Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 98 (1980)

Heft: 10

Artikel: Abgasturboaufladung: das Zusammenwirken von Turbo- und

Kolbenmaschine

Autor: Berchtold, Max

DOI: https://doi.org/10.5169/seals-74065

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Abgasturboaufladung: Das Zusammenwirken von Turbo- und **Kolbenmaschine**

Von Max Berchtold, Zürich

Die Möglichkeit, die Leistung der Dieselmotoren durch Vorverdichtung zu steigern, wurde schon früh von Alfred Büchi vorgeschlagen. Für diese Zielsetzung eignet sich der schnelldrehende Turbokompressor mit seinen im Verhältnis zum grossen Luftdurchsatzvolumen, kleinen Abmessungen. Als Antrieb dafür ist die ebenfalls schnelldrehende Turbine zweckmässig. Die Bedeutung dieser mechanisch vom Motor getrennten, als Einheit gebauten Maschine ist von Brown Boveri von Anfang an erkannt worden. Die enge Zusammenarbeit von Forschung, Berechnung, Versuch, Konstruktion und Fabrikation bei Brown Boveri und den Motorherstellern hat in der Entwicklung weltweit zur Vorrangstellung geführt.

Der Turbolader wurde zuerst beim Viertakt-Dieselmotor für Schiffs- und Generatorantriebe eingeführt. In diesen Fällen hat sich eine natürliche Angleichung des Betriebsverhaltens der Turbo- und Kolbenmaschine ergeben. Die Fahrzeugmotoren dagegen stellen viel schwierigere Anforderungen, da man in einem grösseren Drehzahlbereich ein hohes Drehmoment des Motors verlangt. Mit zunehmendem Aufladegrad sind die Betriebsbedingungen der Turbolader auch bei

den Schiffs- und Generator-Antriebsmotoren kritischer geworden.

Die bedeutenden Verbesserungen der Turbolader eröffneten die Anwendung der Turboaufladung bei Zweitakt-Motoren. Hier gelang es, die Motorsysteme und die Turbolader so abzustimmen, dass nur beim Anfahren und bei kleiner Last Zusatzgebläse eingesetzt werden müssen, um die Spülung sicherzustellen. Die erst kürzlich vorgestellte neue, weiter verbesserte Turbolader-Type VTR-4 erlaubt, die Leistungen der Motoren weiter zu erhöhen. Die dabei erreichten Wirkungsgrade von 44 Prozent bei der Verwendung des billigeren Schweröls stehen heute ganz besonders im Vordergrund.

Das zyklische Arbeitsverfahren im Kolbenverbrennungsmotor ermöglicht die für eine effektvolle Ausnützung der erforderlichen Brennstoffenergie Druck- und Verbrennungstemperaturen. Die den Verbrennungsgasen ausgesetzten Metallteile nehmen dabei eine Mitteltemperatur an, die auch an den Extremstellen weit unter den im Prozess vorkommenden Maximaltemperaturen liegt. Selbst bei grossen Motoren ist bei sinnvoll angewendeter Wasserkühlung an kritischen Stellen mit anspruchsloser Materialqualität hinsichtlich Warmfestigkeit auszukommen. Als Brennstoffe genügen billigere, wenig aufbereitete, Petroleumderivate schwefelhaltige vanadiumhaltige (schwefelund Schweröle).

Diese Vorteile bedingen allerdings den Nachteil der pulsierenden Leistungsabgabe (nicht konstantes Drehmoment). Die Anwendung mehrerer Zylinder in verschiedener Phasenlage gibt einen Ausgleich. Dennoch ist die Zu- und Abströmung der Gase zu den einzelnen Zylindern diskontinuierlich. Die Motorteile müssen für die zeitlich kurzen extremen Beanspruchungen ausgelegt werden. Die Dichte der Luft im Zylinder am Anfang des Kompressionshubes bestimmt die an der Verbrennung teilnehmende Luftmenge und damit die Leistung des Motors. Dies wird erreicht durch eine Vorverdichtung und Kühlung der Luft. Allerdings steigen dabei auch die Spitzendrücke, falls nicht das geometrische Verdichtungsverhältnis des Motors verändert wird. Da grosse Luftvolumina bei relativ kleinen Druckerhöhungen mit schnelldrehenden Turbomaschinen im gewünschten Mass verdichtet werden können, wird dieser Maschinenbauart der Vorzug gegeben.

