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stigkeit von Metallen. - Sein Ehrentag
bietet den internationalen Fachorganisationen,

den Lehr- und Forschungsstätten

und den Ingenieuren der Praxis

willkommene Gelegenheit, ihm von
Herzen Dank zu sagen und für die weitere

Zukunft Wohlergehen zu
wünschen.

Adresse des Verfassers: Prof. Dr. O. Stetnhardt, Dr.
sc. techn. h.c. (ETH), Lehrstuhl für Stahl- und
Leichtmetallbau, Universität Karlsruhe, Kaiserstr.
12, D-7500 Karlsruhe.

Steifigkeits- und Festigkeitskriterien für
die Aussteifungselemente seitlich
gestützter Rechteckrahmen
Von Pierre Dubas, Zürich

Einleitung

Rechteckrahmen mit gelenkigen oder
eingespannten Fusspunkten, wie sie für
Industrie- oder Lagerhallen Verwendung

finden, werden gelegentlich durch
in Riegelhöhe angeordnete
Aussteifungselemente in waagrechter Richtung
gestützt. Dies geschieht in der Regel
mittels einer schubsteifen Dachscheibe
(Windverband oder entsprechend
ausgebildete Dacheindeckung), die ihrerseits

die Auflagerkräfte auf Wandscheiben

abgibt
Bei einer solchen Ausbildung stellt sich
die Frage der erforderlichen Steifigkeit
der aussteifenden Bauteile, damit die
Rahmen als unverschieblich angesehen
werden dürfen. Zudem sind entsprechende

Festigkeitskriterien aufzustellen,

wobei die Wirkung der Imperfek-
tionen der Rahmenkonstruktion zu
berücksichtigen ist.

Um die Untersuchungen zu vereinfachen,

wollen wir die stabilisierende
Wirkung der Dachscheibe am Hallensystem

durch die federnde Stützung
eines Einzelrahmens ersetzen. Selbstverständlich

geht dabei die gegenseitige
Beeinflussung der mit der Dachscheibe
gekoppelten Rahmen verloren. Am
Schluss des Artikels wird gezeigt, wie
man die am einfachen Modell gewonnenen

Ergebnisse auf die tatsächlichen
Verhältnisse übertragen kann.

Knickbedingungen zur Ableitung
des Steifigkeitskriteriums

Allgemeine Überlegungen

Bei einem symmetrisch ausgebildeten
und nur in den Stielachsen belasteten
Rechteckrahmen mit in waagrechter
Richtung federnd gestütztem Riegel
können grundsätzlich die beiden im
Bild 1 dargestellten Knickformen auf¬

treten. Massgebend ist selbstverständlich

die mit dem kleinsten Eigenwert.
Bei verschwindender Steifigkeit der
seitlichen Stützung knickt daher der
Rahmen in antimetrischer Form aus; im
Grenzfall einer starren Lagerung dagegen,

trf|| symmetrisches Knicken ein,
ist doch dabei die Einspannwirkung des
einfach gekrümmten Riegels (Bild 1,

rechts) auf die knickgefährdeten Stiele
wesentlich geringer als beim S-förmi-
gen antimetrischen Verlauf (Bild 1, Mit-
te).

Bild 2 zeigt dieses Verhalten am
Beispiel eines Rechteckrahmensmiteinem
Verhältnis der Stielhöhe zur Riegellänge

h/b — 5/9 und mit gleichem
Querschnitt für alle ElementeSDie Ordina-

ten entsprechen der Knicklast JV„. der
Stiele, bezogen auf die Verzweigungslast

N0tCr für den Grenzfall einer
verschwindenden seitlichen Stützung
(antimetrische Knickform). Als Abszisse
erscheint der später gemäss Gl. (4)
definierte Steifigkeitswert der Querfederung,

der mit dem bekannten y-Wert
der Beultheorie versteifter Bleche
übereinstimmt und daher mit ys bezeichnet
wird [1].

Wie beim Beulen hat es beim Rahmenknicken

offensichtlich keinen Sinn, die
Steifigkeit der seitlichen Stützung über
den der symmetrischen Knicklast
entsprechenden Wert hinaus zu vergrös-
sern; für höhere ys-Werte wird nämlich
der Rahmen immer in der massgebenden

symmetrischen Form ausknicken,
wobei der entsprechende Eigenwert für
die vorliegenden Verhältnisse rund
7,9-iV0j(.r erreicht Der Steifigkeitswert
der Querfederung, bei dem die antimetrische

Knicklast den Wert der
symmetrischen erreicht, soll als Mindeststeifig-
keit Yj* bezeichnet werden. Diese Werte
y* werden anschliessend sowohl für

s\z\r^r% M i

tt Antimetrisches
Knicken

Symmetrisches
Knicken

Bild 1. Knickformen beim quergefederten Rahmen

o.cr

r Nerl

4-
spJt=J

Mvs =26.85

1.8h

EJ

10 20 30

Bild 2. Verlauf der Verzweigungslast Wcr des quergefederten Rahmens in Funktion des Steifigkeitswertes
y t: Definition der Mindeststeifigkeit yf
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den Zweigelenkrahmen als auch für den
voll eingespannten Rahmen ermittejEy

Beidseitig gelenkig gelagerter Rechteckrahmen:

Knickverhalten und Mindeststeif

igkeiten für die seitliche Stützung

Zur Lösung von Verzweigungsproblemen
beJ|R.ahmentragwerken eignet sich

die Deformationsmethode zweiter
Ordnung (vgl. z. B. [2]). Sie soll daher für die
Lösung der aufgeworfenen Probleme
herangezogen werden.

