrand befriedigende Ansatz

(41) m,.= m 0; m„ + m

Bezeichnet man die Hauptmomente mrund mlp mit ml und
m2, so entsprechen die Momente (40) Punkten, die auf der
Seite CD des Quadrats ABCD in Bild 5 (b) liegen und die
Momente (41) Punkten auf der Seite DA. Aus der Randbedingung

mr (r0) -X m0 und den Übergangsbedingungen

c=f(^-3r0r2),

(1+X)m0- ir\-^rr2 + -^(rl-Srorl),• 2 '2 6 ¦' '
6r,

_i!+X)mQ= j-(r2-r2).

Es folgt weiter

(42) r,- \j\
und

(43) q

rar\ r3

2{\+X)m,

_(±r r2_ 1_3 V/3

Der in Bild 10(a) dargestellte Bruchmechanismus ist mit
dem betrachteten Spannungszustand verträglich. Der innere
kreisringförmige Plattenteil r0 d r d r, wird zum Mantel
eines Kegelstumpfs. Der äussere Plattenteil rxdrdr2 wird
als starrer Körper rein translatorisch in Richtung der z-Achse
verschoben. An den Stellen r r0 und r r, ergeben sich
Fliessgelenkkreise.

In Bild 10 (b) ist der auf den Plattenradius r2 bezogene Radius
r, des äusseren Fliessgelenkkreises in Abhängigkeit des

bezogenen Stützenradius r0/r2 aufgetragen. Für punktförmige
m,.(/-i) m0sowiem(p(r]) -Xm0 folgen die Beziehungen Stützung, r0 0, verschwindet auch r,, d.h., die beiden
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Fliessgelenkkreise, in denen positive und negative plastische
Momente in radialer Richtung auftreten, fallen im
Plattenzentrum zusammen. Der für die praktische Anwendung bei
Flachdecken übliche Bereich der Stützenabmessungen kann
etwa mit 0,04 d r0/r2 ^0,12 eingegrenzt werden. Innerhalb
dieser Grenzen misst der Fliessgelenkradius r, 39 bis 56% des
Plattenradius r2.

Die Gleichung (43) ist in Bild 10 (c) ausgewertet. Mit zuneh-
mendenj Stützenradius ergibt sich eine beträchtliche Steigerung

der Traglast. Im Vergleich zum Wert für punktförmige
Stützung erhält man im Bereich 0,04 d r0 /r2 d 0,12 einen
Zuwachs von 18 bis 47%.

Die für die Kreisringplatte diskutierten Ergebnisse können
leicht auf Flachdecken angewendet werden.

Zunächst wird mit Bild 10(d) eine Flachdecke betrachtet,
deren kreiszylindrische Stützen in einem regelmässig sechseckigen

Raster mit Stützenabstand / angeordnet sind. Wird die
Flachdecke nur innerhalb der den sechseckigen Flächen A

-/3 /2/2 bei jeder Stütze einbeschriebenen Kreise mit Radius

1/2 mit der gleichmässig verteilten Flächenlast q belastet,
so stellt (43) mit r2 1/2 den exakten Wert der Traglast dar.
In den unbelasteten Spickein zwischen den Kreisen, deren
Anteil an der gesamten Fläche der Flachdecke 9 % beträgt,
herrscht ein hydrostatischer Spannungszustand m, m2
m0. Wird die ganze Flachdecke mit der gleichmässig verteilten

Flächenlast q belastet, so erhält man aus der Betrachtung
von Bruchmechanismen gemäss Bild 10 (a) bei jeder einzelnen

Stütze obere Grenzwerte für die Traglast. Der kleinste
obere Grenzwert folgt durch Einsetzen von r2 fA/n in (43).
Andererseits ergibt sich aus der Betrachtung der dem Sechseck

mit Fläche A umschriebenen Kreisplatte mit Radius r2

l/^Pi aus (43) ein unterer Grenzwert für die Traglast der
vollbelasteten Decke. Für punktförmige Stützung folgt die
Einschränkung

(44) 6 d <l'
(1+X,)mc ^ 4 7t

V3

deren untere Grenze um 17% unter der oberen liegt.