Aus den gleichen Gründen eignet sich die von den Abgasen durchströmte Turbine für den Antrieb des Turbokompressors. Diese aus Turbokompressor und Abgasturbine bestehende Einheit, genannt Abgasturboauflader, ist nicht mechanisch mit der Motorkurbelwelle verbunden. Sie liefert dem Motor einen kontinuierlichen Luftstrom vorverdichteter Luft, die nach der Kühlung gewissermassen dem einzelnen Zylinder schluckweise zugeführt wird. Ebenso müssen die von der Entleerung der einzelnen Zylinder herrührenden Druckpulse im Auslassammelrohr vor dem Turbineneintritt ausgeglichen werden. Eine Problematik ergibt sich aus dem Zusammenwirken von den zwei Maschinengattungen ganz verschiedenen Verhaltens. Nach 50jähriger Entwicklung vor allem bei BBC - ist durch die Anpassung des Verhaltens der Turbomaschine ein hoher Stand erreicht worden.

Zusammenwirken artverschiedener Maschinen

Die ersten Vorschläge gehen auf Alfred Büchi zurück, der schon 1906, also zur Zeit der ersten Dieselmotoren, auf die Möglichkeit der Aufladung hinwies und die technische Verwirklichung vorantrieb. Mit der Gründung des Büchi-Syndikates waren die Randbedingun-

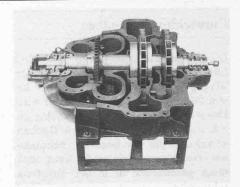


Bild 1. Erster Brown Boveri Abgasturbolader 1923

gen für die Entwicklung gegeben (Bild 1).

Brown Boveri, vom Potential der Turboaufladung überzeugt, erkannte die grundsätzlichen Probleme des Zusammenwirkens der artverschiedenen Maschinen. Sie übernahm von Anfang an die Beratung der Motorenhersteller, denen das spezifische Verhalten der Turbomaschinen wenig vertraut war. Die Firma wählte für die Aufladung Turbomaschinen mit zweckentsprechenden Charakteristiken. Der Kompressor mit Axial-Radialströmung erwies sich als geeignet. Die radialen besonders Schaufeln des Laufrades boten den Vorteil geringerer Festigkeitsanforderungen bei hohen Umfangsgeschwindigkeiten. Als Turbine hat sich die axiale Bauart mit Reaktionsbeschaufelung als geeignet erwiesen. Im Laufe der Jahre wurden die Turbolader hinsichtlich Wirkungsgrad und Betriebsverhalten laufend verbessert. Die erhöhte Zuverlässigkeit und ein weltweites Servicenetz brachten den Erfolg. Der kürzlich vorgestellte Lader VTR-4 für extreme Aufladegrade bis Druckverhältnisse über 4:1, mit Kompressionswirkungsgraden über 80 Prozent zeigt das Resultat zielgerichteter Entwicklung.

Aufladung bei Viertakt-Dieselmotoren

Die Aufladung hat sich vorerst bei den Viertakt-Dieselmotoren eingeführt, weil dort die Ausschiebephase der Auspuffgase und die Ansaugphase der Frischluft nahezu getrennt sind. Für einen bestimmten Betriebspunkt ergibt sich der Druck vor Turbine aus dem vom Motor geförderten Massenstrom, seiner Abgastemperatur und dem wirk-Turbinen-Durchtrittsquerschnitt. Die bei einer vorgegebenen Turbinengeometrie abgegebene Leistung muss sodann genügen, dem Motor die angenommene Luftmenge zuzuführen. Die Kompression ist umso höher, je besser der Kompressions- und der Turbinenwirkungsgrad des Turboladers bei vorgegebenem Turbinenstaudruck ist. Die zu gewinnende zusätzliche Arbeit des Motors ist durch diese Druckdifferenz bestimmt. Die Überlappung der Öffnungszeiten von Auslassund Einlassventilen ergibt zudem eine Totraumspülung mit Kühlung der Auslassventile. Dies bedeutet eine Füllungsverbesserung und eine Reduktion der thermischen Belastung (Bild 2 und 3).

