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stigkeit von Metallen. - Sein Ehrentag
bietet den internationalen Fachorgani-
sationen, den Lehr- und Forschungs-
statten und den Ingenieuren der Praxis

willkommene Gelegenheit, ihm von
Herzen Dank zu sagen und fiir die wei-
tere Zukunft Wohlergehen zu wiin-
schen.

Steifigkeits- und Festigkeitskriterien fiir
die Aussteifungselemente seitlich
gestiitzter Rechteckrahmen

Von Pierre Dubas, Ziirich

Einleitung

Rechteckrahmen mit gelenkigen oder
eingespannten Fusspunkten, wie sie fir
Industrie- oder Lagerhallen Verwen-
dung finden, werden gelegentlich durch
in Riegelhohe angeordnete Ausstei-
fungselemente in waagrechter Richtung
gestiitzt. Dies geschieht in der Regel
mittels einer schubsteifen Dachscheibe
(Windverband oder entsprechend aus-
gebildete Dacheindeckung), die ihrer-
seits die Auflagerkrifte auf Wandschei-
ben abgibt.

Bei einer solchen Ausbildung stellt sich
die Frage der erforderlichen Steifigkeit
der aussteifenden Bauteile, damit die
Rahmen als unverschieblich angesehen
werden diirfen. Zudem sind entspre-
chende Festigkeitskriterien aufzustel-
len, wobei die Wirkung der Imperfek-
tionen der Rahmenkonstruktion zu be-
riicksichtigen ist.

Um die Untersuchungen zu vereinfa-
chen, wollen wir die stabilisierende
Wirkung der Dachscheibe am Hallen-
system durch die federnde Stiitzung
eines Einzelrahmens ersetzen. Selbstver-
standlich geht dabei die gegenseitige
Beeinflussung der mit der Dachscheibe
gekoppelten Rahmen verloren. Am
Schluss des Artikels wird gezeigt, wie
man die am einfachen Modell gewon-
nenen Ergebnisse auf die tatsdchlichen
Verhiltnisse tibertragen kann.

Knickbedingungen zur Ableitung
des Steifigkeitskriteriums

Allgemeine Uberlegungen

Bei einem symmetrisch ausgebildeten
und nur in den Stielachsen belasteten
Rechteckrahmen mit in waagrechter
Richtung federnd gestiitztem Riegel
kéonnen grundsitzlich die beiden im
Bild 1 dargestellten Knickformen auf-

treten. Massgebend ist selbstverstdnd-
lich die mit dem kleinsten Eigenwert.
Bei verschwindender Steifigkeit der
seitlichen Stiitzung knickt daher der
Rahmen in antimetrischer Form aus; im
Grenzfall einer starren Lagerung dage-
gen, tritt symmetrisches Knicken ein,
ist doch dabei die Einspannwirkung des
einfach gekrimmten Riegels (Bild 1,
rechts) auf die knickgefidhrdeten Stiele
wesentlich geringer als beim S-formi-
gen antimetrischen Verlauf (Bild 1, Mit-
te).

Bild 2 zeigt dieses Verhalten am Bei-
spiel eines Rechteckrahmens mit einem
Verhéltnis der Stielhohe zur Riegelldn-
ge h/b = 5/9 und mit gleichem Quer-
schnitt fiir alle Elemente. Die Ordina-

Adresse des Verfassers: Prof. Dr. O. Steinhardt, Dr.
sc. techn. h.c. (ETH), Lehrstuhl fiir Stahl- und

Leichtmetallbau, Universitat Karlsruhe, Kaiserstr.
12, D-7500 Karlsruhe.

ten entsprechen der Knicklast N, der
Stiele, bezogen auf die Verzweigungs-
last N, fir den Grenzfall einer ver-
schwindenden seitlichen Stiitzung (an-
timetrische Knickform). Als Abszisse
erscheint der spater gemadss Gl. (4) defi-
nierte Steifigkeitswert der Querfede-
rung, der mit dem bekannten y-Wert
der Beultheorie versteifter Bleche tiber-
einstimmt und daher mit y bezeichnet
wird [1].

Wie beim Beulen hat es beim Rahmen-
knicken offensichtlich keinen Sinn, die
Steifigkeit der seitlichen Stiitzung liber
den der symmetrischen Knicklast ent-
sprechenden Wert hinaus zu vergros-
sern; fiir hohere y,-Werte wird ndmlich
der Rahmen immer in der massgeben-
den symmetrischen Form ausknicken,
wobei der entsprechende Eigenwert fiir
die vorliegenden Verhiltnisse rund
7,9+ N, ., erreicht. Der Steifigkeitswert
der Querfederung, bei dem die antime-
trische Knicklast den Wert der symme-
trischen erreicht, soll als Mindeststeifig-
keit y} bezeichnet werden. Diese Werte
v¥ werden anschliessend sowohl fiir

Knicken

Knicken

Bild 1. Knickformen beim quergefederten Rahmen

A Ne
N

g8+ ocr

—————

o 10

20 30

Bild 2.
Ys: Definition der Mindeststeifigkeit y ¥

Verlauf der Verzweigungslast N, des quergefederten Rahmens in Funktion des Steifigkeitswertes
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den Zweigelenkrahmen als auch fiir den
voll eingespannten Rahmen ermittelt.

Beidseitig gelenkig gelagerter Rechteck-
rahmen: Knickverhalten und Mindest-
steifigkeiten fiir die seitliche Stiitzung

Zur Losung von Verzweigungsproble-
men bei Rahmentragwerken eignet sich
die Deformationsmethode zweiter Ord-
nung (vgl. z. B.[2]). Sie soll daher fiir die
Losung der aufgeworfenen Probleme
herangezogen werden.