Beim seitlichen Knicken eines symmetrisch

ausgebildeten und symmet|jS|i|
in den Stielachsen belasteten Rechteckrahmens

(vgl. Bild 1) sind nur zwei
unabhängige Verformungsgrössen zu
betrachten: der Drehwinkel der oberen
Knoten (p (mit (prechts *Piinks aus Gründen

der Antimetrie) und der
Stockwerkverschiebewinkel \\i. Zur Bestimmung
dieser Unbekannten stehen zwei
Gleichgewichtsbedingungen zur Verfügung:

eine MomentengleiS|ewich^^p^
dingung in der Rahmenecke einerseits,
das Gleichgewicht der waagrechten
Kräfte in einem Schnitt durch die Stiele
andererseits.

Als Stabsteifigkeiten führt man
selbstverständlich die Werte mit dem Verfor-
mungseinfluss der Stabnormalkräfte
NAB ein:

sab s ' 'ab ~ • • —;—
'AB

e/2/]¦, mit 5 _e_
v ; bzw. f* 2 M - (e/2) ¦ cotge/2

± cotgg/2)

und mit der Stabkennzahl e

(genauer 8,4g)

(2) e 1AB-

wobei Ne — n2 •

NA

EJA

EJab
Par

Na

die Knicklast des beidseitig gelenkig
gelagerten Stabes darstellt (Vergleichswert).

Für den Sonderfall des am Ende B
gelenkig gelagerten Stabes gilt entsprechend

als Stabsteifigkeit

(3) uAB - u
Iab 1 - e • cotge

Führt man noch die Federsteifigkeit Sf
(Dimension Kraft/Längeneinheit, z. B.

kN/mm) ein, bzw. den dazugehörigen
Steifigkeitswert der Querfederung

h3
(4) y5 sF EJh

mit den Bezeichnungen nach Bild 1, so
schreiben sich beim Zweigelenkrahmen
mit der Belastung N in jeder Stielachse
die vorher erwähnten Gleichgewichtsbedingungen

zu:

(«' + 6ß) • (p-u'-i|/-0
u' • <p + (N • tf/EJ), - W - 0,5 • Yj) • \\i - 0

Hierin bedeutet ß eine Hilfsgrösse mit

(5) ß<
EJb-h
EJh-b

Da der Riegel unbeansprucht ist, sind
hier die bekannten Stabsteifigkeiten
erster Ordnung einzuführen, d.h. s'(e
0)—4, f'(e 0)—2. Zudem verschwinden

sowohl die Volleinspannmomente
(keine Querbelastung der Riegel) als
auch die äusseren waagrechten Kräfte,
so dass die Gleichungen keine
Belastungsglieder enthalten. Ein solches

homogenes System hat, ausser dem trivialen

Fall mit <p \\i 0, nur dann eine

Lösung, wenn seine Koeffizientendeterminante

verschwindet. Die
Ausrechnung der Knjjckdeterminante führt
zu einer transzendenten Gleichung (daher

Lösung nuriÄirch Probieren möglich)

mit den gesuchten Eigenwerten e„
(bzw. NAb — NCr aus Gl. 2) als Wurzeln,
insbesondere mit dem massgebenden
kleinsten Eigenwert.

Mit N • h2/EJh 82 nach Gl. (2) ergibt
sich im vorliegenden Fall die
Knickdeterminante zu

(6) (u' + 6 ß) • (e2 - W/s) -6 ß • u' 0

Für die Bestimmung der uns interessierenden

Mindeststeifigkeit y* der seitlichen

Stützung müssen wir zudem die
entsprechende Determinante für die
symmetrische Knicklast aufstellen (vgl.
Bild 2). Mit <prechts -cpunks und y 0

ergibt sich hier

'u' + 2ß) • ep - 0

und somit für die Bestimmung des

Eigenwertes

(7) «'=-2ß
Aus der Gleichsetzung der Bedingung
(6) für die antimetrische Knickform mit
der obenstehenden Bedingung (7) für

l|||||ymmetrische Form, d.h. durch
Einsetzen von u' aus der Gl. (7) in die G1.
(6), erhält man die Mindeststeifigkeit zu

(8) YJ* 2e^ + 6ß

Dabei bedeutet e^m die Kennzahl der
Stiele, die sich aus der Lösung der Gl.
(7) für die symmetrische Knickform
ergibt. Führt man die dazugehörige
Knicklänge ein, mit den Grenzwerten
' K..nm h für ß 0 und / ^m <•* 0,7 • h

für ß — °°; so schreibt sich die Kennzahl
auch zu

Sjym-«- h/lKjym
Im Beispiel nach Bild2 erreicht die
Hilfsgrösse ß den Wert 5/9. Die
transzendente Gleichung (7) besitzt dann die
Lösung esym s 3,4294, entsprechend
einer Knicklänge iKjym 9 0,9161 • h.

Gleichung (8) führt daher zu einer
Mindeststeifigkeit y* - 26,85 (vgl. Bild 2).

