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Tragwiderstand von Staben und
Stabsystemen unter Druck und Biegung

Von Pierre Dubas, Ziirich

Einleitung

Das Knickverhalten des zentrisch ge-
driickten geraden Stabes ist durch eine
Verzweigung des Gleichgewichtes ge-
kennzeichnet. Beim exzentrisch belaste-
ten, vorgekrimmten oder querbelaste-
ten Stab aus elastoplastischem Material
liegt dagegen ein Traglastproblem vor
(Gleichgewichtsdivergenz). Der ent-
sprechende Verlauf der seitlichen Aus-
lenkungen w in Funktion der einwir-
kenden Last N geht aus Bild 1 hervor.

Stabilitdtsprobleme mit Verzweigungs-
last (bzw. Eigenwertprobleme in der
mathematischen Ausdrucksweise) sind
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Bild 1. N-w Verlauf bei Stabilitdtsproblemen

allerdings nicht nur bei Systemen ohne
primdre Biegemomente moglich: nach
dem Kriterium von Kloeppelund Lie[1]
muss flr eine virtuelle Verformung 8,
aus einer ausgelenkten Gleichgewichts-
lage folgende Bedingung erfiillt sein:

54;=0 bzw. §4,=0

Dabei ist 8, der niedrigsten Eigenfunk-
tion des untersuchten Systems zugeord-
net, so dass sich 84; fiir einen Stab der
Lange /in folgender Form anschreibt
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wobei M das primdre Moment aus Ex-
zentrizitdten, Querbelastung usw. be-
deutet und 8 M der Momentenflache fiir
die massgebende Knickform entspricht.
Die Bedingung 8 4; = 0 ist erfiillt, wenn
{ M} und {8 M} orthogonal aufeinander
stehen, insbesondere wenn eine der
M-Flichen symmetrisch und die andere
antimetrisch verlduft.

Ein bekanntes Beispiel fiir ein solches
Problem mit Gleichgewichtsverzwei-
gung ist der Stab mit verschridnkten
Endexzentrizitdten (Zimmermann-
Stab, vgl. [2]). Fir den aus Bild 2a er-
sichtlichen Verlauf von &M, entspre-
chend dem beidseitig gelenkig gelager-
ten Eulerschen Stab, ist die Bedingung
84; = 0 erfullt. Nach dem soeben er-
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Bild 3. Untersuchtes Profil HEA 200

wihnten Kriterium liegt somit ein Ver-
zweigungsproblem vor, mit dem in
Bild 2b dargestellten Verlauf des Zu-
sammenhanges N-w. Bei schlanken
Staben ist die Verzweigungslast N
praktisch gleich gross wie die Eulersche
Knicklast > - EJ/P. Bei gedrungenen
Stiben bewirken dagegen die primédren
Momente und die Eigenspannungen
Plastifizierungen, die zu einer merkli-
chen Abminderung der Knicklast ge-
geniiber dem zentrisch gedriickten Stab
fithren.

Ein &dhnliches Verhalten zeigen ver-
schiebbare symmetrische Rahmen un-
ter lotrechter Riegelbelastung: im Ver-
zweigungspunkt kommen nicht nur die
primdre symmetrische Gleichgewichts-
lage sondern auch eine antimetrische
Knickform in Frage.

Ist die Bedingung 64; = 0 bzw. 84, =0
nicht erfiillt, so liegt ein Stabilitdtspro-
blem mit Gleichgewichtsdivergenz vor.
Die Ermittlung der dazugehorigen Tra-
glast N,, entsprechend Bild 1, verlangt
meistens recht aufwendige Berechnun-
gen, weil das elastoplastische Material-
verhalten bei endlichen Auslenkungen
zu beriicksichtigen ist. Man begniigt
sich daher ofters mit einer Untersu-
chung als Spannungsproblem zweiter
Ordnung: man verzichtet auf eine ge-
naue Bestimmung der Traglast und
weist einfach nach, dass unter der y-fa-
chen Belastung die durch den elasti-
schen Verformungseinfluss vergrosser-
ten, massgebenden Spannungen nir-
gends die Fliessgrenze iiberschreiten.
Mit dem bekannten Vergrosserungsfak-
tor zweiter Ordnung 1/(1 - N*/N,,) er-
hélt man fir den beidseitig gelenkig ge-
lagerten Stab unter fest gehaltenen
Endmomenten die in der Norm SIA
161/1979 angegebene Formel (11) fir
den elastischen Nachweis bzw. (12) fiir
den plastischen Nachweis. In diesen
Beziehungen wurde die Wirkung der
unvermeidlichen Imperfektionen, d.h.
der anfianglichen Auslenkungen einer-
seits und der Eigenspannungen an-
dererseits, durch die Einfithrung einer
pauschalen Exzentrizitit e, ndherungs-
weise abgedeckt. Die Werte ¢, ergeben
sich aus dem Verlauf der Knickspan-
nungskurven und betragen [3]
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fiir den elastischen Nachweis, wihrend
beim plastischen Nachweis die Kern-
weite W/A einfach durch den entspre-
chenden Ausdruck Z/4 zu ersetzen ist.
Die Norm enthélt fiir ¢y schlankheitsun-
abhédngige Ndherungswerte.