Beim seitlichen Knicken eines symme-
trisch ausgebildeten und symmetrisch
in den Stielachsen belasteten Rechteck-
rahmens (vgl. Bild 1) sind nur zwei un-
abhingige Verformungsgrossen zu be-
trachten: der Drehwinkel der oberen
Knoten ¢ (Mit Qrechis = Prinks aus Griin-
den der Antimetrie) und der Stockwerk-
verschiebewinkel . Zur Bestimmung
dieser Unbekannten stehen zwei
Gleichgewichtsbedingungen zur Verfii-
gung: eine Momentengleichgewichtsbe-
dingung in der Rahmenecke einerseits,
das Gleichgewicht der waagrechten
Krifte in einem Schnitt durch die Stiele
andererseits.

Als Stabsteifigkeiten fiihrt man selbst-
verstindlich die Werte mit dem Verfor-
mungseinfluss der Stabnormalkrifte

N,p ein:
. EJ . EJ,
s 1,43 D otap= = 1B
AB AB
) mit s =(_:( €/2
bzw. ° 2 "1 - (e/2) - cotge/2
+ cotge/2)
und mit der Stabkennzahl ¢ (ge-
nauer €yp)
- Nap _ Nas
wobei Ng=n? - %
4B

die Knicklast des beidseitig gelenkig ge-
lagerten Stabes darstellt (Vergleichs-
wert).

Fiir den Sonderfall des am Ende B ge-
lenkig gelagerten Stabes gilt entspre-
chend als Stabsteifigkeit

EJ,p €?

3) uyp=u - mit u’ =
Fithrt man noch die Federsteifigkeit sp
(Dimension Kraft/Langeneinheit, z. B.
kN/mm) ein, bzw. den dazugehorigen
Steifigkeitswert der Querfederung

W
(4) s = '

mit den Bezeichnungen nach Bild 1, so
schreiben sich beim Zweigelenkrahmen
mit der Belastung N in jeder Stielachse
die vorher erwihnten Gleichgewichts-
bedingungen zu:

(W +6B)-p-u'-y=0
u' o+ (N-h/EJp-u -05-v)-y=0
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AB | -¢ . cotge

Hierin bedeutet B eine Hilfsgrosse mit

_ EJy-h

(5) B= “EJy b

Da der Riegel unbeansprucht ist, sind
hier die bekannten Stabsteifigkeiten er-
ster Ordnung einzufiihren, d.h. s'(¢ =
0)—4, t'(¢ = 0)—2. Zudem verschwin-
den sowohl die Volleinspannmomente
(keine Querbelastung der Riegel) als
auch die dusseren waagrechten Krifte,
so dass die Gleichungen keine Bela-
stungsglieder enthalten. Ein solches ho-
mogenes System hat, ausser dem trivia-
len Fall mit ¢ = y = 0, nur dann eine
Losung, wenn seine Koeffizienten-
determinante verschwindet. Die Aus-
rechnung der Knickdeterminante fiihrt
zu einer transzendenten Gleichung (da-
her Losung nur durch Probieren mog-
lich) mit den gesuchten Eigenwerten €,
(bzw. Ny — N, aus G1. 2) als Wurzeln,
insbesondere mit dem massgebenden
kleinsten Eigenwert.

Mit N . h/EJ;, = €2 nach G1. (2) ergibt
sich im vorliegenden Fall die Knick-
determinante zu

6) (u' +6P)-(e2-"y,) —6p-u =

Fiir die Bestimmung der uns interessie-
renden Mindeststeifigkeit v der seitli-
chen Stiitzung miissen wir zudem die
entsprechende Determinante fiir die
symmetrische Knicklast aufstellen (vgl.
Bild 2). Mit Qrechis = ~@rinks und v = O er-
gibt sich hier

(w +2B)-p=0

und somit fir die Bestimmung des
Eigenwertes

(7 w=-28

Aus der Gleichsetzung der Bedingung
(6) fir die antimetrische Knickform mit
der obenstehenden Bedingung (7) fiir
die symmetrische Form, d.h. durch Ein-
setzen von u’ aus der G1. (7) in die G1.
(6), erhdlt man die Mindeststeifigkeit zu

@) vr= 282.\‘}'»1 +6p

Dabei bedeutet ¢, die Kennzahl der
Stiele, die sich aus der Losung der Gl.
(7) fir die symmetrische Knickform er-
gibt. Fihrt man die dazugehorige
Knickldnge ein, mit den Grenzwerten
Igsom=h firp=0undggm=07-h
fiir p — oo, so schreibt sich die Kennzahl
auch zu

Esym = T0» h/1 K.sym

Im Beispiel nach Bild2 erreicht die
Hilfsgrosse B den Wert 5/9. Die trans-
zendente Gleichung (7) besitzt dann die
Losung &, = 3,4294, entsprechend
einer Knickldnge /g, = 09161 - h.
Gleichung (8) flihrt daher zu einer Min-
deststeifigkejt v = 26,85 (vgl. Bild 2).