Bild 3 zeigt den Verlauf der
Mindeststeifigkeit y? in Funktion der Hilfsgrösse

ß. Das gleiche Bild enthält auch die
Werte ys, die sich aus der Bedingung
einer 5mal grösseren Steifigkeit der

100

50
EKS 30

2V

0 2 4 6 8 10

£=Jb-h/JL-b

Bild 3. Mindeststeifigkeiten yfder Querstützung
beim Zweigelenkrahmen

Aussteifungselemente im Vergleich mit
der seitlichen Rahmensteifigkeit ergeben,

wie sie in den EKS-Empfehlungen
[3] oder im Vorschlag zur DIN 18 800

[4] enthalten ist (allerdings in einem
anderen Zusammenhang). Da ein
Zweigelenkrahmen unter einer horizontalen
Einheitslast eine waagrechte Auslenkung

6EJh
(1

erfährt, führt die Bedingung einer 5mal
grösseren Steifigkeit zu

30
;.EKS *=

1 + 0,5/ß

Eingespannter Rechteckrahmen:
Knickverhalten und Mindeststeifigkeiten für
die seitliche Stützung

Das Vorgehen entspricht grundsätzlich
dem soeben dargestellten, wobei die
Stabsteifigkeiten der Stiele nun durch
die Funktion s' und t' an Stelle von u'
auszudrücken sind. Wir können auf die
Wiedergabe der Knickgleichungen
verzichten und geben direkt die
Gebrauchsformeln an:

Bestimmungsgleichung für das antimetrische

Knicken eines eingespannten
Rechteckrahmens mit seitlicher
Stützung (Steifigkeitswert Yi nach G1.4)

(9) (V +6ß)-[e2-2(s' + f')-'/;>YJ +

(s' + t')2 0

Bestimmungsgleichung für das symmetrische

Knicken des eingespannten
Rechteckrahmens (für s' vgl. Gl. 1)

(10) i'+2ß-0
Mindeststeifigkeit für die seitliche
Stützung (antimetrische Knicklast
symmetrische Knicklast)

(11) vj-e1
3 + 0,5 • e ¦ (cotge)/ß

l-(2/e)-(tge/2)

wobei wie bei der Gl. (8) als Stabkennzahl

e der Stiele der Wert tsym aus der
Lösung von Gl. (10) einzusetzen ist.

Bild 4 zeigt die Mindeststeifigkeit Yl in
Funktion der Hilfsgrösse ß. Zudem sind
auch hier die Werte enthalten, die sich
aus der Bedingung einer fünfmal
grösseren Steifigkeit der Aussteifungsele-
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mente ergeben. Die waagrechte
Verschiebung unter einer Einheitslast
beträgt jetzt

uH,
l,5ß+l

24 EJh l,5ß + 0,25

und somit ergibt sich

10n l,5ß + 0,25
JS.EKS- 120

15ß+1

Vergleiche zwischen dem Zweigelenkrahmen
und dem eingespannten Rahmen

Bei Vergleich von Bild 3 mit Bild 4 fällt
der unterschiedliche Verlauf der Ys

-Kurven auf: der Zweigelenkrahmen
mit einer Kennzahl ß 0 weist eine
endliche Mindeststeifigkeit auf, der mit
ß 5 oo dagegen nicht. Beim eingespannten

Rahmen liegen die VerhälOTsse
gerade umgekehrt, d.h. der Rahmen mit
einem starren Riegel (ß — °°) besitzt
hier eine endliche Mindeststeingkeit.

Für -diesen Rahmen mit starrem Riegel
genügt es, den Stiel als Stütze mit
beiderseitiger Dreheinspannung und
verschieblichen Stabenden zu betrachten,

wie dies aus Bild 5 hervorgeht.
Beim antimetrischen Knicken weist der
Stiel eine ungerade Zahl von
Wendepunkten auf. Ist der Stützenkopf seitlich

nicht gestützt, so verläuft die
Knickfigur cosinusförmig, und die
Knicklänge ergibt sich bekanntlich zu
Wm
Besitzt die seitliche Stützung die
Mindeststeifigkeit y* so müssen sich
Wendepunkte an den Einspannstellen
bilden, damit die Knicklänge "aise beim
symmetrischen Knicken h/2 erreicht.
Bei weiter zunehmender Steifigkeit der
Stützungsfeder weist schliesslich die
antimetrische Knickfigur drei Wendepunkte

innerhalb der Stielhöhe und
eine verschwindende relative Verschiebung

der zwei Stützendpunkte auf: die
Knicklänge würde sich daher auf
0,35 • h reduzieren.

Selbstverständlich wird sich dann nicht
diese antimetrische Knickform ausbilden,

sondern die symmetrische Form
mit je einem Wendepunkt im Viertel der
Höhe. Oberhalb von y* entsprechen die
antimetrischen Knickfiguren der
Fortsetzung der entsprechenden Kurve im
Bild 2, die wegen ihrer Ungültigkeit
gestrichelt gezeichnet ist.

Der Zweigelenkrahmen mit ß — 0

stimmt mit dem bekannten Modell der
beidseitig gelenkig gelagerten Stütze
mit Querfederung am Kopf überein.
Durch Gleichsetzen des dazugehörigen
Eigenwertes Ncr — sF • h mit der Euler-
schen Knicklast N„ — iPEJ^/h1 erhält
man y* ft2, bzw. 2 • 7tJ wenn man
berücksichtigt, dass beim Rahmen die Feder zwei
Stiele auszusteifen hat (vgl. Bild I und
Bild 3).

Die zwei Fälle, bei denen keine endliche

Mindeststeifigkeit existiert, sind
eng verwandt, handelt es sich doch
jeweils um eine Kragstütze mit federnder
Stützung (Einspannung oben beim
Zweigelenkrahmen mit starrem Riegel,
ß -* °°; unten beim eingespannten Rahmen

mit sehr weichem Riegel, ß 0).
Die symmetrische KiSkfigur, mit einer
verschwindenden Auslenkung am
Stielkopf, stellt aber keine Eigenfunktion
der Kragstütze dar [5]. Somit ist eine
starre Stützung mit y* i& °° erforderlich,
um diese Form als Grenzfall des anti-
metrischen Knickenszu erzwingen.