In der Norm konnten die Grenzen der
Anwendbarkeit der soeben erwidhnten
Formeln (11) und (12) nur sehr summa-
risch abgesteckt werden. Wir wollen an-
schliessend bei einigen einfachen
Tragsystemen, deren Elemente auf
Druck mit Biegung beansprucht sind,
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den bereits erwdhnten Einfluss der Pla-
stifizierungen sowie der Eigenspannun-
gen zeigen und mogliche Wege fiir die
Bemessung skizzieren.

Berechnungsgrundlagen

Alle anschliessend behandelten Tragsy-
steme wurden mit einem elastoplasti-
schen Verfahren zweiter Ordnung un-
tersucht (vgl. [4]). Bild 3 zeigt den be-
trachteten Querschnitt HEA 200 mit der
Verteilung der Eigenspannungen o,. Zu
jedem Wertepaar ¢, (Schwerpunktdeh-
nung) und I/p (Krimmung) gehoren
Schnittkrdfte Nund M. Bei jedem Last-
inkrement wird im Computerpro-
gramm (finite Elemente) die neue
Gleichgewichtslage gesucht, dies unter
Beriicksichtigung der eingetretenen
Verformungen und der Plastifizierung
der Querschnitte. Selbstverstdndlich
sind dabei Iterationen ndtig, um mit
den Verformungen und dem Ausmass
der  Plastifizierungen  vertrdgliche
Schnittkrifte zu erhalten. Es ist somit
nicht erstaunlich, dass solche Berech-
nungen aufwendig sind und sich daher
kaum fiir eine direkte Anwendung in
der Konstruktionspraxis eignen!

Fiir die der Berechnung zugrundegeleg-
te Form der Tragwerksachsen wurden
mogliche Abweichungen von der Soll-
Lage angenommen. Der Verlauf dieser
anfianglichen  Auslenkungen  folgt
grundsiétzlich dem der massgebenden
Knickfigur, wahrend die max. Ordinate
1/1000 der Knicklange betragen soll.
Die durchgefiihrten Berechnungen ha-
ben somit die gleichen Grundlagen wie
die Knickspannungskurven der Norm
SIA 161 und sollten als Vergleichsmass-
stab brauchbar sein.

Als Materialkennwerte gelten durch-
wegs eine Fliessgrenze von 235 N/mm?
sowie ein Elastizititsmodul von 210
kN/mm?2. Bei allen untersuchten Syste-
men soll Kippen bzw. Biegedrillknik-
ken durch geeignete Halterungen aus-
geschlossen sein, so dass nur ebene Ver-
formungen (u, w) zu beriicksichtigen
sind.

Der beidseitig gelenkig gelagerte,
zentrisch gedriickte Stab

Zu Vergleichszwecken wurden zuerst
mit dem soeben erwédhnten Computer-
programm die Knicklasten von zen-
trisch gedriickten Stiben mit Imperfek-
tionen ermittelt. Die Ergebnisse sollten
grundsitzlich mit den Werten aus den
Knickspannungskurven der Norm
ibereinstimmen, wobei aber aus den
anschliessend zu erlduternden Griinden
gewisse Abweichungen vorkommen.
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Knicken um die schwache Achse des
HEA 200 aus Stahl Fe 360

Die Knickspannungskurve ¢ wurde ge-
rade aus dem Verhalten des HEA 200
beim Knicken um die schwache Achse
ermittelt, so dass hier die Ubereinstim-
mung sehr gut ist.