Bild 3 zeigt den Verlauf der Mindest-
steifigkeit v in Funktion der Hilfsgros-
se B. Das gleiche Bild enthilt auch die
Werte v,, die sich aus der Bedingung
einer Smal grosseren Steifigkeit der

Arx:
100+

Bild 3. Mindeststeifigkeiten yider Querstiitzung
beim Zweigelenkrahmen

Aussteifungselemente im Vergleich mit
der seitlichen Rahmensteifigkeit erge-
ben, wie sie in den EKS-Empfehlungen
[3] oder im Vorschlag zur DIN 18 800
[4] enthalten ist (allerdings in einem an-
deren Zusammenhang). Da ein Zweige-
lenkrahmen unter einer horizontalen
Einheitslast eine waagrechte Auslen-
kung

h? |
GEL, T p
erfahrt, fiihrt die Bedingung einer Smal
grosseren Steifigkeit zu

)

Ug=1=

30

Vs, EKS = W

Eingespannter Rechteckrahmen: Knick-
verhalten und Mindeststeifigkeiten fiir
die seitliche Stiitzung

Das Vorgehen entspricht grundsitzlich
dem soeben dargestellten, wobvei die
Stabsteifigkeiten der Stiele nun durch
die Funktion s’ und ¢ an Stelle von u’
auszudriicken sind. Wir konnen auf die
Wiedergabe der Knickgleichungen ver-
zichten und geben direkt die Ge-
brauchsformeln an:

Bestimmungsgleichung fiir das antime-
trische Knicken eines eingespannten
Rechteckrahmens mit seitlicher Stiit-
zung (Steifigkeitswert y,nach G1.4)

9) (s'+6B)-[e2-2(s" +1t')="2y]+

(s +1)2=0
Bestimmungsgleichung fiir das symme-
trische  Knicken des eingespannten
Rechteckrahmens (fiir s* vgl. GI. 1)
(10) s +2p=0

Mindeststeifigkeit fiir die seitliche Stiit-
zung (antimetrische Knicklast = sym-
metrische Knicklast)

34+0,5- ¢ (cotge)/P
1-(2/¢) - (tge/2)

(1) ytr=¢g-
wobei wie bei der G1. (8) als Stabkenn-
zahl ¢ der Stiele der Wert gy, aus der
Losung von G1. (10) einzusetzen ist.

Bild 4 zeigt die Mindeststeifigkeit v¥ in
Funktion der Hilfsgrosse B. Zudem sind
auch hier die Werte enthalten, die sich
aus der Bedingung einer fiinfmal gros-
seren Steifigkeit der Aussteifungsele-




mente ergeben. Die waagrechte Ver-
schiebung unter einer Einheitslast be-
tragt jetzt

B 1,58+1
24 EJ, 1,5 + 0,25

U= =

und somit ergibt sich

1,58 + 0,25

Vsexs =120 = B+ I

Vergleiche zwischen dem Zweigelenkrah-
men und dem eingespannten Rahmen

Bei Vergleich von Bild 3 mit Bild 4 fallt
der unterschiedliche Verlauf der v¥
-Kurven auf: der Zweigelenkrahmen
mit einer Kennzahl § = 0 weist eine
endliche Mindeststeifigkeit auf, der mit
B — o dagegen nicht. Beim eingespann-
ten Rahmen liegen die Verhéltnisse ge-
rade umgekehrt, d.h. der Rahmen mit
einem starren Riegel (B — <) besitzt
hier eine endliche Mindeststeifigkeit.

Fiir diesen Rahmen mit starrem Riegel
gentigt es, den Stiel als Stiitze mit
beiderseitiger Dreheinspannung und
verschieblichen Stabenden zu betrach-
ten, wie dies aus Bild5 hervorgeht.
Beim antimetrischen Knicken weist der
Stiel eine ungerade Zahl von Wende-
punkten auf. Ist der Stiitzenkopf seit-
lich nicht gestiitzt, so verlduft die
Knickfigur cosinusférmig, und die
Knickldnge ergibt sich bekanntlich zu
IK = h.

Besitzt die seitliche Stiitzung die Min-
deststeifigkeit y¥ , so miissen sich Wen-
depunkte an den Einspannstellen bil-
den, damit die Knickldnge wie beim
symmetrischen Knicken h/2 erreicht.
Bei weiter zunehmender Steifigkeit der
Stiitzungsfeder weist schliesslich die an-
timetrische Knickfigur drei Wende-
punkte innerhalb der Stielhdhe und
eine verschwindende relative Verschie-
bung der zwei Stiitzendpunkte auf: die
Knicklinge wiirde sich daher auf
0,35 hreduzieren.

Selbstverstindlich wird sich dann nicht
diese antimetrische Knickform ausbil-
den, sondern die symmetrische Form
mit je einem Wendepunkt im Viertel der
Hohe. Oberhalb von y# entsprechen die
antimetrischen Knickfiguren der Fort-
setzung der entsprechenden Kurve im
Bild 2, die wegen ihrer Ungiiltigkeit ge-
strichelt gezeichnet ist.

Der Zweigelenkrahmen mit f = 0
stimmt mit dem bekannten Modell der
beidseitig gelenkig gelagerten Stiitze
mit Querfederung am Kopf {berein.
Durch Gleichsetzen des dazugehdrigen
Eigenwertes N, = sy« h mit der Euler-
schen Knicklast N, = mEJ,/h* erhilt
man y¥ = n?, bzw. 2. 1> wenn man beriick-
sichtigt, dass beim Rahmen die Feder zwei
Stiele auszusteifen hat (vgl. Bild 1 und
Bild 3).

Die zwei Fille, bei denen keine endli-
che Mindeststeifigkeit existiert, sind
eng verwandt, handelt es sich doch je-
weils um eine Kragstiitze mit federnder
Stiitzung (Einspannung oben beim
Zweigelenkrahmen mit starrem Riegel,
B — oo unten beim eingespannten Rah-
men mit sehr weichem Riegel, p = 0).
Die symmetrische Knickfigur, mit einer
verschwindenden Auslenkung am Stiel-
kopf, stellt aber keine Eigenfunktion
der Kragstiitze dar [S]. Somit ist eine
starre Stiitzung mit y¥ — @ erforderlich,
um diese Form als Grenzfall des anti-
metrischen Knickens zu erzwingen.