Die wichtige Frage ist das Verhalten des Systems Turbolader-Kolbenmotor an anderen als dem Auslegepunkt. Hier kommt der Verwendung des Motors entscheidende Bedeutung zu. Bei eindeutig vorgegebenem Drehmoment bei jeder Drehzahl, wie es bei den meisten Schiffsantriebsmotoren und bei Generatorantriebsmotoren der Fall ist, entspricht das Verhalten des Turboladers im wesentlichen den Anforderungen des Motors. Die Zusammenarbeit von Brown Boveri mit zahlreichen Motorenherstellern hat zu optimalen Lösungen der Anpassung geführt.

Eine Verbesserung der Abgasenergieausnützung konnte durch Zusammenfassen von Zylindern in ein einzelnes zur Turbine führendes Rohr herbeigeführt werden. Die im Zylinder am Schluss des Arbeitshubes gespeicherte Energie kann in der sogenannten Stossturbine wenigstens teilweise ausgenutzt werden. Die Verhältnisse sind optimal, wenn drei Zylinder mit einem Zündabstand von 240° Kurbelwinkel zusammengefasst werden können. Andere Zylinderanordnungen sind weniger günstig, und in vielen Fällen ergeben sich im Staubetrieb mit einem gemeinsamen Auspuffgassammler, zusammen mit den neuen Turboladern hohen Wirkungsgrades, bessere Brennstoffverbrauchswerte als im Stossbetrieb (Bild 4).

Turboaufladung von Zweitakt-Motoren

Bei der Entwicklung der Turboaufladung der Zweitakt-Motoren war Brown Boveri ebenfalls federführend. In dieser Anwendung ist das Zusammenwirken von Turbo- und Kolbenmaschine noch anspruchsvoller. Die Spülung des Zylinders erfordert in allen Betriebszuständen einen Ladedruck, der höher ist als der Auspuffsammlerdruck. Diese Bedingung kann der Turbolader beim Anfahren und bei geringer Last nicht erfüllen. Es werden deshalb Zusatzgebläse benötigt, die bei den höheren Lasten ausser Betrieb gesetzt werden. Für Zweitakt-Dieselmotoren sind die hohen Laderwirkungsgrade deshalb für die Gewährleistung einer wirksamen Spülung und eines günstigen Brennstoffverbrauchs entscheidend. Die Zusammenfassung einzelner Zylinder im Stossbetrieb, die bei Dreiergruppierungen mit Phasenwinkel von 60° günstig ist, ist bei den beliebigen Zylinderzahlen im Grossmotorenbau eher unzweckmässig. Dank den neuen Turboladern mit hohem Wirkungsgrad hat sich das Stauverfahren bei stetiger Beaufschlagung für den Zweitakt-Motor ebenfalls als zweckmässig erwiesen. Trotz der tieferen Auspufftemperaturen durch die Kühlung infolge Frischluftvermi-