Tabelle 1. Werte NgyinkN

Lange Schlankheir | bez. Schlankheir | - SIA-Kurvec | Programm

3000 60.2 0,6413 957 971

5056.6 | 1015 1,0810 626 633
8000 160,6 1,7102 332 336
10000 200.8 2,1378 229 230

Knicken um die starke Achse des HEA
200 aus Stahl Fe 360

Fir die Ermittlung der Knickspan-
nungskurve b wurde nicht das Knicken
eines Querschnittes HEA 200 um die
starke Achse, sondern das eines IPE
160 um die schwache Achse zugrunde-
gelegt. Fiir solche Profile mit hohem
Verhiltnis der Hohe zur Flanschbreite
gelten ndmlich giinstigere Kurven als
fir die «quadratischen» HE-Profile
(vgl. [5] und [6]). Die Unterschiede sind
somit hier grosser.

Tabelle 2. Werte Ngxin kN

Linge Schlankheit | bez. Schlankheit | SI4-Kurveb | Programm

5000 60,4 0,6429 1032 1087
7778 93,9 1,00 757 816
10000 120,8 1,2858 551 591

Der Zimmermann-Stab mit
Imperfektionen

Wir haben bereits in der Einleitung er-
wihnt, dass der idealgerade, elastische
Zimmermann-Stab das von Kloeppel
und Lie aufgestellte Kriterium erfiillt:
Knicken stellt somit in diesem Fall ein
Stabilitdtsproblem mit Gleichgewichts-
verzweigung dar (vgl. Bild 2). Fir die
numerischen Untersuchungen wurden
allerdings sinusformig verteilte An-
fangsauslenkungen wy mit einem Maxi-
malwert von [/1000 in Stabmitte ange-
nommen. Damit verlaufen die priméi-
ren Momente nicht mehr genau antime-
trisch, wie dies fir ihren Hauptanteil
aus den verschrinkten Exzentrizititen
gilt.

Das Verhalten des mit geometrischen
Imperfektionen und mit Eigenspan-
nungen behafteten Stabes weist den-
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Bild4. Verlauf der Auslenkungen und der Momen-
te beim Zimmermann-Stab

noch eine gewisse Ahnlichkeit mit dem
des idealen Systems auf: Bild 4 zeigt den
Verlauf der Auslenkungen w fiir die
Stabmitte (11) sowie fiir Punkte jeweils
in der Nihe des Viertels: Punkt 15 liegt
dabei in der Stabhilfte, fiir welche die
primdren Momente aus der Endexzen-
trizitdt und die aus den Anfangsverfor-
mungen wy sich addieren; beim Punkt 7,
dagegen, haben die Momente aus w, das
umgekehrte Vorzeichen als die aus der
Exzentrizitdt e. Der Stab zeigt zuerst
eine S-formige Verformung auf, schligt
bei einem Verhéltnis N/N, von rund 0,8
nach einer Seite durch und erreicht sei-
ne Tragfahigkeitsgrenze mit einer ein-
fach gekrimmten Biegelinie.

Dieses Verhalten geht auch sehr deut-
lich aus dem Verlauf des Biegemomen-
tes im Knoten 9 hervor: M,y hdngt zuerst
direkt von der anfanglichen Exzentrizi-
tiat der Last im Punkt 9 ab und nimmt
daher linear mit N zu; bei hdheren Wer-
ten von N iiberwiegen dagegen die
Knickauslenkungen, das Moment
nimmt rasch ab und wechselt schliess-
lich das Vorzeichen. Obwohl man hier
nicht von einer eigentlichen Gleichge-
wichtsverzweigung sprechen kann, fillt
der rasch eintretende Wechsel von der
primédren Verformungsfigur zur quasi-
symmetrisch verlaufenden Knickfigur
auf.

In Tabelle 3 sind die Ergebnisse der
durchgefiihrten elastoplastischen Be-
rechnungen fiir eine Biegung um die
schwache Achse zusammengefasst.
Selbstverstdndlich wurden nur solche
Endexzentrizititen berlicksichtigt, fiir
welche der Tragwiderstand durch eine
«Gleichgewichtsverzweigung» und
nicht durch Erschopfung des Biege-
widerstandes an den Stabenden erreicht
wird. Zum Vergleich wurden auch die
Werte fiir e = 0 nach Tabelle 1 aufge-
nommen.