Schliesslich fallt beim Betrachten der
Bilder 3 und 4 auf, dass beim Zweige-
lenkrahmen die EKS-Bedingung zu
Werten vy, < y¥ fithrt, beim eingespann-
ten Rahmen dagegen zu Werten y, > v#,
abgesehen vom schmalen Bereich mit
kleinen Hilfsgrossen B. Zuerst soll die
Anwendung der EKS-Bedingung prazi-
siert werden; in der Formulierung des
Entwurfes zur DIN 18 800 lautet sie ([4]
Abschnitt 5.2.1):

«Wirken bei der Aufnahme von hori-
zontalen Lasten in Stabwerkebene der
Rahmen und die aussteifenden Bauteile
(z.B. Wandscheiben, Verbdnde) zusam-
men, so kann der Rahmen als unver-
schieblich angesehen werden, wenn die
Steifigkeit der Aussteifungselemente
mindestens Smal so gross ist wie die
Steifigkeit des Rahmens im betrachte-
ten Stockwerk».

Die Problemstellung ist somit anders
als bei der hier untersuchten Mindest-
steifigkeit der federnden Stiitzung im
Rahmen der Verzweigungstheorie. Die
seitliche Versteifung bewirkt ndmlich
eine weit grossere Erhohung der Knick-
lasten beim Zweigelenkrahmen im Ver-
gleich mit dem eingespannten Rahmen:
Fur eine Hilfsgrosse B = 5/9 erreicht
das Verhiltnis N, sym/ Ny den Wert 7,9
beim Zweigelenkrahmen (vgl. Bild 2)
gegeniiber 3,7 beim eingespannten
Rahmen. Die Mindeststeifigkeit der
Querfederung muss somit bei Zweige-
lenkrahmen, bezogen auf die Rahmen-
steifigkeit, hohere Werte annehmen.

Niherungsweise Beriicksichtigung des
unelastischen Knickbereiches

Die Verminderung der Biegesteifigkeit
der Stiele im unelastischen Bereich
kann bekanntlich durch Einfiihrung
eines Wertes TJ,, mit T < E, abgegolten
werden. Die Verzweigungslast des Rah-
mens mit der vollen Steifigkeit EJj, im
unbeanspruchten Riegel und TJ; in den
Stielen stellt eine brauchbare Niherung
fiir die Traglast im Sinne der europi-
ischen  Knickspannungskurven dar.
Dabei ist T nach folgender Formel (vgl.
[6]) einzusetzen

T=FE-Xg oK/ 0
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100

50+,

30

%% "4 & & 1
B=Jyh/db

Bild 4. Mindeststeifigkeiten y¥ der Querstiitzung
beim eingespannten Rahmen

A=
/8
iR
! 2"
-
YS =0 )/s—um
Bild 5. Druckstab mit beidseitiger Dreheinspan-

nung; Verlauf der Eigenfunktion bei verschiedenen
Steifigkeiten der Querstiitzung

Der Modul T muss zuerst geschitzt und
durch wiederholte Ndherung zur Kon-
vergenz gebracht werden. In unserem
Fall macht sich die Verkleinerung der
Biegesteifigkeit auf TJ;, sowohl bei der
Bestimmung der Hilfsgrosse B (G1. (5)
als auch bei der Definition des Steifig-
keitswertes vy, (G1. (4) bemerkbar. In der
Regel darf man annehmen, dass sich
die Federsteifigkeit wahrend des Knick-
vorganges nicht vermindert, so dass die
Querstiitzung relativ steifer wird. Ahn-
liches gilt allerdings auch fiir die Ein-
spannwirkung des elastisch verbleiben-
den Riegels, so dass beziiglich der erfor-
derlichen Mindeststeifigkeit y# diese
Einfliisse sich teilweise kompensieren.

Als Beispiel wihlen wir den Zweige-
lenkrahmen nach Bild 2, mit einer Rie-
gellinge von 9m und einer Stielhdhe
von 5 m; Querschnitt tiberall HEA 200,
Fe 360. Fiir das Knicken um die starke
Achse gilt Kurve b. Die sukzessiven
Néherungen fiir den 7-Modul fiihren
fiir das symmetrische Knicken zu einer
Hilfsgrosse B = 2,3485 (an Stelle von
5/9 im elastischen Bereich) und zu g,
= 3,8864. Aus GI1. (8) ergibt sich daher
eine Mindeststeifigkeit y¥ = 44,3, d.h.
1,65 « Y& sasisen - Wegen der verminder-
ten Stielsteifigkeit TJ, gentigt aber nach
G1. (4) eine Federsteifigkeit sp = 0,39 -
srelastisch.

Beriicksichtigung der
geometrischen und der
strukturellen Imperfektionen

Die vorherigen, auf der Verzweigungs-
theorie basierenden Untersuchungen
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stellen nur eine grobe Ndherung fiir das
tatsdchliche Verhalten der Konstruk-
tion dar. Einerseits bleiben die Querbe-
lastung des Riegels sowie die waagrech-
ten Lasten unberiicksichtigt. Anderer-
seits vernachldssigt man den Einfluss
der geometrischen (Abweichungen von
der theoretischen Tragwerksform) und
der strukturellen Imperfektionen, ins-
besondere der Eigenspannungen.

