Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 98 (1980)

Heft: 18

Artikel: Mantelreibungsversuche in Sondierbohrungen

Autor: Schär, Ulrich

DOI: https://doi.org/10.5169/seals-74108

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bei bindigen Böden (Tone, plastische

durch die undrainierte Scherfestigkeit s_u (t/m²) ersetzt, wobei diese im Falle

von Bohrpfählen um 40-80 Prozent ab-

Von besonderem Interesse ist die Man-

telreibung in der Regel gerade bei bin-

digen Böden, da sie hier einen wesentli-

chen Teil der Pfahllast übernehmen

sollte. Die Kenntnis ihrer Grösse über

die gesamte massgebende Pfahllänge ist

daher von hoher Bedeutung und ergibt

sich am zuverlässigsten aus einem ent-

sprechenden Versuch. Ein solcher ist je-

denfalls in seiner Aussagekraft einer

rechnerischen Abschätzung vorzuzie-

hen, wenn berücksichtigt wird, dass wie Bild 1 veranschaulichen möge selbst bei Eignung des Untergrundes zur Durchführung von in-situ-Scher-

versuchen die Messergebnisse in der Regel stark streuen und daher die Fest-

legung des massgebenden su-Wertes Er-

tonige Silte) wird der Ausdruck

gemindert wird.

Mantelreibungsversuche in Sondierbohrungen

Von Ulrich Schär, Zürich

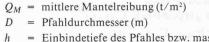
Kernbohrungen sind neben Sondierschlitzen in den meisten Fällen das zuverlässigste Verfahren zur Erkundung des Baugrundes. Ausser der visuellen Beurteilung des zutage geförderten Untergrundes bieten sie die Basis zur Durchführung von in-situ-Versuchen, etwa der Bestimmung der Lagerungsdichte, der Zusammendrückbarkeit, der Wasserdurchlässigkeit oder der undrainierten Scherfestigkeit. Da es sich hierbei - einschliesslich der Scherfestigkeitsbestimmung mittels Flügelsonde - um «Punktversuche» handelt, d.h. um Versuche, die streng genommen nur für den unmittelbar untersuchten Bodenbereich gelten und in der Regel - um für eine Dimensionierungsaufgabe verwendet werden zu können - auf einen grösseren Bodenverband extrapoliert werden müssen, wurde versucht, ein Verfahren zu entwickeln, das es ermöglicht, die Reibungseigenschaften des Untergrundes über einen ganzen Bereich, d.h. über eine ganze Bohrlochlänge oder mindestens grössere Teile derselben zu bestimmen. Angaben dieser Art sind häufig für eine Vordimensionierung von Pfählen oder Ankern erwünscht.

Der im folgenden beschriebene Versuch ist dem Ausreissversuch eines Ankers ähnlich. Kostenmässig liegt er in derselben Grössenordnung wie die übrigen bisher angewandten einfachen Bohrlochversuche, wie etwa Standard Penetration Test, Scherflügelversuch oder Absenkver-

Problem Mantelreibung

Weder in den Normen SIA 191 und 192 (Fels- und Bodenanker, Pfähle) noch in DIN 4014 oder 4026 (Bohrpfähle, Rammpfähle) finden sich konkrete, für den Einzelfall gültige Angaben zur Mantelreibung. Bekanntlich hängt sie von verschiedenen Faktoren, wie des Materials, der Rauhigkeit und der Herstellungsart des Pfahles oder Ankers sowie von der Beschaffenheit des Bodens ab. Da diese Einflüsse in verschiedensten Kombinationen möglich sind, lassen sich Mantelreibungswerte daher nicht zum vornherein etwa für bestimmte Bodenarten festlegen.

Rechnerisch kann die Mantelreibung durch die Multiplikation der Mantelfläche eines Pfahles mit der Scherfestigkeit mel für Reibungsböden lautet:


des Bodens und dem mittleren Über-

Mantelreibungsversuche

messenssache ist.

Das hier vorzustellende Verfahren beruht darauf, die maximale Kraft zu messen, die erforderlich ist, um das im Zuge der Ausführung einer Kernbohrung abgeteufte Futterrohr (Stahlrohr) oder einen im Bohrloch erstellten Betonzylinder (etwa gemäss Bild 5) zu-

 $Q_M = \pi \cdot D \cdot h \cdot$ sin Φ · cos Φ

= Einbindetiefe des Pfahles bzw. massgebende Pfahllänge (m)

= Kohäsion des Bodens (t/m²)

= Reibungswinkel des Bodens (Grad)

= Überlagerungsdruck in Schichtmitte (t/m^2)

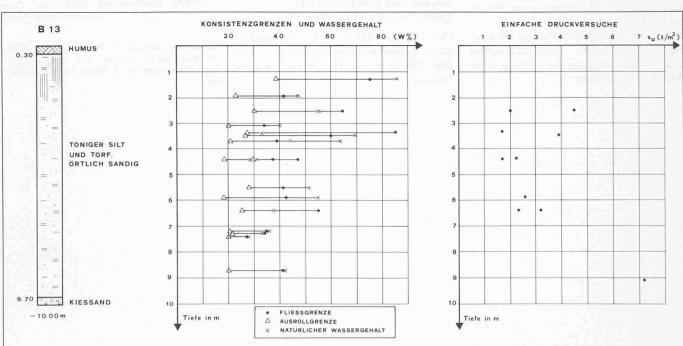


Bild 1. Bodenaufbau und Bodeneigenschaften. Zu beachten ist, trotz der geologischen Einheit der rund 10 m mächtigen Verlandungsbildungen, die starke Streuung der einzelnen Mess- und Versuchswerte

rückzuziehen. Die Versuchsdurchführung wird durch die Bilder 3 und 4 veranschaulicht. Das Futterrohr oder der Betonzylinder werden mittels hydraulischer Pressen unter Messung der Maximalkraft nach oben gezogen. Dabei kann im Falle teleskopierter Verrohrung die Mantelreibung für einzelne Teilabschnitte des Bohrloches gesondert bestimmt werden. Diese Möglichkeit kann man sich in dem Sinne zunutze machen, als die Teleskopierabschnitmit einzelnen interessierenden Schichten in Übereinstimmung gebracht werden. Auf diese Weise lassen sich Mantelreibungswerte für einzelne Bodenarten ermitteln.