Die letzte Zeile enthilt zudem die Wer-
te, die sich aus der Formel (12) der

Tabelle 3. Ergebnisse der Berechnungen am Zimmermann-Stab

Ix = 5056,5mm  (Ag = 1,0810)

Ik =8000mm (hg =1,7102)

e=0 60 mm 75 mm 90 mm e=0 S0 mm 100 mm 150 mm
633 kN 535kN 507 kN 472 kN 336 kN 312kN 285kN 260 kN
- 521 kN 501 kN 482 kN - 309 kN 287 kN 268 kN
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Norm SIA 161 ergeben, wenn man fol-

gendermassen vorgeht:

- Einfithrung der Exzentrizititen e,
nach der in der Einleitung wiederge-
gebenen Formel, wobei ox aus dem
jeweiligen Wert Ny, nach Tabelle 1
ermittelt wird. Man erhilt damit e, =
15,5mm fiir eine Stablinge von
5056,5mm und ¢ = 22,8 mm fiir
8000 mm.

- Z, ohne Steganteil, d.h. zu 200-10?
mm? ermittelt, weil im Computerpro-
gramm die Stegdicke einer einzigen
Faserhohe entspricht und daher kei-
ne Biegesteifigkeit beriicksichtigt
werden kann.

- Reduktionsfaktor o = 0,2 eingesetzt,
d.h. es wird mit dem Wert gerechnet,
der sich aus Ziffer 3 064 5 der Norm
fir M*,;,/ M*,,x = —1 ergibt, statt mit
dem vorgeschriebenen Mindestwert
von 0,4.

- Als Knickldnge Ik fir die Bestim-
mung von N, wird die ganze Stablin-
ge eingefiihrt.

Tabelle 3 zeigt, dass die so ermittelten
Werte befriedigend mit den Ergebnis-
sen der Computerberechnung iiberein-
stimmen. Bei direkter Anwendung der
Normvorschrift, d.h. mit den leicht ho-
heren Werten ¢, von 20,2 bzw. 32 mm
und mit @y, = 0,4, wird man somit auf
der sicheren Seite sein. Es muss aller-
dings betont werden, dass die Formeln
(11) und (12) nur fiir feste Endmomente
M*%;, und M*%, ., gelten, d.h. diese Mo-
mente sollen selber, wie im vorliegen-
den Problem, keine Vergrosserung
durch Einfliisse zweiter Ordnung erfah-
ren.

Ein solcher Idealfall kommt aber in der
Konstruktionspraxis dusserst selten
vor, sind doch in der Regel die Endmo-
mente nicht etwa durch in ihrer Grosse
unverdnderliche Exzentrizitdten festge-
legt, sondern durch eine biegesteife Ver-
bindung des Stabes mit anderen Ele-
menten bedingt: die betrachtete Stiitze
ist z.B. Bestandteil eines Rahmens und
als Rahmenstiel auf Biegung bean-
sprucht. Der Verformungseinfluss wird
sich deshalb nicht nur im Feld bemerk-
bar machen, sondern auch am Stiitzen-
kopf und am Stiitzenfuss: zudem treten
allenfalls merkliche Einfliisse zweiter
Ordnung auch in den Rahmenriegeln
auf.

Bei der Anwendung der Formeln (11)
und (12) und insbesondere bei der Wahl
des Reduktionsfaktors  fiir Stibe mit
Endmomenten, ist somit genau zu iiber-
legen, ob eine Vergrosserung der Mo-
mente nur im Feld stattfinden kann,
wie dies fiir die Anwendbarkeit der For-
meln erforderlich ist, oder ob die Stab-
endmomente M*;, und M*,,, durch
Verformungseinfluss ebenfalls zuneh-
men.

In den folgenden Abschnitten sollen
deshalb Stibe unter Druck und Biegung
untersucht werden, die Bestandteile

eines statisch unbestimmten Tragsy-
stems bilden und somit Verformungs-
einfliisse auf ihrer ganzen Linge erfah-
ren.

Der lingsgedriickte
symmetrische Zweifeldtriger

Der symmetrisch belastete Durchlauf-
trager mit zwei gleichen Feldern weist
eine zur Zwischenstiitze symmetrische
Momentenfliche auf, wihrend die
massgebende Knickfigur S-formig ver-
lduft. Das Kriterium fiir eine Gleichge-
wichtsverzweigung ist somit erfiillt, wo-
bei die entsprechende Last im Rahmen
einer elastischen Untersuchung prak-
tisch den Wert 2+ EJ/P besitzt (vgl. [7]).
Um den Einfluss der Imperfektionen
sowie der Plastifizierungen zu verfol-
gen, wurde ein Durchlauftriger HEA
200 (Biegung um die starke Achse) mit
zwei 10m langen Feldern untersucht.
Wirkt keine Langskraft und ist Kippen
ausgeschlossen, so kann der Biege-
widerstand plastisch (Verfahren 3 nach
Tabelle 2 der Norm SIA 161) ermittelt
werden. Das max. Feldmoment und das
Stiitzmoment betragen somit + g-P/
11,7, und die max. aufnehmbare Quer-
belastung ergibt sich zu 11,8 kN/m fiir
einen Stahl Fe 360.