Für Flachdecken, deren Stützen gemäss Bild 10 (e) in einem
quadratischen Raster mit Stützenabstand / angeordnet sind,
können ähnliche Überlegungen angestellt werden. Wird die
Flachdecke nur innerhalb der den Flächen A l2

einbeschriebenen Kreise belastet, d. h. auf einer Fläche von 79%
der Gesamtfläche, so folgt aus (43) mit r2 1/2 der exakte
Wert der Traglast. Zwischen den einzelnen Kreisen herrscht
der hydrostatische Spannungszustand mx m2 m0. Für
Vollbelastung der Decke erhält man mit r2 fA/% und
r2 //V~2 aus (43) wiederum obere und untere Grenzwerte
für die Traglast. Für punktförmige Stützung ergibt sich die
mit (37) zusammenfallende Einschränkung

(45) 4^ jjvfyn» ^2n'
deren untere Grenze um 36% unter der oberen liegt.

Bemerkungen

Im Rahmen der Theorie starr-plastischer Platten, die der
Fliessbedingung (22) folgen, sind alle im Abschnitt
«Punktgestützte Quadratplatten» beschriebenen Lösungen vollständige

Lösungen, d. h., die betrachteten statisch zulässigen
Spannungszustände sind mit kinematisch zulässigen
Bruchmechanismen verträglich. Die Lösungen für die drei in den
Bildern 7(b), 8 (c) und 9 (a) dargestellten Probleme sind neu.

Gemäss (31)3 und (34)3 treten an den freien Rändern der
Platten Bild 8 (c) und Bild 9 (a) keine Drillmomente auf. Die

Felder (31) und (34) lassen sich deshalb besonders leicht
fortsetzen und mit anderen Momentenfeldern kombinieren. Für
viele praktische Anwendungen wird damit die Ermittlung
statisch zulässiger Spannungszustände erleichtert [10].

Die Anwendung der dargestellten Gleichgewichtslösungen
ist nicht an die Bedingung geknüpft, dass die Platten einen
über ihre ganze Fläche konstanten Widerstand aufweisen.
Vielmehr kann die Bewehrung innerhalb der konstruktiven
Grenzen dem Momentenverlauf entsprechend derart abgestuft

werden, dass die Fliessbedingungen (22) oder (23) mit
über die Platte veränderlichen Werten m0 und X nicht
verletzt werden.

Punktförmige Stützungen sind in Wirklichkeit unmöglich.
Die unter der Annahme verschwindender Stützenabmessungen

ermittelten Lösungen entsprechen einem theoretischen
Grenzfall, können aber mit einfachen Anpassungen zur
Gewinnung statisch zulässiger Spannungszustände für den Fall
endlicher Stützenabmessungen verwendet werden [10].

Auf die wichtige Frage, inwiefern die Anwendung der
Fliessbedingungen (22) auf Stützenbereiche von Flachdecken
angemessen ist, und auf die Zusatzfrage, wodurch die
Bedingungen (22) allenfalls zu ersetzen sind, wird hier nicht näher
eingegangen. Im Rahmen des Forschungsprojektes
«Vorgespannte Platten» sind am Institut für Baustatik und
Konstruktion der Eidgenössischen Technischen Hochschule Zürich
unter der Leitung von Prof. Dr. Bruno Thürlimann seit einiger

Zeit theoretische und experimentelle Untersuchungen im
Gange, die der Abklärung dieser Fragen dienen. Erste Ergebnisse

dieser Untersuchungen wurden im Normvorschlag [6]

berücksichtigt.

Nach der Theorie dünner elastischer Platten mit kleinen
Durchbiegungen ergeben sich im Stützenbereich von
Flachdecken grosse Spannungskonzentrationen. Damit kann
erklärt werden, dass sich bei vielen praktischen Anwendungen
bereits unter verhältnismässig kleinen Lasten, meist schon
unter Eigengewicht, Risse in den Stützenbereichen einstellen.