Das Verfahren ermöglicht es ausserdem, Mantelreibungswerte für Stahl und Ortbeton in ein und demselben Bohrloch zu bestimmen, wie das vorliegende Beispiel zeigt. Dabei ist allerdings Voraussetzung, dass Abmessung und Form des Rückzugskörpers von Stahl und Beton identisch sind, wie dies bei unserem Testbeispiel (vgl. Bild 5) der Fall war. Ausbuchtungen des Betonkörpers hätten eine wesentliche Erhöhung der Mantelreibung zur Folge und der Vergleich zwischen Stahl und Beton wäre nicht mehr statthaft. Anderseits wäre es auch nicht sinnvoll, Ergebnisse von Mantelreibungsversuchen zu verwenden, wenn im Zuge der Bohrausführung, etwa durch Grundbruch oder ähnlichen Erschwernissen, der Untergrund stark aufgelockert oder ausgehöhlt würde. Voraussetzung für die Verwendbarkeit der Versuchsresultate ist deshalb, dass der Rückzugskörper, sei es das Stahlrohr oder ein Betonzylinder, satt mit dem Untergrund verbunden ist. Da der Versuch im Zuge der Erstellung eines Bohrloches ausgeführt wird, wobei im Schutze einer Verrohrung Material entnommen und nicht etwa verdrängt wird, stellen die ermittelten Mantelreibungswerte im besten Falle die vorhandene Reibung längs der Trennfläche Rückzugskörper/unverdichteter Boden dar. Die entsprechenden Messwerte liegen bezüglich ihrer Anwendung bei Rammpfählen deshalb auf der sicheren Seite bzw. beinhalten hier bereits eine partielle Sicherheit.

Anwendungsbeispiel

Das in den Bildern 1-5 dargestellte Beispiel stammt aus der Verlandungsebene am oberen Zürichsee bei Lachen. Wie Bild 1 zeigt, liegt eine bis etwa 10 m mächtige Verlandungsschicht aus Torf und tonigem Silt lockerer Lagerung und hohem natürlichem Wassergehalt über kiesig-sandigen Schichten vor. Die mittels einfacher Druckversuche im Labor an ungestörten Proben bestimmte undrainierte Scherfestigkeit su streut gemäss Bild 1 stark und liegt zwischen etwa $1,5-7 \text{ t/m}^2$.

Beim Rückzug des Futterrohres aus Stahl - eine Teleskopierung war nicht erforderlich - ergab sich über die ganze Rohrlänge von rund 10 m eine mittlere Mantelreibung von 0,55 t/m2. Beim Rückzug des in Bild 5 dargestellten Betonzylinders, der eine sehr gleichmässige, mit der Abmessung des Bohrloches übereinstimmende Form aufwies, resultierte dagegen eine mittlere Mantelreibung von 1,86 t/m2, also ein 3,4facher Wert des Stahlrohres.

Die Kenntnis des Verhältnisses von Stahl- zu Betonreibung ist häufig von praktischem Interesse, etwa bei der Beurteilung der Frage, ob im Zuge einer Unterpressung Stahl- oder Betonpfähle zweckmässiger seien. Das vorgestellte Verfahren gibt die Möglichkeit, entsprechende Daten zur Verfügung zu

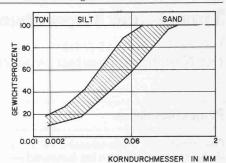
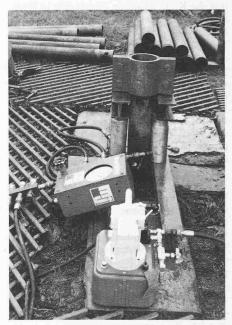



Bild 2. Bandbreite der untersuchten Kornverteilungen aus der Schicht der Verlandungsbildungen

Versuchseinrichtung zum Rückzug der Fut-Bild 3 terrohre, unter Messung der maximal erforderlichen Zugkraft. Neben dem Futterrohr sind die synchron wirkenden hydraulischen Pressen zu erkennen

Adresse des Verfassers: Dr. U. Schär, Beratender Geologe SIA/ASIC, Geotechnisches Büro, Erdbaulabor, Bergstr. 125, 8032 Zürich

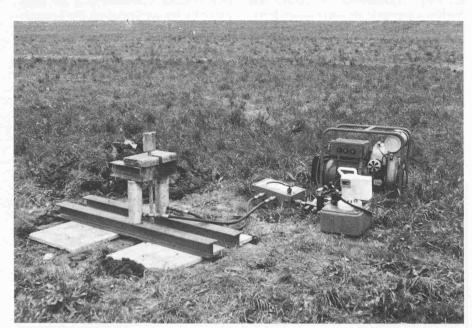


Bild 4. Versuchseinrichtung zur Bestimmung der Mantelreibung. Rückzug des Betonzylinders gemäss Bild 5

Bild 5. Nach erfolgtem Mantelreibungsversuch wurde zur Kontrolle der Form des Betonzylinders dieser mittels eines Krans vollständig gezogen. Man beachte die mit den Bohrlochabmessungen nahezu identische Form des Betonkörpers