Wirkt zugleich eine Lingskraft, wie
dies fiir Pfetten als Bestandteil einer
Windversteifung vorkommt, so vermin-
dert sich die aufnehmbare Querlast, um
zu verschwinden im Grenzfall einer rei-
nen Druckbeanspruchung. Mit der
massgebenden Knickldnge von 10m
betrdgt dabei nach Tabelle 2 N, = 591
kN.

Bild 5 zeigt den Verlauf kennzeichnen-
der Verformungen und Momente bei
einer Druckkraft von rund 0,9 N. Fiir

05 / / Mo

-/ / Ny /N = 0905
// qQy /qmux: 023

w resp. ™

Bild 5. Verlauf der Auslenkungen und der Momen-
te beim Zweifeldtriger

die geometrischen Imperfektionen wur-
de eine antimetrische Verteilung ange-
nommen, mit Ordinaten von + 10 mm
jeweils in Feldmitte. Die Auslenkung
des Punktes 31 (Anfangsverformung

nach unten, wie die Durchbiegung aus
der Querlast) und des Punktes 11 (An-
fangsverformung nach oben) weisen
auf die bei hohen Verhiltnissen N/N,
eintretende Gleichgewichtsverzwei-
gung: in diesem Bereich schldgt die an-
fangliche quasi-symmetrische Biegeli-
nie zu einer S-formigen Form durch, so
dass schliesslich das Moment M;, das
Vorzeichen dndert.

Bei kleineren Langskréften, wie dies fiir
die vorher erwdhnten Pfetten meistens
zutrifft, konnen die durch die Anfangs-
verformungen bedingten antimetri-
schen Ablenkungskrifte die Biegelinie
nicht mehr so nachhaltig beeinflussen:
das Versagen tritt hier durch Erreichen
des. plastischen Biegewiderstandes auf
der Stiitze und im Feld ein. Dabei
macht sich der Verformungseinfluss
weiterhin bemerkbar: zudem vermin-
dert die Druckkraft das aufnehmbare
Moment.

Das verwendete Computer-Programm
erlaubt es allerdings nicht, solche Trag-
fahigkeitsprobleme ohne klare Stabili-
tatsgrenze zu verfolgen, weil numeri-
sche Konvergenzschwierigkeiten bei
den zur Momentenumlagerung notigen
grossen Plastifizierungen die Bestim-
mung einer eindeutigen Gleichge-
wichtslage fast verunmoglichen. Eine
Fliessgelenktheorie zweiter Ordnung
(vgl. z.B. [8]) ist fiir solche Probleme
besser geeignet, wiahrend rein elastische
Untersuchungen zweiter =~ Ordnung
kaum zu zutreffenden Ergebnissen fiih-
ren wiirden.

Eine direkte Anwendung der Gleichung
(12) nach Norm SIA 161 stosst anderer-
seits auf gewisse Schwierigkeiten: das
Stabendmoment, d.h. das Stiitzmo-
ment, darf ndmlich nicht nach Theorie
erster Ordnung bestimmt werden, weil
der Verformungseinfluss auch hier
wirksam ist. Im untersuchten Fall fiih-
ren folgende Anpassungen zu einer
brauchbaren Nédherung.

Bei grésseren Druckkrdften, fiir die eine
Art antimetrischen Knickens eintritt,
soll der Vergrosserungsfaktor in der
Form 1/(1 - N*/N,) beniitzt werden,
wobei N die Eulersche Verzweigungs-
last fiir eine Knickldnge gleich der
Feldlinge bedeutet. Da der Verlauf der
primdren Momente auch innerhalb
eines Feldes wesentlich von denen der
Knickauslenkungen abweicht, darf der
Vergrosserungsfaktor nicht direkt auf
die Momente bezogen werden. Fiir die
Biegelinie, dagegen, wird die Uberein-
stimmung wohl besser ausfallen.