Schliesslich fällt beim Betrachten der
Bilder 3 und 4 auf, dass beim
Zweigelenkrahmen di|||EKS-Bedingung zu
Werten ys < Y* führt, beim eingespannten

Rahmen dagegen zu Werten ys > Y*>

abgesehen vom schmalen Bereich mit
kleinen Hilfsgrössen ß. Zuerst soll die
Anwendung der EKS-Bedingung präzisiert

werden; in der Formulierung des

Entwurfes zur DIN 18 800 lautet sie ([4]
Abscffitt 5.2.1):

«Wirken bei der Aufnahme von
horizontalen Lasten in Stabwerkebene der
Rahmen und die aussteifenden Bauteile
(z.B. Wandscheiben, Verbände) zusammen,

so kann der Rahmen als
unverschieblich angesehen werden, wenn die
Steifigkeit der Aussteifungselemente
mindestens 5mal so gross ist wie die
Steifigkeit des Rahmens im betrachteten

Stockwerk».

Die Problemstellung ist somit anders
als bei der hier untersuchten
Mindeststeifigkeit der federnden Stützung im
Rahmen der Verzweigungstheorie. Die
seitliche Versteifung bewirkt nämlich
eine weit grössere Erhöhung der Knicklasten

beim Zweigelenkrahmen im
Vergleich mit dem eingespannten Rahmen:
Für eine Hilfsgrösse ß 5/9 erreicht
das Verhältnis JV<TJJWI/JV0.„.den Wert 7,9
beim Zweigelenkrahmen (vgl. Bild 2)
gegenüber 3,7 beim eingespannten
Rahmen. Die Mindeststeifigkeit der
Querfederung muss somit bei
Zweigelenkrahmen, bezogen auf die Rahmen-
steifigkeit, höhere Werte annehmen.

Näherungsweise Berücksichtigung des

unelastischen Knickbereiches

Die Verminderung der Biegesteifigkeit
der Stiele im unelastischen Bereich
kann bekanntlich durch Einführung
eines Wertes 77/,, mit T< E, abgegolten
werden. Die Verzweigungslast des
Rahmens mit der vollen Steifigkeit EJ\, im
unbeanspruchten Riegel und TJh in den
Stielen stellt eine brauchbare Näherung
für die Traglast im Sinne der europäischen

Knickspannungskurven dar.
Dabei ist Tnach folgender Formel (vgl.
[6]) einzusetzen

T- £• X,, Or/Or

100-H

50

30

•
/1 /1/

l\ ¦

1

1 T

120

1 H-

XEKS
*tt

—1 (-

X

—i—i— —i—*+¦
2 4 6 8 10

/3=Jbh/Jhb

Bild 4. Mindeststeifigkeiten yf der Querstützung
beim eingespannten Rahmen

r^r^ E-JT S 5

x«0

Bild 5. Druckstab mit beidseitiger Dreheinspannung:

Verlauf der Eigenfunktion bei verschiedenen

Steifigkeiten der Querstützung

Der Modul 7" muss zuerst geschätzt und
durch wiederholte Näherung zur
Konvergenz gebracht werden. In unserem
Fall macht sich die Verkleinerung der
Biegesteifigkeit auf TJ/, sowohl bei der
Bestimmung der Hilfsgrösse ß (Gl. (5)
als auch bei der Definition des Steifig-
keitswertes Yi (Gl. (4) bemerkbar. In der
Regel darf man annehmen, dass sich
die Federsteifigkeit während des Knick-
vorganges nicht vermindert, so dass die
Querstützung relativ steifer wird.
Ähnliches gilt allerdings auch für die
Einspannwirkung des elastisch verbleibenden

Riegels, so dass bezüglich der
erforderlichen Mindeststeifigkeit y* diese
Einflüsse sich teilweise kompensieren.

Als Beispiel wählen wir den
Zweigelenkrahmen nach Bild 2, mit einer
Riegellänge von 9 m und einer Stielhöhe
von 5 m; Querschnitt überall HEA 200,
Fe 360. Für das Knicken um die starke
Achse gilt Kurve b. Die sukzessiven
Näherungen für den T-Modul führen
für das symmetrische Knicken zu einer
Hilfsgrösse ß 2,3485 (an Stelle von
5/9 im elastischen Bereich) und zu ssym

3,8864. Aus Gl. (8) ergibt sich daher
eine Mindeststeifigkeit yf — 44,3, d.h.
1,65 • y* elastisch • Wegen der verminderten

Stielsteifigkeit TJi, genügt aber nach
Gl. (4) eine Federsteifigkeit sp ¦ 0,39 •

sh elastisch.

Berücksichtigung der
geometrischen und der
strukturellen Iniperfektionen

Die vorherigen, auf der Verzweigungstheorie

basierenden Untersuchungen
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stellen nur eine grobe Näherung für das
tatsächliche Verhalten der Konstruktion

dar. Einerseits bleiben die Querbe-
lastung des Riegels sowie die waagrechten

Lasten unberücksichtigt. Andererseits

vernachlässigt man den Einfluss
der geometrischen (Abweichungen von
der theoretischen Tragwerksform) und
der strukturellen Imperfektionen,
insbesondere der Eigenspannungen.