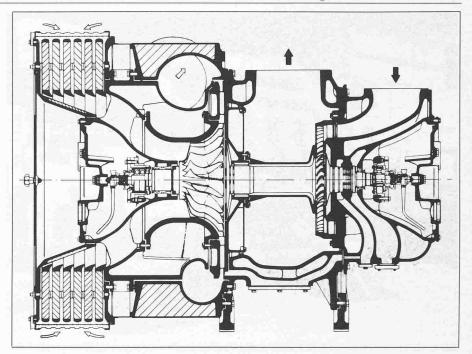


Bild 2. Schnitt durch den neuen VTR 454 Abgasturbolader

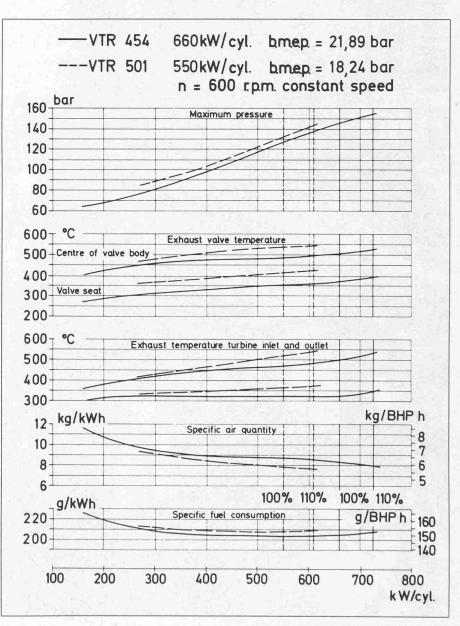


Bild 3. Verbesserung des Betriebsverhaltens eines Sulzer-Dieselmotors 8 ZL 40/48 (aus MTZ, Heft Nov. 11, 1979, Seite 519)

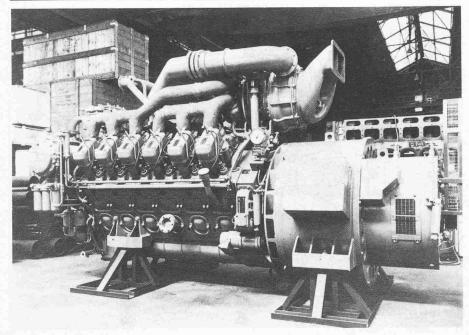


Bild 4. Lokomotiv-Motor GMT, 12 Zylinder, 1600 kW, mit unterteiltem Auspuffsystem für Stossaufladung

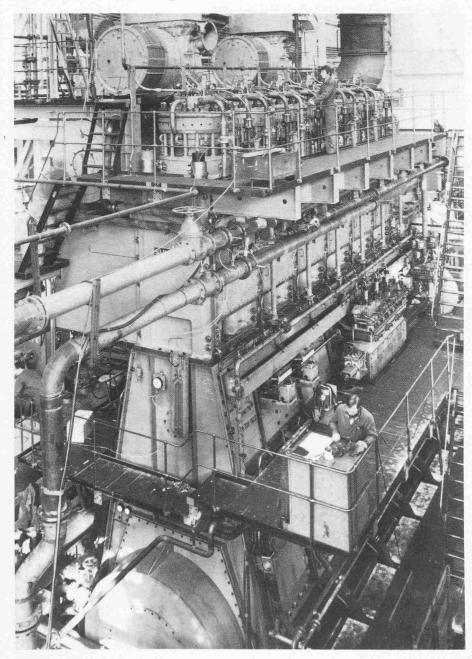


Bild 5. Sulzer-Zweitakt-Schiffsdieselmotor 6 RND 76 M mit zwei Brown Boveri-Abgasturbolader VTR 501, auf dem Prüfstand im Sulzer-Werk Winterthur

schung ergeben sich bei den hohen Leistungen des Motors genügend grosse Druckdifferenzen für die Gewährleistung der Spülung. Da für die Spülung dem Motor nicht weiter Leistung entzogen werden muss, erhöht sich der Gesamtwirkungsgrad bis 44 Prozent. Das Grossdieselmotor verwendete Schweröl ist gegenüber dem destillierten Brennstoff, wie er für Gasturbinen benötigt wird, wesentlich billiger. Dies gibt dem schwereren teuren Dieselmotor für viele Anwendungen einen beachtlichen wirtschaftlichen Vorteil (Bild 5).