Mit Hilfe einer elastischen Methode
zweiter Ordnung kann man der tatsdch-
lichen Belastungsanordnung und der
geometrischen Imperfektionen relativ
einfach Rechnung tragen. Die gleichzei-
tige Beriicksichtigung der Eigenspan-
nungen und der dazugehdrigen Plastifi-
zierungen bedingt aber die Anwendung
eines aufwendigen Computerprogram-
mes, so dass wir uns auf zwei Ver-
gleichsbeispiele konzentrieren miissen:
ein frei verschiebbarer Zweigelenkrah-
men einerseits, der gleiche Rahmen mit
einer weichen Querfederung anderer-
seits.

Frei verschieblicher Zweigelenkrahmen

Die Abmessungen des untersuchten
Rahmens sowie dessen Belastung gehen
aus Bild 6 hervor; sie stimmen genau
mit dem letzten Beispiel aus [7] iberein.
Insbesondere hat man sowohl Eigen-
spannungen in den Rahmenelementen
(vgl. Bild 3 in [7]) als auch eine An-
fangsauslenkung der Stielkdpfe u, giegel
= 13 mm (gleiche Richtung wie die
waagrechten Krifte) eingeftihrt. In der
Zwischenzeit gelang es allerdings, die
Konvergenz der elastoplastischen Be-
rechnungen zweiter Ordnung zu verbes-
sern, indem man das Fliessplateau
durch einen Verfestigungsmodul von
1,5 kN/mm?, d.h. E/140, ersetzt hat.

Bild 7 mit kennzeichnenden Schnitt-
krdften und Verformungen stellt somit
eine Ergédnzung zu Bild 10 aus [7] dar,
wobei der Lastmultiplikator fir den
Grenzzustand von 0,975 auf 1,03 gestei-
gert werden konnte. Die Abnahme des
Momentes M,, in der linken Rah-
menecke bei grossen Auslenkungen u
sowie die dadurch bewirkte Erhohung
des Feldmomentes gehen jetzt deutli-
cher hervor. Im rechten Eckknoten 51
erreicht die plastische Biegesteifigkeit
nur noch einen Bruchteil des elasti-

100kN
A 29x4kN
##&&#&&&&&&&&h_’
5kN[21 \ 36 5115kN
T HEA 200 a
starke Achse S
o
)
01 710
L 9000 |

Bild 6. Den
Rahmen

Untersuchungen zugrundegelegter
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AN ANN_
N
101 * E 101 " =0
M : 51 =
My |
I W3g
i Uze
I
Ms !
057 { 0571
MPDE
I
| e
; EJ
Lastmultiplikator 1.03 :
i
g M g u, w, M'p/Ej
Bild 7. Frei verschiebbarer Rahmen: Verlauf der Momente und der Auslenkungen nach den elastoplasti-
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plastischen Berechnungen 2. Ordnung

schen Wertes EJ ; das Moment Ms,
iibersteigt sogar leicht das plastische
Moment M, , kénnen doch mit der Ein-
filhrung eines Verfestigungsmoduls die
Flanschspannungen bei scharfer Kriim-
mung die Fliessgrenze geringfligig
libersteigen.

Die durch die Verfeinerung der Berech-
nungstechnik ermoglichte leichte Erho-
hung des Lastmultiplikators dndert al-
lerdings nichts an der Giiltigkeit der in
[7] wiedergegebenen Schlussfolgerun-
gen. Insbesondere bleibt der Unter-
schied zum Lastmultiplikator aus der
Fliessgelenktheorie erster Ordnung von
1,22 bestehend, wenn auch in reduzier-
tem Masse.

Zweigelenkrahmen mit weicher Quer-
stiitzung

Der Zweigelenkrahmen nach Bild 6 soll
nun eine federnde Querstiitzung erhal-
ten. Man wihlt absichtlich eine geringe
Federsteifigkeit sz, die mit den Stielen
aus HEA 200 nach GI. (4) zu einem
Steifigkeitswert von rund 1,7 fithrt, d.h.
6 Prozent der Mindeststeifigkeit aus

Bild 2 (bzw. 16 Prozent, falls man die
unelastische, den EKS-Knickspan-
nungskurven entsprechende Stielstei-
figkeit TJ, einfiihrt).

Die Verzweigungslast, die man allen-
falls fiir die Ermittlung des Vergrosse-
rungsfaktors zweiter Ordnung 1/(1 -
N*/N,) benotigt, betrdgt den 5,72fa-
chen Wert der Belastung aus Bild 6. Im
elastischen Bereich bleibt somit der
Verformungseinfluss bescheiden, wie
dies aus Bild 8 hervorgeht: bis zum Ein-
treten der ersten Plastifizierungen im
Bereich des Eckknotens 51 verlaufen
sowohl die Momente als auch die Aus-
lenkungen fast linear. Bei hoheren La-
sten nimmt jedoch das Eckmoment My,
wesentlich langsamer und das Feldmo-
ment entsprechend schneller zu. Zudem
bleibt am Schluss, d.h. bei fortschreiten-
den waagrechten Auslenkungen, das
linke Eckmoment M,, praktisch kon-
stant.

Ein wesentlicher Unterschied zum Bild
7 besteht somit nicht, wenn auch beim
quergefederten Rahmen die Tendenz-
wenden weniger ausgeprigt sind. We-
gen der schlechten Konvergenz konnte
aus Kostengriinden der Lastmultiplika-
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tor nicht iiber 1,2 gesteigert werden.
Dieser Wert entspricht wahrscheinlich
nicht ganz dem wahren Tragwiderstand
der Rahmenkonstruktion, wenn auch
der Momentenausgleich zwischen der
Ecke 51 und dem Feld schon weit fort-
geschritten ist.