Mit Hilfe einer elastischen Methode
zweiter Ordnung kann man der tatsächlichen

Belastungsanordnung und der
geometrischen Imperfektionen relativ
einfach Rechnung tragen. Die gleichzeitige

Berücksichtigung der Eigenspannungen

und der dazugehörigen Plastifi-
zierungen bedingt aber die Anwendung
eines aufwendigen Computerprogram-
mes, so dass wir uns auf zwei
Vergleichsbeispiele konzentrieren müssen:
ein frei verschiebbarer Zweigelenkrahmen

einerseits, der gleiche Rahmen mit
einer weichen Querfederung anderer-
seits.

Frei verschieblicher Zweigelenkrahmen

Die Abmessungen des untersuchten
Rahmens sowie dessen Belastung gehen
aus Bild 6 hervor; sie stimmen genau
mit dem letzten Beispiel aus [7] überein.
Insbesondere hat man sowohl
Eigenspannungen in den Rahmenelementen
(vgl. Bild 3 in [7]) als auch eine
Anfangsauslenkung der Stielköpfe w0, R;ege|

13 mm (gleiche Richtung wie die
waagrechten Kräfte)iSsngeführt. In der
Zwischenzeit gelang es allerdings, die
Konvergenz der elastoplastischen
Berechnungen zweiter Ordnung zu verbessern,

indem man das fjijiessplateau
durch einen Verfestigungsmodul von
1,5 kN/mm2, d.h. E/140, ersetzt hat.

Bild 7 mit kennzeichnenden Schnittkräften

und Verformungen stellt somit
eine Ergänzung zu Bild 10 aus [7] dar,
wobei der Lastmultiplikator für den
Grenzzustand von 0,975 auf 1,03 gesteigert

werden konnte. Die Abn^me des
Momentes M21 in der linken
Rahmenecke bei grossen Auslenkungen u

sowie die dadurch bewirkte Erhöhung
des Feldmomentes gehen jetz| deutlicher

hervor. Im rechten Eckknoten 51

erreicht die plastische Biegesteifigkeit
nur noch einen BruchtäfTdes elasti-
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Bild 7. Frei verschiebbarer Rahmen: Verlauf der Momente und der Auslenkungen nach den elastoplastischen

Berechnungen 2. Ordnung

l
1.0

i N

Nu
/ / / '

/M21 //
1.0

kN
Nu

sr\vr
/ M35//

/w36 8 \
0.5

/ //*»
/ // Mp^i

Lastmultiplikator 1.20

0.5

M-p

EJ

M u, w, Mp/EJ

Bild 8. Quergefederter Rahmen mit y
plastischen Berechnungen 2."Ordnung

1.7: Verlaufder Momente und der Auslenkungen nach den elasto-

Bild 6. Den Untersuchungen zugrundegelegter
Rahmen

sehen Wertes EJ ; das Moment M5|
übersteigt sogar leicht das plasti||j|i<v
Moment Mp, können doch mit der
Einführung eines Verfestigungsmoduls die
Flanschspannungen bei scharfer Krümmung

die Fliessgrenze geringfügig
übersteigen.

Die durch die Verfeinerung der
Berechnungstechnik ermöglichte leichte Erhöhung

des Lastmultiplikators ändert
allerdings nichts an der Gültigkeit der in
[7] wiedergegebenen Schlussfolgerungen.

Insbesondere bleibt der Unterschied

zum Lastmultiplikator aus der
Fliessgelenktheorie erster Ordnung von
1,22 bestehend, wenn auch in reduziertem

Masse.

Zweigelenkrahmen mit weicher
Querstützung

Der Zweigelenkrahmen nach Bild 6 soll
nun eine federnde Querstützung erhalten.

Man wählt absichtlich eine geringe
Federsteifigkeit Sp, die mit den Stielen
aus HEA 200 nach Gl. (4) zu einem
Steifigkeitswert von rund 1,7 führt, d.h.
6 Prozent der Mindeststeifigkeit aus

Bild 2 (bzw. 16 Prozent, falls man die
unelastische, den EKS-Knickspan-
nungskurven entsprechende Stielstei-
figkeit TJi, einführt).

Die Verzweigungslast, die man allenfalls

für die Ermittlung des Vergrösse-
rungsfaktors zweiter Ordnung 1/(1 -
N*/Ncr) benötigt, beträgt den 5,72fa-
chen Wert der Belastung aus Bild 6. Im
elastischen Bereich bleibt somit der
Verformungseinfluss bescheiden, wie
dies aus Bild 8 hervorgeht: bis zum
Eintreten der ersten Plastifizierungen im
Bereich des Eckknotens 51 verlaufen
sowohl die Momente als auch die
Auslenkungen fast linear. Bei höheren
Lasten nimmt jedoch das Eckmoment M$\
wesentlich langsamer und das Feldmo-
ment entsprechend schneller zu. Zudem
bleibt am Schluss, d.h. bei fortschreitenden

waagrechten Auslenkungen, das
linke Eckmoment Mi\ praktisch
konstant.

Ein wesentlicher Unterschied zum Bild
7 besteht somit nicht, wenn auch beim
quergefederten Rahmen die Tendenzwenden

weniger ausgeprägt sind. Wegen

der schlechten Konvergenz konnte
aus Kostengründen der Lastmultiplika-
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Igpfücht über 1,2 gesteigert werden.
Dieser Wert entspricht wahrscheinlich
nicht ganz dem wahren Tragwiderstand
der Rahmenkonstruktion, wenn auch
der Momentenausgleich zwischen der
Ecke 51 und dem Feld schon weit
fortgeschritten ist.

Die soeben erwähnten numerischen
Schwierigkeiten sowie die deutliche
Tendenz zum Momentenausgleich
haben dazu geführt, dass man für die
weiteren Untersuchungen dieäfliessgelenk-
theorie zweiter Ordnung verwendet hat.