Viertakt-Lastwagen-Dieselmotor

Schwieriger ist das Problem des Zusammenwirkens von Motor und Abgasturbolader bei Viertakt-Lastwagen-Dieselmotoren. Hier wird mit sinkender Drehzahl ein Drehmomentanstieg erwünscht. Heute wird in vielen Fällen das maximale Drehmoment etwa bei 60 Prozent der maximalen Drehzahl erreicht. Die üblichen Getriebe mit 12 oder 16 Schaltstufen ermöglichen den Betrieb des Motors in engen Drehzahlgrenzen. Der Nachteil ist ein häufiges Schalten. Die Schluckfähigkeit der Turbine und die Pumpgrenze des Kompressors erschweren die Anpassung. Wird die Schluckfähigkeit auf das erwünschte Ladedruckverhältnis bei maximaler Drehzahl, z. B. auf 2,2 abgestimmt, so fällt das Ladedruckverhältnis bei halber Drehzahl auf 1,5. Wird der Motor bei maximaler Drehzahl mit $\lambda_v = 2$ betrieben und bei halber Drehzahl mit $\lambda_v =$ 1,3, so verbessert sich das Ladedruckverhältnis von 1,3 auf 1,5. Das Drehmoment kann bei der halben Drehzahl dank der geringeren Reibleistung gerade etwa erhalten werden. Der geringere Ladedruck hilft im Hinblick auf die Pumpgrenze, den Kompressor bei günstigen Wirkungsgraden zu betreiben.

Um eine bessere Anpassung des Turboaufladers an den Motor zu erreichen,
werden Ventile zum Abblasen eines Teils
der Abgase bei hohen Motordrehzahlen
angewendet. Dabei wird die Schluckfähigkeit erhöht, ohne den Ladedruck
und damit den Verbrennungsdruck im
Motor übermässig ansteigen zu lassen.
Diese Massnahme geht allerdings auf
Kosten des Brennstoffverbrauchs. Turbolader mit im Betrieb stetig veränderlicher Schluckfähigkeit könnten die
Anforderungen besser erfüllen. Inwieweit diese Forderung praktisch verwirklicht werden kann, ist abzuwarten.

Der Turbolader auf dem Fahrzeug-Dieselmotor kann bei der Beschleunigung des Fahrzeuges aus dem Stillstand erst den vollen Ladedruck erzeugen, wenn die Motordrehzahl und damit der Volumenstrom genügend angestiegen sind. Dieser Verzug ist besonders störend im Falle einer Steigung.

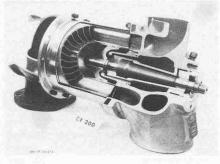


Bild 6. Schnittmodell eines Brown Boveri-Druckwellen-Aufladers «Comprex» CX 200

Der von Brown Boveri entwickelte Comprex Druckwellen-Auflader hat eine Betriebscharakteristik, die mit den Anforderungen des Fahrzeug-Dieselmotors besser übereinstimmt und verzugsfrei auf einen plötzlichen Anstieg des Leistungsbedarfes anspricht (Bild 6). Seine Entwicklung geht auf die grundsätzlichen Erkenntnisse von Claude Seippel zurück. Der Comprex hat in Lastwagen, Traktoren, Geländefahrzeuge und Personenwagen seine Leistungsfähigkeit unter Beweis gestellt. Es

braucht aber eine grosse Anstrengung, ein neues, ungewohntes Arbeitsprinzip in der Praxis zum Durchbruch zu bringen.

Adresse des Verfassers: Prof. M. Berchtold, dipl. Ing. ETH, Institut für Thermodynamik und Verbrennungsmotoren, ETH-Zentrum, 8092 Zürich.