Mit einer max. Durchbiegung von w =
q-F/185EJ fiir den symmetrischen
Zweifeldtriger betrigt das Moment in-
folge der Lingskraft im Grundsystem
N*-w. Beim vorliegenden statisch un-
bestimmten Triger ergibt sich daraus
ein Wert von rund 0,7- N*.w im Feld.
Mit N, = n* - EJ/P schreibt sich daher
das Feldmoment zweiter Ordnung im
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Rahmen dieser sehr vereinfachenden Formel (12) der Norm rechnen. Die
. : . : : 100kN 100kN
Betrachtung (Mischung von elastischer ~ Verzweigungslast entspricht aber hier
5 2 5 . . 29x4kN
und plastischer Theorie!) zu dem Knickfall mit symmetrischem Ver- ‘ L
laufund betrégt daher rund 2-n?- EJ/P. | ' ‘ \ ‘ ‘ ‘ AR *
M* = gre b 0,7+ N*- Zudem i_st auch die Exzentrizitét & auf 21 \ 36 51
1.7 eine Knickldnge von 0,7 [ zu beziehen —_HEA 200
® . P 1 . . .
g und erreicht somit rund 14 mm. Mit ctarke Achse o
185 EJ I'= N*/Nee dem im Feld massgebendem Anteil von §
_ gq*-P 1-06-N*N, 0,7 - N* . ¢ schreibt sich Formel (12),
117 1- N*/N., mit N,=n?. EJ/P,zu
s o1 710
Zur Abgeltung der Wirkung der Imper- N* 1 | 9000 [
fektionen ist zudem eine Exzentrizitdt N, t TN 2N, :
¢y einzufiihren, die im Feld wieder zu BiId7  Uitersuchter Rahmion
einem Moment von 0,7+ N*. ¢, fiihrt. An B ”
Stelle der Formel (12) ist somit folgende gr o LY ;10’7 NTe o
Bedingung zu erfiillen E ‘rﬁ
N |
s 101 =
N* 1-0,6 - N*/N, - (bzw. = 1 fiir N* — N,und g*— q,) ‘ Mer/ e !
N, - N*/N, Lo |
Im vorliegenden Fall gilt dieser in Bild 0 / 36 !
6 gestrichelte Teil des Interaktionsdia- i ‘ !
* oo . .
g*- £/11,7+0,7- N*-e, ., grammes nur fiir Verhéltnisse N,/ N < / / 36 :
Mp 0.75 051 VYA |
die i h d / iy
= Die vorgeschlagene Néherung, die aus /.
=1 N* — N,und g* — . 2 . !
(bzw fur mlHOE g Gu) den vorher erwdhnten Griinden leider / :
- i ; i i i - Lastmultiplikator 1.35
Die Exzentrizitit ¢, wird ebenfalls ge- nicht mittels elast?plastlscher Kontroll /. astmultiplikator }
A . . e rechnungen bestédtigt werden konnte, I
maéss der Beziehung in der Einleitung = : . i o Iy
; : diirfte eine Abschédtzung der Tragfdhig- v =
eingesetzt, wobei ok aus dem oben er- ; A ; A = resp. w
= S : keit bei Biegung eines Zweifeldtrigers
wihnten Wert Ng = 591 kN ermittelt o 2 :
gt s i unter méssiger Langskraft erlauben. Bei }
wird; sie betragt 21 mm. Tabelle 4 ent- Bild 8. Verlauf der Auslenkungen und der Momen-

hilt die daraus gewonnenen Ergebnisse
sowie die Resultate der elastoplasti-
schen Computerberechnungen zweiter
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N\, q,
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Bild 6. Interaktion N-q beim Zweifeldtriger

Ordnung. Diese Werte sind zudem in
Bild 6 graphisch dargestellt, die deut-
lich den Abfall der aufnehmbaren
Querbelastung, im Vergleich zum maxi-
malen Wert von 11,8 kN/m bei fehlen-
der Langskraft, zeigt.

geringen Werten N*/ Ng (bzw. N*/N,)
liegen die Ergebnisse auf der sicheren
Seite, wird doch nach Formel (12) eine
«elastische» Interaktion zwischen der
Normalkraft und dem Biegemoment
angenommen, die ungiinstiger ist als
die plastischen Interatkionsformeln
nach Ziffer 3 102 2 der Norm (insbeson-
dere Formel 26).

Unverschiebbarer
Zweigelenkrahmen

Die Hauptabmessungen des untersuch-
ten Rechteckrahmens gehen aus Bild 7
hervor. Es handelt sich eigentlich um
das Modell 1:3 eines Hallenrahmens
mit Krananlagen, wobei die aufgefiihr-
ten Lasten mit 9 und die Widerstands-
momente der Querschnitte mit 27 zu
multiplizieren wiren.