Angenäherte Untersuchungen
nach der Fliessgelenktheorie
zweiter Ordnung

Besonderheiten des verwendeten Verfahrens

Bei der Fliessgelenkmethode werden
bekanntlich die Plastifizierungen, die
tatsächlich in einer gewissen Zone
auftreten, in einem Punkt, dem afliessge-
lenk, konzentriert. Bis zum Erreichen
des plastischen Biegewiderstandes in
einem solchen Knoten verhält sich das

System vollständig elastisch; darüber
hinaus wirkt der Punkt als Gelenk, d.h.,
das Biegemoment nimmt nicht mehr zu.

Im Rahmen einer Theorie zweiter
Ordnung sind selbstverständlich die
Gleichgewichtsbedingungen am
verformten System anzuschreiben. Für die
folgenden Untersuchungen hat man
das Computerprogramm BARBU [8] in
seiner ursprünglichen, rein elastischen
Version benützt. Die Berechnung
erfolgt zweckmässigerweise «Schritt für
Schritt»: ausgehend vom elastischen
System lässt man zunächst die
Belastung bis zum Erreichen des plastischen
Biegewiderstandes in einem Knoten,
d.h. bis zur Bildung des ersten Fliessgelenkes

ansteigen. Der Belastungszuwachs

wird anschliessend, wieder im
Rahmen einer elastischen Berechnung
zweiter Ordnung, an einem System mit
dem ersten Fliessgelenk angebracht, bis
sich das zweite einstellt, usw.

Dieses bei der Fliessgelenktheorie erster
Ordnung nicht übliche Verfahren ist für
die Verformungstheorie angezeigt: Bild
9 zeigt nämlich, dass bei einem n-fach
statisch unbestimmten Rahmen der
Grenzwiderstand nicht unbedingt mit
der Bildung des letzten Fliessgelenkes,
d.h. mit dem Eintreten einer kinematischen

Kette, übereinstimmen muss. Die
dazugehörige Last kann nämlich im
unstabilen Bereich, d.h. auf dem abfallenden

Ast der Last-Auslenkungskurve,
liegen und somit eine unwirtschaftliche
Lösung darstellen (vgl. z.B. [9]).

Bei dieser schrittweisen Ermittlung des

Tragwiderstandes nach der
Fliessgelenktheorie zweiter Ordnung treten
folgende Schwierigkeiten auf:

A N

1.0
1.0 0.93

5.

"36
34

05 05

Lastmultiplikator 1.01

u, w

Bild 10. Frei verschiebbarer Rahmen;!$Smauf der Momente und der Auslenkungen nach der Fliessgelenktheorie

2. Ordnung

Die plastischen Momente in den
Rahmenelementen, insbesondere in
den Stielen, hängen von den
dazugehörigen Normalkräften ab, die mit
dem Lastmultiplikator zunehmen.
Bei der Bildung des ersten Fliessgelenkes

z.B. hat die Normalkraft noch
nicht ihren dem Tragwiderstand
entsprechenden Endwert erreicht das

plastische Moment muss somit beim
Belastungszuwachs leicht abnehmen.
Für die folgenden Untersuchungen
hat man die Momente in den
Fliessgelenken jeweils sofort mit dem Endwert

der Normalkraft ermittelt Diese
Übereinstimmung konnte nur durch
eine wiederholte Schätzung erzielt
werden.
Der Einfluss der Eigenspannungen
wird bei der Anwendung der
Fliessgelenktheorie nicht direkt
berücksichtigt. Ähnliches gilt für die
Wirkung der Länge der teilplastischen
Bereiche. Man kann aber beide
Faktoren näherungsweise durch eine
Erhöhung der geometrischen Imperfektionen

erfassen. Ein ähnlicher
Gedanke liegt der Einführung der Er-
satzexzentrizität e0 für den Nachweis
auf Druck und Biegung nach der
Norm SIA 161, Ziffer 3 064, vor. Für
die folgenden Untersuchungen wurde

somit die waagrechte Anfangsauslenkung

der Stielköpfe auf u0 Riege|

Vi
AN Fliessgelenktheorie I.Ordnung

.Verzweigungslast

s Elastizitätstheorie
S.Ordnung

+1
\S m>mavette

Fliessgelenktheorie
2.Ordnung

Bild 9. Mögliche Lastverformungskurve nach der
Fliessgelenktheorie 2. Ordnung

h/200 - 25 mm erhöht (vgl. [3] 5.9.3.1

sowie [4] 2.5).

- Die sukzessive Einführung von
Fliessgelenken bedingt an sich eine
Änderung der Steifigkeitsmatrix. Im
vorliegenden Fall hat man darauf
verzichtet und nacheinander
verschiedene Systeme betrachtet, welche,

abgesehen vom ersten, Gelenke
mit vorgegebenen Momenten enthalten.

Andere Schwierigkeiten mehr
grundsätzlicher Natur sollen in den
dazugehörigen Abschnitten erwähnt werden.

Kontrollrechnungen

Wir wollen zuerst die Brauchbarkeit der
Fliessgelenktheorie zweiter Ordnung an
Hand der zwei soeben behandelten
Beispiele überprüfen.

Für den frei verschiebbaren Rahmen
sind die Hauptergebnisse im Bild 10

zusammengefasst, wobei zum Vergleich
die Schnittkräfte und die Verschiebungen

gemäss den elastoplastischen
Berechnungen (Bild 7) gestrichelt
wiedergegeben sind. Die Übereinstimmung ist
befriedigend, dies sowohl für den Verlauf

der Momente und der Verformungen

als auch für die Höhe des
Lastmultiplikators (Differenz nur 2 Prozent,
wobei die Fliessgelenktheorie eine
Näherung auf der sicheren Seite liefert).