Verkehrstechnik

Perspektiven für den Huckepack-Verkehr der achtziger Jahre

Gezielte Förderung durch SBB und Bund

Beim Huckepack-Verkehr – Transport von Lastwagen oder deren Aufbauten mit der Bahn – weisen die Frequenzen in der Schweiz seit 1975 steil nach oben. In den ersten zehn Monaten des laufenden Jahres wuchsen die beförderten Huckepack-Tonnagen gegenüber dem Vorjahr wieder um 23 Prozent. Dieses Transportverfahren kombiniert auf den Verkehrshauptachsen die Vorteile von Schiene und Strasse und bietet deshalb für die Bahn eine neue Marktchance. Deshalb, und weil der Bundesrat das Huckepack fördern will, erarbeiteten die SBB das «Huckepack-Konzept 84». Es bildet die Grundlage für die Entwicklung des Huckepack-Verkehrs in der Schweiz in den achtziger Jahren. Das Konzept hat auch im letzthin veröffentlichten Leistungsauftrag an die Bundesbahnen seinen Niederschlag gefunden.

Seit über zehn Jahren rollen Lastwagen, auf niedrigen Güterwagen verankert, über die Gotthardstrecke der SBB. Dabei unterscheidet man drei Huckepack-Relationen: Im Transit werden Lastwagen, die aus dem Raum Norddeutschland-Benelux stammen, meist im «Nachtsprung» nach Italien befördert; diese Züge fahren über Chiasso, seit Nov. 1979 auch über Luino in den Raum nördlich von Mailand. Im Lauf des Jahres 1980 sollen auch Huckepackzüge bis Bologna geführt werden. Bei der Relation Basel-Tessin benützen die Lastwagen die Bahn erst ab Basel, und sie verlassen sie wieder in der Südschweiz; die Grenzen überqueren sie auf eigenen Rädern. Im Kurzstreckenverkehr rollen die Lastwagen nur zwischen Altdorf und Cadenazzo auf der Schiene. Im Fall der beiden letztgenannten Relationen begleiten die Chauffeure ihre Vehikel in einem Reisezugwagen.

Beim Huckepack werden die Güter auf drei verschiedene Arten verladen: Einmal als Lastwagen mit und ohne Anhänger oder als Sattelschlepper, die auf niederflurige Güterwagen fahren. Dieses System, auch «rollende Autobahn» genannt, wird heute nur im innerschweizerischen Verkehr angewendet, für den Transitverkehr jedoch vorbereitet. Sodann als Sattelanhänger, der durch das Zugfahrzeug verladen wird; dieses bleibt mit dem Chauffeur am Verladeort zurück. Schliesslich als Wechselbehälter, der mit Hilfe eines

Kombinierte Transporte

Huckepack ist eine Form der sogenannten kombinierten Transporte. Eine andere Form ist der Grosscontainer. Während der Containerverkehr fast alle SBB-Strecken berührt, wird Huckepack nur am Gotthard betrieben. Der Vorteil der kombinierten Transporte: die Güter können vom Strassen- zum Schienen- oder Wassertransport gewechselt werden, ohne dass sie einzeln manipuliert werden müssen. Huckepack- und Containerverkehr zeichneten sich 1978 und 1979 im SBB-Güterverkehr durch die grösste Steigerungsrate aus

Verladekrans die fahrbare Unterlage – Lastwagen oder Güterwagen – wechselt.

Aufschwung

Im Jahre 1978 beförderten die SBB rund 1,1 Mio Huckepack-Bruttotonnen über den Gotthard, was gegenüber dem Vorjahr einen Zuwachs um 26 Prozent bedeutet. In den ersten zehn Monaten des Jahres 1979 betrug die Zunahme gegenüber dem gleichen Zeitraum des Vorjahres wiederum 23 Prozent. Oder in Zahlen beförderter Lastwagen-Einheiten (in der Fachsprache als «Sendungen» bezeichnet): 1978 wurden 44724 Sendungen über die Gotthardstrecke geschleust, davon entfielen rund 42 Prozent auf den Transitverkehr, 23 Prozent auf die Verbindung Basel-Tessin und 35 Prozent auf die Kurzstrecke Uri-Tessin. Besonderen Aufschwung nahm 1979, soweit die Statistiken heute vorliegen, der Transitverkehr: bis Ende