Mit der Rissbildung verbunden ist eine Umlagerung der
inneren Kräfte und ein entsprechendes Abweichen von dem
für die homogene elastische Platte berechneten Spannungs-
zustarid. Durch Zwängungen, die stets vorhanden sind,
rechnerisch aber praktisch nicht erfasst werden können, und
durch die in Wirklichkeit wechselnden Belastungszustände
ergeben sich weitere Kräfteumlagerungen. Es ist deshalb
vollkommen unrichtig, wenn man das heute übliche
Bemessungsvorgehen damit begründen will, dass man mit den nach
der elastischen Plattentheorie berechneten Momenten den
wirklichen Spannungszustand «mit ausreichender Genauigkeit»

erfasse. Dieses Vorgehen findet seine Rechtfertigung
vielmehr darin, dass die elastische Plattentheorie statisch
zulässige Spannungszustände liefert, die nach der statischen
Methode der Plastizitätstheorie für eine Bruchbemessung
verwendet werden können.

Beschränkt man sich für die Bemessung auf die Betrachtung
der nach der elastischen Plattentheorie ermittelten Momente,

so ergeben sich erfahrungsgemäss oft wenig rationelle
Lösungen. Dem Wunsch nach grösserer Freiheit bei der praktischen

Bemessung kommt die statische Methode der
Plastizitätstheorie, nach der irgendeine Gleichgewichtslösung zu
verwenden ist, die nicht zu einer Überbeanspruchung des

Materials führt, in höchst willkommener Weise entgegen.
Wird eine Platte auf dieser Grundlage bemessen, so liegt ihre
Traglast, sofern ihr Verformungsvermögen ausreicht, nach
dem statischen Grenzwertsatz in keinem Fall unter der zur
betrachteten Gleichgewichtslösung gehörigen Belastung. Der
Kräfteverlauf kann bis ins Detail verfolgt werden, und eine

entsprechende konstruktive Durchbildung wird ermöglicht.

Jede Gleichgewichtslösung enthält Aussagen über die
Momente in allen Punkten der betrachteten Platte. Für die Be-
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messung können Gleichgewichtslösungen deshalb unmittelbar
verwendet werden. Im Gegensatz dazu erscheinen in

einer Fliessgelenklinienlösung jeweils nur die Momente, die
bei der Formulierung des Prinzips der virtuellen Leistungen
für den untersuchten Bruchmechanismus im Ausdruck für
die virtuelle Leistung der inneren Kräfte auftreten. Bei
Verwendung der Fliessbedingungen (22) sind dies die Biegemomente

entlang den Fliessgelenklinien. Im Vergleich zu einer
Gleichgewichtslösung liefert deshalb die Betrachtung eines
einzelnen Bruchmechanismus hinsichtlich der der Bemessung

zugrunde zu legenden Momente keine gleichwertigen
Aussagen. Allerdings ist auch der für eine Fliessgelenklinienlösung

erforderliche Aufwand geringer als der für eine
Gleichgewichtslösung notwendige. Darum ist es meist viel
leichter, gute obere Grenzwerte für die Traglast zu gewinnen
als gleich gute untere Grenzwerte. Erst die Variation über
alle kinematisch zulässigen Bewegungszustände und die
Variation über alle statisch zulässigen Spannungszustände
entsprechen zwei zueinander dualen Betrachtungsweisen, die zu
zusammenfallenden oberen und unteren Grenzwerten für
die Traglast und zu verträglichen Spannungs- und
Verformungsfeldern führen. Aus dem Gesagten geht hervor, dass
sich Fliessgelenklinienlösungen in erster Linie für die
Überprüfung einer im Entwurf vorliegenden, nach der statischen
Methode der Plastizitätstheorie durchgeführten Bemessung
eignen. Für hinsichtlich Geometrie und Belastungskonfiguration

einfache Systeme und insbesondere für den in der Praxis

häufig auftretenden Fall, dass in einer Platte von vornherein
bereichsweise konstante Widerstände auftreten, deren

Grössen noch festzulegen sind, leisten Fliessgelenklinienlösungen
aber auch bei der Bemessung direkt nützliche Dienste.

Der geschickte Ingenieur wird nicht die eine oder andere
Methode bevorzugen, sondern versuchen, diese je nach der
Problemstellung derart einzusetzen, dass sie sich gegenseitig
ergänzen und bei möglichst geringem Aufwand zu einer der
Problemstellung angepassten, sicheren Bemessung führen.
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