Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 99 (1981)

Heft: 3

Artikel: Blockheizkraftwerk im Kunstmuseum Basel

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-74412

Nutzungsbedingungen

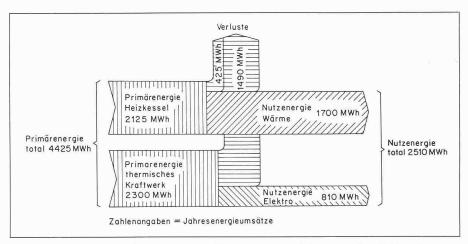
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

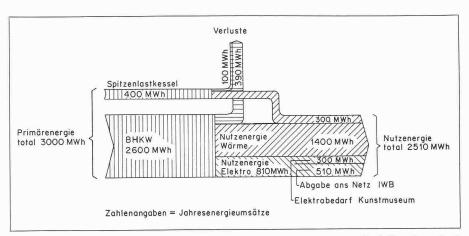
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

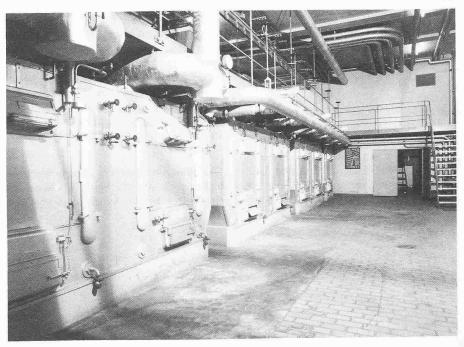
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch


Blockheizkraftwerk im Kunstmuseum Basel

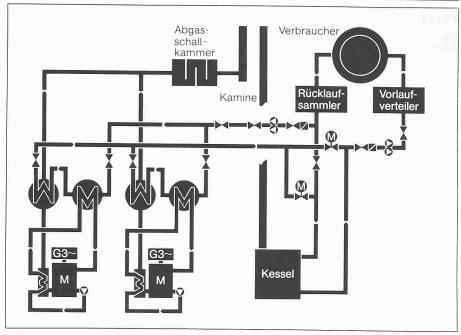
Der Energiepolitik kommt heute eine sehr grosse Aktualität zu. Vor dem Hintergrund der sich verknappenden Energiereserven werden allenthalben Studien und Konzepte erarbeitet, wie einerseits Energie eingespart werden könnte und wie andererseits die zukünftige Energieversorgung durch das Hinzufügen von neueren, alternativen Techniken auf eine breitere Basis gestellt werden könnte. Eine wichtige Stellung nimmt in allen diesen Konzepten die sog. Wärme-Kraft-Koppelung ein. Diese strebt an, den Umwandlungsprozess von Primärenergie (heute zur Hauptsache Erdöl und Erdgas) zu Wärmeenergie optimal zu führen. Das Ziel wird erreicht durch die Erzeugung von hochwertiger Kraft (in Form von Antriebsenergie oder Elektrizität) mit einer Verbrennungsmaschine und die Ausnützung der gleichzeitig anfallenden Wärme. Da für reine Wärmeanwendungen heute etwa 50 Prozent der Primärenergie verwendet wird, ist das Potential für die Anwendung der Wärme-Kraft-Koppelung sehr gross. Schon bisher ist diese Technik im industriellen Bereich und bei der Fernwärmeversorgung im grossen Massstab angewendet worden. Die neuere Entwicklung führt nun zum Einsatz analoger Techniken im kleineren Massstab zur Deckung des Komfortwärmebedarfs in Gebäuden. Die erzeugte Elektrizität wird zum Teil im selben Gebäude für Beleuchtung usw. gebraucht, etwaige Überschüsse oder Mankos müssen vom öffentlichen Stromversorgungsnetz ausgeglichen werden. Generell wird unter Vermeidung der Übertragungsverluste auf Hochspannungstransportleitungen direkt in das Niederspannungs-Verteilnetz eingespiesen. Solche Systeme sind heute zur Betriebsreife ausentwickelt und werden unter dem Namen Blockheizkraftwerke am Markt angeboten. Im Kunstmuseum Basel wurde zum ersten Mal in der Schweiz diese neue Technik eingebaut.


Es sind hier zwei Blockheizkraftwerk-Moduln, bestehend aus je einem Erdgas-Motor mit angeflanschtem Generator aufgestellt. Die elektrische Leistung beträgt 90 kW je Modul und gleichzeitig können aus dem Motor-Kühlwasser und aus einem Abgas-Wärmetauscher 140 kW Wärme für die Raumheizung gewonnen werden. Mit beiden Moduln kann der Wärmebedarf bis zu einer Aussentemperatur von etwa 5°C gedeckt werden. Der erzeugte Strom wird zur Deckung des eigenen Bedarfs wie Beleuchtung, Lifts usw. gebraucht, und die eventl. Überschüsse werden ans

Flussdiagramm. Klassische Energieversorgung, Wärmeversorgung mit konventionellem Heizkessel