Da sowohl die primdren Momente als
auch die massgebende Knickfigur des
unverschiebbaren Rahmens symme-
trisch verlaufen, ist das Kriterium fur
eine Gleichgewichtsverzweigung nicht

Tabelle 4. Ergebnisse der Berechnungen am Zweifeldtrager
Anfangswerte NinkN 281,25 281,25 312,5 350
ginkN/m 2,459 1,968 1,606 1,5
Faktory Computer 1,68 1,80 1,71 1,56
beim Versagen Formel 1,62 1,74 1,69 1,57

In Bild 6 sind zudem Ergebnisse aufge-
nommen, die sich auf Fille mit be-
schrinkter Liangskraft beziehen. Da hier
kein Umschlagen der Verformungsfigur
eintritt, darf man grundsitzlich nach
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erfiillt: es handelt sich um ein Problem
mit Gleichgewichtsdivergenz, das in er-
ster Niherung als Spannungsproblem
zweiter Ordnung gelost werden kann.

Bild 8 veranschaulicht, dass die Nichtli-

te beim unverschiebbaren Rahmen

nearitdt wenig ausgeprégt ist: im Ver-
gleich zur elastischen Theorie 1. Ord-
nung des Rahmens ohne Anfangsaus-
lenkungen (im Computerprogramm zu
9mm in Riegelmitte eingesetzt) nimmt
sogar das Eckmoment M,; leicht ab
(0,3%), weil der ldngsgedriickte Stiel
durch den Verformungseinfluss an Stei-
figkeit verliert und sich die Riegelein-
spannung somit vermindert.

Bei hohen Werten N/N, wird allerdings
diese Wirkung durch eine Momenten-
umlagerung von den plastischen Zonen
in Feldmitte zu den Stiitzen hin kom-
pensiert: das Feldmoment M;q weist an-
fanglich einen merklichen Verfor-
mungseinfluss auf, im Bereich des
Tragwiderstandes kehrt sich aber diese
Tendenz infolge der Umlagerung um.
Die Vergrosserung im Vergleich zur ela-
stischen Theorie erster Ordnung er-
reicht gesamthaft nur rund 2%. Bezogen
auf die fiir die plastische Berechnung
massgebende Momentensumme (Stiitze
+ Feld) betrédgt die Zunahme rund 1%.
Der Verlauf der Durchbiegung wse in
Riegelmitte weist auch auf den Einfluss
der Plastifizierungen im Feld: die ra-
schere Zunahme im Bereich N/N, = 1
ist hauptsédchlich auf die Verringerung
der Riegelsteifigkeit zuriickzufiihren,
wihrend der Verformungseinfluss be-
scheiden ist.

Die Fliessgelenkmethode erster Ord-
nung fithrt, unter Berticksichtigung der
Reduktion des plastischen Eckmomen-
tes durch die Stieldruckkraft (Formel 26
der Norm SIA 161), auf einen Multipli-
kator y, = 1,43 beziiglich der Belastung




Stahlbau

Schweizer Ingenieur und Architekt 34/79

nach Bild 7. Aus den elastoplastischen
Berechnungen ergibt sich dagegen ein
Multiplikator y = 1,35. Diese kleine Re-
duktion ist durch den Verformungsein-
fluss zu erkliren, der mit brauchbarer
Néiherung aus dem Faktor 1/(1-N*/
N) bzw. aus 1/(1-yp/Ye) geschitzt
werden kann. Mit einem Eigenwertpro-
gramm ergibt sich ein Lastmultiplikator
Yo vOn 22,2 beziiglich der Lasten nach
Bild 7 und somit ein Vergrosserungs-
faktor von 1/(1-1,43/22,2) = 1,07, der
praktisch dem Verhiltnis y,/y = 1,43/
1,35 entspricht. Die Lastmultiplikato-
ren y bzw. y,oder v, diirfen nicht dem
Sicherheitsfaktor der Norm SIA 161
gleichgesetzt werden, stellt doch die Be-
lastung nach Bild 7 nur eine mehr oder
weniger willkiirlich gewéhlte Ver-
gleichsbasis dar.