Die soeben erwidhnten numerischen
Schwierigkeiten sowie die deutliche
Tendenz zum Momentenausgleich ha-
ben dazu gefiihrt, dass man fiir die wei-
teren Untersuchungen die Fliessgelenk-
theorie zweiter Ordnung verwendet hat.

Angeniherte Untersuchungen
nach der Fliessgelenktheorie
zweiter Ordnung

Besonderheiten des verwendeten Verfah-
rens

Bei der Fliessgelenkmethode werden
bekanntlich die Plastifizierungen, die
tatsichlich in einer gewissen Zone auf-
treten, in einem Punkt, dem Fliessge-
lenk, konzentriert. Bis zum Erreichen
des plastischen Biegewiderstandes in
einem solchen Knoten verhilt sich das
System vollstdndig elastisch; dariiber
hinaus wirkt der Punkt als Gelenk, d.h.,
das Biegemoment nimmt nicht mehr zu.

Im Rahmen einer Theorie zweiter Ord-
nung sind selbstverstindlich  die
Gleichgewichtsbedingungen am ver-
formten System anzuschreiben. Fiir die
folgenden Untersuchungen hat man
das Computerprogramm BARBU [8] in
seiner urspriinglichen, rein elastischen
Version beniitzt. Die Berechnung er-
folgt zweckmdssigerweise «Schritt fiir
Schritt»: ausgehend vom elastischen
System ldsst man zundchst die Bela-
stung bis zum Erreichen des plastischen
Biegewiderstandes in einem Knoten,
d.h. bis zur Bildung des ersten Fliessge-
lenkes ansteigen. Der Belastungszu-
wachs wird anschliessend, wieder im
Rahmen einer elastischen Berechnung
zweiter Ordnung, an einem System mit
dem ersten Fliessgelenk angebracht, bis
sich das zweite einstellt, usw.

Dieses bei der Fliessgelenktheorie erster
Ordnung nicht iibliche Verfahren ist fiir
die Verformungstheorie angezeigt: Bild
9 zeigt namlich, dass bei einem n-fach
statisch unbestimmten Rahmen der
Grenzwiderstand nicht unbedingt mit
der Bildung des letzten Fliessgelenkes,
d.h. mit dem Eintreten einer kinemati-
schen Kette, iibereinstimmen muss. Die
dazugehorige Last kann ndmlich im un-
stabilen Bereich, d.h. auf dem abfallen-
den Ast der Last-Auslenkungskurve,
liegen und somit eine unwirtschaftliche
Losung darstellen (vgl. z.B. [9]).

Bei dieser schrittweisen Ermittlung des
Tragwiderstandes nach der Fliessge-
lenktheorie zweiter Ordnung treten fol-
gende Schwierigkeiten auf:
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Bild 10.  Frei verschiebbarer Rahmen; Verlauf der Momente und der Auslenkungen nach der Fliessgelenk-

theorie 2. Ordnung

- Die plastischen Momente in den
Rahmenelementen, insbesondere in
den Stielen, hiangen von den dazuge-
horigen Normalkriften ab, die mit
dem Lastmultiplikator zunehmen.
Bei der Bildung des ersten Fliessge-
lenkes z.B. hat die Normalkraft noch
nicht ihren dem Tragwiderstand ent-
sprechenden Endwert erreicht: das
plastische Moment muss somit beim
Belastungszuwachs leicht abnehmen.
Fiir die folgenden Untersuchungen
hat man die Momente in den Fliess-
gelenken jeweils sofort mit dem End-
wert der Normalkraft ermittelt. Diese
Ubereinstimmung konnte nur durch
eine wiederholte Schidtzung erzielt
werden.

- Der Einfluss der Eigenspannungen
wird bei der Anwendung der Fliess-
gelenktheorie nicht direkt beriick-
sichtigt. Ahnliches gilt fiir die Wir-
kung der Linge der teilplastischen
Bereiche. Man kann aber beide Fak-
toren niherungsweise durch eine Er-
hohung der geometrischen Imperfek-
tionen erfassen. Ein #dhnlicher Ge-
danke liegt der Einfithrung der Er-
satzexzentrizitit e, fiir den Nachweis
auf Druck und Biegung nach der
Norm SIA 161, Ziffer 3 064, vor. Fir
die folgenden Untersuchungen wur-
de somit die waagrechte Anfangsaus-
lenkung der Stielkopfe auf g, Riegel =

AN Fliessgelenktheorie 1.0rdnung
L

Nya N Verzweigungslast
Ner N =
N - totan ¢
S\_ -~ Elastizitatstheorie
K 2.0rdnung
1 ///2 n\\ n+1 )
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Q.
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Bild 9. Magliche Lastverformungskurve nach der
Fliessgelenktheorie 2. Ordnung

h/200 = 25 mm erhoht (vgl. [3]15.9.3.1
sowie [4] 2.5).

- Die sukzessive Einfiihrung von
Fliessgelenken bedingt an sich eine
Anderung der Steifigkeitsmatrix. Im
vorliegenden Fall hat man darauf
verzichtet und nacheinander ver-
schiedene Systeme betrachtet, wel-
che, abgesehen vom ersten, Gelenke
mit vorgegebenen Momenten enthal-
ten.

Andere Schwierigkeiten mehr grund-
sitzlicher Natur sollen in den dazuge-
hérigen Abschnitten erwdhnt werden.

Kontrollrechnungen

Wir wollen zuerst die Brauchbarkeit der
Fliessgelenktheorie zweiter Ordnung an
Hand der zwei soeben behandelten Bei-
spiele tiberpriifen.