Flussdiagramm. Totalenergieanlage, Wärme- und Stromerzeugung mit Wärme-Kraft-Koppelung durch Blockheizkraftwerk

Blick in die Heizanlage des Basler Kunstmuseums

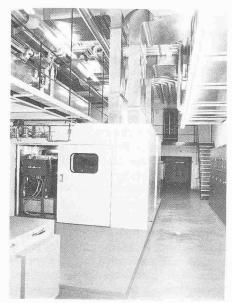

Netz abgegeben. Bei tieferen Temperaturen wird automatisch ein erdgasbefeuerter Spitzenkessel dazugeschaltet. Als Besonderheit werden in der Anlage im Kunstmuseum nicht die sonst üblichen Asynchrongeneratoren sondern Synchrongeneratoren verwendet. Sie erlauben, bei Ausfall des elektrischen Versorgungsnetzes, einen Notstrombetrieb aufrechtzuerhalten. Die dabei entstehende Wärme wird ans Heizungssystem abgegeben. Wenn ein solcher Notfall im Sommer auftritt, ist natürlich die Aufnahmefähigkeit des Heizsystems beschränkt, und der Notstrombetrieb lässt sich nur während einer beschränkten Dauer durchführen.

Verbrennungsmotoren sind lärmintensive Maschinen. Es müssen spezielle Massnahmen zur Eindämmung des Lärmpegels getroffen werden. Im Kunstmuseum wurde jeder Modul mit einer eigenen Schalldämmkapsel versehen. Zur Zuführung der Verbrennungsluft ist diese Kapsel an das Lüftungssystem angeschlossen. Die mit dieser Disposition erreichten Resultate sind sehr gut. Schon in der Heizzentrale liegt das Raumgeräusch angenehm tief, und im direkt über der Heizzentrale liegenden Bildersaal ist die Heizung nicht mehr zu hören.

Die wichtigsten Auslegungsdaten der Anlage im Kunstmuseum lauten wie folgt:

Wärmebedarf ca. 1700 MWh/a Strombedarf Okt.-Mai ca. 300 MWh Betriebszeit 1. Motoraggregat 5300 h/a Betriebszeit 2. Motoraggregat 3700 h/a Wärmeerzeugung beide Aggregate 1400 MWh/a Stromerzeugung beide Aggregate 810 MWh/a Wärmeerzeugung Spitzenkessel 300 MWh/a

Das entsprechende Energieflussbild kann mit dem Energieflussbild bei der klassischen getrennten Wärme- und Stromversorgung verglichen werden. Der Primärenergieeinsatz wird bei der Lösung mit Wärme-Kraft-Koppelung um 32 Prozent und die Verluste um 75 Prozent gesenkt. Zu beachten ist allerdings, dass die abgeführte Rauchgasmenge am Standort des Blockheizkraftwerkes höher ist, da ja auch Strom miterzeugt wird. Dagegen fallen die entsprechenden Emissionen am Standort thermischen Kraftwerks weg. des Durch Verwendung des umweltfreundlichen Brennstoffs Erdgas in der Anlage des Kunstmuseums wird hier der Schadstoffausstoss minimal gehalten.



Heizwasserführung der BHKW-Anlage. Es wird die Abwärme aus Abgas, Kühlwasser und Schmieröl ge-

Die Mehraufwendungen bei der Umstellung der Heizzentrale des Kunstmuseums durch den Einbau des Blockheizbetragen kraftwerkes Fr. 500 000. —.

Das Blockheizkraftwerk hat Anfang Oktober 1980 den normalen Heizbetrieb aufgenommen. Es sind bis jetzt nur geringfügige Störungen aufgetreten, die zum Teil auch auf die noch nicht ganz optimale Einregulierung zurückzuführen sind. Wegen dem noch nicht reibungsfrei eingespielten Service wurden aber dadurch doch einige Ausfallstunden verursacht, so dass der Spitzenkessel 260 h in Betrieb stehen musste. Die Motoren-Module liefen während diesen anderthalb Monaten zusammen 520 h und lieferten 73 MWh Strom ins Netz der Industriellen Werke Basel, während vom Netz nur 4 MWh bezogen werden mussten. In früheren Vergleichsperioden betrug der Strombezug jeweils etwa 48 MWh. Die Hochrechnung dieser Werte der ersten Betriebszeit auf eine ganze Heizperiode lässt erwarten, dass die bei der Auslegung errechneten Zahlen erreicht werden können.

Die Heizzentrale des Kunstmuseums bietet noch die Ausbaumöglichkeit für ein drittes Motor-Aggregat, wobei die

BHKW-Modul in Schallschutzkabine

Nebenaggregate bereits für diese dritte Maschine ausgelegt sind. Damit liessen sich dann weitere in der Nähe liegende Gebäude über eine Fernleitung mit Wärme versorgen. Im Moment wird untersucht, ob sich die ohnehin zu ersetzenden Heizungen des Antikenmuseums und des Zivilstandsamtes vom Blockheizkraftwerk des Kunstmuseums her speisen liessen.