Für den Rahmen mit weicher Querfede-
rMM?» Ys " 1.7, soll zuerst der Vorgang
bis zur Bildung des zweiten Fliessgelenkes,

etwa in Riegelmitte, verfolgt werden.

Bild 11 beweist dass die Ergebnisse
der Fliessgelenktheorie zweiter

Ordnung vernünftig mit denen aus den
elastoplastischen Berechnungen (gestrichelt)

übereinstimmen. Der dem Eintreten

des zweiten Fliessgelenkes entsprechende

Multiplikator ist mit 1,25 leicht
höher als der Wert von 1,2 aus Bild 8,
wobei, wie bereits erwähnt wurde,
Konvergenzschwierigkeiten die Berechnungen

für einen Lastzuwachs über 1,2 hinaus

verunmöglicht haben.
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Bild 11. Quergefederter Rahmen mitys
gelenktheorie 2. Ordnung

1.7; Verlaufder Momente und der Auslenkungen nach der Fliess-
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Bild 12. Quergefederter Rahmen mit ys 1.7:
Tragsystem nach der Bildung des zweiten Fliessgelenkes

| Lastmultiplikator

2. Fliessgelenk

0.9

1.4
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0 17 3.4 6.8 13.5

Bild 14. Lastmultiplikatoren des quergefederten
Rahmens in Abhängigkeit vom Steifigkeitswert ys

Mit der Bildung des zweiten Fliessgelenkes

entsteht noch keine kinematische
Kette: nach Bild 12 besteht nun das
Tragsystem für den Belastungszuwachs
Ao aus dem einfachen Balken G1-G2
und aus dem am Fuss gelenkig gelagerten

Halbrahmen 1-21-G2, der ohne
waagrechte Stützung unstabil wäre. Mit
dieser ungewöhnlichen Tragwirkung
nimmt aber die Federkraft bzw. die
Riegelverschiebung u36 äusserst rasch zu
und erreicht schliesslich den unzumutbaren

Wert von rund h/91 Die dazugehörigen

Gelenkrotationen sind sehr
gross. Beim Eckmoment M21 geht die
nach der Bildung des ersten Fliessgelenkes

einsetzende Tendenz zu einer
Abnahme in einer abrupten Steigerung
hinaus.

Die M-Fläche im Bild 12 beweist
zudem, dass das Gelenk Gi beim Anbringen

von Aq in Richtung des Eckpunktes
51 wandern muss, weil bei gleichbleibender

Lage die Momente des einfachen

Balkens G1-G2 im Bereich G2 höher

sein mussten als im Fliessgelenk Gi
selber, d.h. grösser als Mp\ Die Tragwirkung

nach der Bildung des zweiten
Gelenkes ist somit praktisch einer Unstabi-
Iität im Sinne von Bild 9 gleichzusetzen
und wird deshalb für die weiteren
Untersuchungen nicht mehr verfolgt.

Nebenbei sei bemerkt, dass die Verhältnisse

aus Bild 12 auch für einen
unverschiebbaren Rahmen gelten, falls
Zwängungsmomente, z.B. aus
Auflagersenkungen, eine Bildung der
Fliessgelenke in der Reihenfolge G\, G2

erzwingen (in diesem Zusammenhang
vgl. auch [10]).
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Bild 13. Quergefederte Rahmen mit verschiedenen Steifigkeitswerten ys; Vergleich des Verlaufes der
Momente und der Auslenkungen nach der Fliessgelenktheorie

Einfluss der Steifigkeit der Querstützung

Um den Einfluss der Grösse der
Federsteifigkeit auf das Tragverhalten
aufzuzeigen, wurde das System nach Bild 6
nicht nur für einen Steifigkeitswert y^ «¦

1,7 (Bild 11), sondern auch für 3,4, 6,8
und 13,5 untersucht. Bild 2 zeigt, dass
bei Annahme eines rein elastischen
Verhaltens der Stiele diese ys-Werte unterhalb

der Mindeststeifigkeit liegen. Mit
der Einführung der unelastischen Stiel-
steifigkeit TJh, entsprechend der EKS-
Knickspannungskurven, übersteigt
dagegen die höchste berücksichtigte
Steifigkeit den zur Mindeststeifigkeit
gehörenden Wert um rund 30 Prozent.

Die Ergebnisse der Berechnungen sind
im Bild 13 zusammengefasst. Der Verlauf

der Eckmomente M$\ hängt von
der seitlichen Auslenkung u und somit
vom Y,-Wert ab. Ähnliches gilt für das
entsprechende plastische Moment,
nimmt doch die den Biegewiderstand
vermindernde Normalkraft mit dem
Lastmultiplikator zu. Das Feldmoment
zeigt dagegen bis zur Bildung des
Fliessgelenkes im Eckpunkt 51 keinen
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nennenswerten Einfluss der Federsteifigkeit.

Beim weiteren Belastungszuwachs

nimmt aber Mpew um so rascher

zu, je weicher die Querfederung ist.

Der Verlauf der waagrechten
Riegelauslenkung u spricht für sich und
braucht keine Kommentare.

Links im Bild 13 sind die Lastmultiplikatoren

eingetragenjläie der Bildung
des ersten Hffissgelenkes (Eckpunkt 51)
entsprechen, rechts die beim Erreichen
des Tragwiderstandes (Bildung des
Gelenkes im Feld, unter Vernachlijffsigung
einer weiteren Laststeigerung). Im Bild
14 sind zudem die gleichen Werte in
Funktion der Steifigkeitswerte ys dargestellt.