Fiir den frei verschiebbaren Rahmen
sind die Hauptergebnisse im Bild 10 zu-
sammengefasst, wobei zum Vergleich
die Schnittkréifte und die Verschiebun-
gen gemdss den elastoplastischen Be-
rechnungen (Bild 7) gestrichelt wieder-
gegeben sind. Die Ubereinstimmung ist
befriedigend, dies sowohl fiir den Ver-
lauf der Momente und der Verformun-
gen als auch fiir die Hohe des Lastmul-
tiplikators (Differenz nur 2 Prozent,
wobei die Fliessgelenktheorie eine Na-
herung auf der sicheren Seite liefert).

Fiir den Rahmen mit weicher Querfede-
rung, ys = 1,7, soll zuerst der Vorgang
bis zur Bildung des zweiten Fliessgelen-
kes, etwa in Riegelmitte, verfolgt wer-
den. Bild 11 beweist, dass die Ergebnis-
se der Fliessgelenktheorie zweiter Ord-
nung verniinftig mit denen aus den ela-
stoplastischen Berechnungen (gestri-
chelt) ibereinstimmen. Der dem Eintre-
ten des zweiten Fliessgelenkes entspre-
chende Multiplikator ist mit 1,25 leicht
hoher als der Wert von 1,2 aus Bild 8,
wobei, wie bereits erwidhnt wurde, Kon-
vergenzschwierigkeiten die Berechnun-
gen fiir einen Lastzuwachs iiber 1,2 hin-
aus verunmoglicht haben.
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gelenktheorie 2. Ordnung
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Mit der Bildung des zweiten Fliessge-
lenkes entsteht noch keine kinematische
Kette: nach Bild 12 besteht nun das
Tragsystem fiir den Belastungszuwachs
A, aus dem einfachen Balken G,-G,
und aus dem am Fuss gelenkig gelager-
ten Halbrahmen 1-21-G,, der ohne
waagrechte Stiitzung unstabil wire. Mit
dieser ungewohnlichen Tragwirkung
nimmt aber die Federkraft bzw. die Rie-
gelverschiebung us¢ dusserst rasch zu
und erreicht schliesslich den unzumut-
baren Wert von rund h/9! Die dazuge-
horigen Gelenkrotationen sind sehr
gross. Beim Eckmoment M,, geht die
nach der Bildung des ersten Fliessgelen-
kes einsetzende Tendenz zu einer Ab-
nahme in einer abrupten Steigerung
hinaus.

Die M-Flache im Bild 12 beweist zu-
dem, dass das Gelenk G: beim Anbrin-
gen von Agin Richtung des Eckpunktes
51 wandern muss, weil bei gleichblei-
bender Lage die Momente des einfa-
chen Balkens G,-G, im Bereich G, ho-
her sein missten als im Fliessgelenk G,
selber, d.h. grésser als M,! Die Tragwir-
kung nach der Bildung des zweiten Ge-
lenkes ist somit praktisch einer Unstabi-
litdt im Sinne von Bild 9 gleichzusetzen
und wird deshalb fiir die weiteren Un-
tersuchungen nicht mehr verfolgt.

Nebenbei sei bemerkt, dass die Verhilt-
nisse aus Bild 12 auch fir einen unver-

schiebbaren Rahmen gelten, falls
Zwingungsmomente, z.B. aus Auf-
lagersenkungen, eine Bildung der

Fliessgelenke in der Reihenfolge G,, G,
erzwingen (in diesem Zusammenhang
vgl. auch [10]).

Einfluss der Steifigkeit der Querstiit-
zung

Um den Einfluss der Grosse der Feder-
steifigkeit auf das Tragverhalten aufzu-
zeigen, wurde das System nach Bild 6
nicht nur fir einen Steifigkeitswert y, =
1,7 (Bild 11), sondern auch fiir 3,4, 6,8
und 13,5 untersucht. Bild 2 zeigt, dass
bei Annahme eines rein elastischen Ver-
haltens der Stiele diese y,-Werte unter-
halb der Mindeststeifigkeit liegen. Mit
der Einfiithrung der unelastischen Stiel-
steifigkeit TJ,, entsprechend der EKS-
Knickspannungskurven, tibersteigt da-
gegen die hochste beriicksichtigte Stei-
figkeit den zur Mindeststeifigkeit geho-
renden Wert um rune 30 Prozent.

Die Ergebnisse der Berechnungen sind
im Bild 13 zusammengefasst. Der Ver-
lauf der Eckmomente Ms; hiingt von
der seitlichen Auslenkung u und somit
vom y-Wert ab. Ahnliches gilt fiir das
entsprechende  plastische  Moment,
nimmt doch die den Biegewiderstand
vermindernde Normalkraft mit dem
Lastmultiplikator zu. Das Feldmoment
zeigt dagegen bis zur Bildung des
Fliessgelenkes im Eckpunkt 51 keinen
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nennenswerten Einfluss der Federstei-
figkeit. Beim weiteren Belastungszu-
wachs nimmt aber Mg,q um so rascher
zu, je weicher die Querfederung ist.

Der Verlauf der waagrechten Riegel-
auslenkung u spricht fiir sich und
braucht keine Kommentare.

Links im Bild 13 sind die Lastmultipli-
katoren eingetragen, die der Bildung
des ersten Fliessgelenkes (Eckpunkt 51)
entsprechen, rechts die beim Erreichen
des Tragwiderstandes (Bildung des Ge-
lenkes im Feld, unter Vernachldssigung
einer weiteren Laststeigerung). Im Bild
14 sind zudem die gleichen Werte in
Funktion der Steifigkeitswerte y, darge-
stellt. Die mogliche Erhohung des Trag-
widerstandes ist im Bereich hoher vy,
Werte gering.