Die mögliche Erhöhung des
Tragwiderstandes ist im Bereich hoher ys-
Werte gering.

Beim Grenzfall des unverschieblichen
Rahmens führt die klassische
Fliessgelenktheorie erster Ordnung zu einem

Lastmultiplikator von 1,46. Unter
Annahme einer durch den Verformungs-
einfluss bedingten Reduktion mit dem
Faktor 1/(1 - N*/N,Z) und mit einem
Eigenwert von 25,0 bezogen auf die
Lasten nach Bild 6, beträgt der abgeminderte

Lastmultiplikator rund 1,38 für
eine starre Querstützung. Um einen
solchen Wert zu gewährleisten, ist gemäss
Bild 14 ein Ys-Weit von knapp 10

erforderlich, der sehr gut mit den Ergebnissen

der Verzweigungstheorie unter
Berücksichtigung der unelastischen Stiel-
steifigkeit TJhübereinstimmt.

Festigkeitsnachweis für die seitliche
Stützung

Die seitliche Stützung übernimmt
folgende Kräfte:

- Einen Anteil an der waagrechten
Belastung, der in brauchbarer Näherung

aus dem Verhältnis der Steifigkeit

der Querstützung zur Gesamt-
steifigkeit ermittelt werden darf (mit
einer dem Kehrwert der vorher
berechneten Auslenkung mh |;
entsprechenden Rahmensteifigkeit).

- Die Ablenkungskräfte aus VemiP
mungseinfluss (Schiefstellung der
Stiele usw.).

Subtrahiert man von den FedeÄräften,
die sich aus der Fliessgelenkberechnung
zweiter Ordnung ergeben, den soeben
erwähnten Anteil der waagrechten
Belastung, so verbleiben folgende
stabilisierende Kräfte, die in Prozent der
Gesamtvertikallast angegeben sind:

Ys

Die mit Y* ' ZI durchgeführten elasto-
plastischen Berechnungen zweiter
Ordnung ergeben allerdings nur 1,2 Prozent
statt 2,0 Prozent, sind doch die Hori-
zontalverschiebungerHbeim Erreichen
des gerechneten Tragwidejljtandes kleiner

(vgl. die Bilder 8 und 11).

Bei einer praktischen Bemessung wird
man wohl alle äusseren Lasten der

Querstützung zuweisen und zudem die

Wirkung der geometrischen Imperfektionen

berücksichtigen. Man bleibt da-
ffflk auf der sicheren Seite.

Schlussfolgerungen und Ausblick

Die vorgestellten Berechnungsergebnisse
bestätigen die Brauchbarkeit der

Steifigkeitskriterien, die sich aus der
Anwendung der Verzweigungstheorie
ergeben, besonders wenn man das
unelastische Verhalten der Stiele
berücksichtigt. Für den Festigkeitsnachweis
der Querstützung sind meistens die
äusseren waagrechten Lasten massgebend,
so dass eine sehr genaue Erfassung der

§sj||§ilisierenden Kräfte kaurn erforderlich

ist.

Schliesslich wollen wir kurz auf die tat-
sächliche Ausbildung von seitlich
gestützten Rahmen zurückkommen, d.h.

yg&wdie durch eine Dachscheibe und
durch Wandscheiben räumlich stabili-

£äjgpen Hallensysteme. Bei einer
solchen Anordnung kann man zuerst die
folgenden zwei Grenzfälle betrachten:

- Praktisch starre Dachscheibe und
nachgiebige Wandscheiben. Die
Tragwirkung entspricht sehr gut
unserem vereinfachten Modell. Bei der
Ermittlung der für die einzelnen
Rahmen einzusetzenden Federstei-
figkeplist selbstverständlich die
Anzahl der durch eine Wandscheibe
stabilisierten Tragebenen zu berücksichtigen.

- Verformbare, durch starre
Wandscheiben gestützte Dachscheibe.
Durch die Annahme-einer sinusförmigen

Verteilung der Belastung
sowie der Stützkräfte der Rahmen auf
die Dachscheibe kann man auch hier
das räumliche Tragverhalten mit dem
ebenen Modell beschreiben. Greifen
nämlich die sinusförmig verteilten
Stützkräfte der Rahmen an der
Dachscheibe an (mit H 1 in Hallenmitte),

so ergibt sich wegen der
Sinusaffinität die einzusetzende Federstei-

Schweizer Ingenieur undArchitekt 51-52/80

figkeit des Ersatzsystems als Kehrwert

der max. Durchbiegung der
Dachscheibe. Man verbessert die
Genauigkeit, wenn man die Belastung
mittels einer Fourier-Analyse zerlegt;
dabei können für die höheren
Harmonischen, weil sie nur einem Bruchteil

der vollen Dachscheibenspannweite

entsprechen, die Rahmen als

unverschiebbar betrachtet werden.

Im allgemeinen Fall ermöglicht die
Betrachtung der Grenzfälle mindestens
eine Abschätzung des Ausmasses der
seitlichen Stützung. Es ist zudem vorgesehen,

auf diesem Gebiet weitere
Untersuchungen durchzuführen.

A. Piller, wissenschaftlicher Mitarbeiter am
Lehrstuhl für Baustatik und Stahlbau, hat
die Computerberechnungen durchgeführt
und durch seine Anregungen wesentlich bei

der Ausarbeitung der Untersuchungen
mitgewirkt
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