Beim Grenzfall des unverschieblichen
Rahmens fiihrt die klassische Fliessge-
lenktheorie erster Ordnung zu einem
Lastmultiplikator von 1,46. Unter An-
nahme einer durch den Verformungs-
einfluss bedingten Reduktion mit dem
Faktor 1/(1 - N*/N,) und mit einem
Eigenwert von 25,0 bezogen auf die La-
sten nach Bild 6, betrdgt der abgemin-
derte Lastmultiplikator rund 1,38 fir
eine starre Querstiitzung. Um einen sol-
chen Wert zu gewahrleisten, ist gemaiss
Bild 14 ein y,-Wert von knapp 10 erfor-
derlich, der sehr gut mit den Ergebnis-
sen der Verzweigungstheorie unter Be-
riicksichtigung der unelastischen Stiel-
steifigkeit TJ, iibereinstimmt.

Festigkeitsnachweis fiir die seitliche

Stiitzung

Die seitliche Stiitzung iibernimmt fol-
gende Krifte:

- Einen Anteil an der waagrechten Be-
lastung, der in brauchbarer Nihe-
rung aus dem Verhdltnis der Steifig-
keit der Querstiitzung zur Gesamt-
steifigkeit ermittelt werden darf (mit
einer dem Kehrwert der vorher be-
rechneten Auslenkung uy - ; entspre-
chenden Rahmensteifigkeit).

- Die Ablenkungskréfte aus Verfor-
mungseinfluss (Schiefstellung der
Stiele usw.).

Subtrahiert man von den Federkriften,
die sich aus der Fliessgelenkberechnung
zweiter Ordnung ergeben, den soeben
erwihnten Anteil der waagrechten Be-
lastung, so verbleiben folgende stabili-
sierende Krifte, die in Prozent der Ge-
samtvertikallast angegeben sind:

Ys ‘ 1.7 34 6.8 13.5

- Verformbare,

Die mit ¥s = 1,7 durchgefiihrten elasto-
plastischen Berechnungen zweiter Ord-
nung ergeben allerdings nur 1,2 Prozent
statt 2,0 Prozent, sind doch die Hori-
zontalverschiebungen beim Erreichen
des gerechneten Tragwiderstandes klei-
ner (vgl. die Bilder 8 und 11).

Bei einer praktischen Bemessung wird
man wohl alle dusseren Lasten der
Querstiitzung zuweisen und zudem die
Wirkung der geometrischen Imperfek-
tionen beriicksichtigen. Man bleibt da-
mit auf der sicheren Seite.

Schlussfolgerungen und Ausblick

Die vorgestellten Berechnungsergebnis-
se bestitigen die Brauchbarkeit der
Steifigkeitskriterien, die sich aus der
Anwendung der Verzweigungstheorie
ergeben, besonders wenn man das un-
elastische Verhalten der Stiele beriick-
sichtigt. Fiir den Festigkeitsnachweis
der Querstiitzung sind meistens die dus-
seren waagrechten Lasten massgebend,
so dass eine sehr genaue Erfassung der
stabilisierenden Kréfte kaunt erforder-
lich ist.

Schliesslich wollen wir kurz auf die tat-
sichliche Ausbildung von seitlich ge-
stiitzten Rahmen zuriickkommen, d.h.
auf die durch eine Dachscheibe und
durch Wandscheiben rdumlich stabili-
sierten Hallensysteme. Bei einer sol-
chen Anordnung kann man zuerst die
folgenden zwei Grenzfille betrachten:

- Praktisch starre Dachscheibe und
nachgiebige ~ Wandscheiben. Die
Tragwirkung entspricht sehr gut un-
serem vereinfachten Modell. Bei der
Ermittlung der fiir die einzelnen
Rahmen einzusetzenden Federstei-
figkeit ist selbstverstandlich die An-
zahl der durch eine Wandscheibe sta-
bilisierten Tragebenen zu beriicksich-
tigen.

durch starre Wand-

scheiben  gestiitzte  Dachscheibe.

Durch die Annahme einer-sinusfor-

migen Verteilung der Belastung so-

wie der Stiitzkrifte der Rahmen auf
die Dachscheibe kann man auch hier
das riumliche Tragverhalten mit dem
ebenen Modell beschreiben. Greifen
nimlich die sinusférmig verteilten

Stiitzkriifte der Rahmen an der Dach-

scheibe an (mit H = | in Hallenmit-

te), so ergibt sich wegen der Sinus-
affinitit die einzusetzende Federstei-

figkeit des Ersatzsystems als Kehr-
wert der max. Durchbiegung der
Dachscheibe. Man verbessert die Ge-
nauigkeit, wenn man die Belastung
mittels einer Fourier-Analyse zerlegt;
dabei konnen fiir die hdheren Har-
monischen, weil sie nur einem Bruch-
teil der vollen Dachscheibenspann-
weite entsprechen, die Rahmen als
unverschiebbar betrachtet werden.

Im allgemeinen Fall erméglicht die Be-
trachtung der Grenzfille mindestens
eine Abschitzung des Ausmasses der
seitlichen Stiitzung. Es ist zudem vorge-
sehen, auf diesem Gebiet weitere Unter-
suchungen durchzufiihren.

* ¥ ¥

A. Piller, wissenschaftlicher Mitarbeiter am
Lehrstuhl fiir Baustatik und Stahlbau, hat
die Computerberechnungen durchgefiihrt
und durch seine Anregungen wesentlich bei
der Ausarbeitung der Untersuchungen mit-
gewirkt.
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