Das untersuchte Beispiel bestétigt die
bekannte Tatsache, dass bei verniinftig
bemessenen unverschiebbaren Rahmen
der Verformungseinfluss keine grosse
Rolle spielt und deshalb vernachldssigt
werden darf. Sind die Beulbedingungen
fiir die Querschnittswandungen und die
Kippldngen eingehalten, so diirfen hier
die Schnittkréfte und der Querschnitts-
widerstand plastisch ermittelt werden
(Verfahren 3 nach Tabelle 2 der Norm
SIA 161).

Der bis jetzt betrachtete Rahmen besitzt
Stiele und Riegel mit dem gleichen
Querschnitt. Die Materialausniitzung
ist trotzdem befriedigend, sind doch
auch bei elastischer Berechnung die
Eckmomente und das max. Feldmo-
ment nahezu gleich gross. Eine grund-
sitzlich andere Bemessungsmoglichkeit
besteht darin, den Riegel weit steifer
auszubilden und daher praktisch als
einfachen Balken wirken zu lassen. Die
Stiele nehmen dann nur die Auflager-
kraft des Riegels sowie die Zwédngungs-
momente aus dessen Enddrehung und
diirfen somit bedeutend schlanker wer-
den. In einem solchen Fall kann das
Stielkopfmoment geniigend genau nach
der Theorie erster Ordnung ermittelt
werden, so dass Formel (12) der Norm
allenfalls eine Abschitzung des Verfor-
mungseinflusses in Stielmitte erlaubt.
Meistens, auf alle Fille bei konstant ge-
haltenem Stielquerschnitt, wird aller-
dings der Festigkeitsnachweis erster
Ordnung am Stiitzenkopf massgebend.

Verschiebbarer
Zweigelenkrahmen

Ohne waagrechte Belastung

In seinen geometrischen Abmessungen
soll der betrachtete Rahmen dem in
Bild 7 entsprechen. Die Belastung wird
dagegen leicht gedndert, indem die in
der Rahmenecke 21 einwirkende Last
nun 30 kN statt 100 kN betrdgt. Die an-
genommenen anfinglichen Auslenkun-

gen verlaufen affin zur antimetrischen
Knickfigur (seitliches Knicken).

Der Multiplikator vy, ergibt sich aus
einer Eigenwertberechnung zu 3,735, so
dass die Knicklidnge des hoher gedriick-
ten Stieles 51-71 11400 mm und die von
1-21 15300 mm erreicht. Die einzufiih-
rende Anfangsauslenkung der Stiitzen-
kopfe betrdgt, wie im Abschnitt «Be-
rechnungsgrundlagen» dargelegt,
Ix/1000, d.h. rund 13 mm aus Ik migel-
Nach Ziffer 5058 der Norm SIA 161
diirfte die Abweichung des Stiitzenkop-
fes von der Senkrechten sogar 0,0035 -
h,d.h. 17,5 mm betragen.

Da die massgebende Knickfigur anti-
metrisch, die primdren Momente dage-
gen symmetrisch verlaufen, ist das Kri-
terium von Kldppel und Lie fiir einen
Rahmen ohne Anfangsverschiebungen
erfiillt (vgl. dazu auch [9] und [10]). Mit
den soeben erwdhnten waagrechten
Auslenkungen u,, die zu einer antime-
trischen M-Fliache fuhren, ist dies
selbstverstidndlich nicht mehr genau der
Fall.

Aus Bild 9 kann man entnehmen, dass
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Bild 9. Verlauf der Auslenkungen und der Momen-
te beim verschiebbaren Rahmen ohne waagrechte
Belastung

sich der verschiebbare Rahmen ohne
waagrechte Belastung fiir midssige Wer-
te N/N, dhnlich verhilt wie der unver-
schiebbare nach Bild 8. Dies ist kaum
erstaunlich, bleibt doch die lotrechte
Riegelbelastung gleich gross, wihrend
die Normalkraft im Stiel 1-21 wohl
kleiner ist, aber keine grosse Bedeutung
aufweist. Wegen der angenommenen
waagrechten Anfangsauslenkung u, ist
allerdings das Eckmoment Ms, leicht
grosser, M,, entsprechend kleiner als
beim unverschiebbaren Rahmen.

Kurz vor dem Erreichen des Tragwider-
standes tritt aber eine dramatische
Wendung ein, indem die waagrechten
Verschiebungen rasch zunehmen (us4 in
Riegelmitte) bzw. das Vorzeichen wech-
seln (u;g im Stiel 1-21). Dieser Vorgang
macht sich auch in einer beschleunigten
Zunahme des Momentes My,, etwa in
der Mitte des Stieles 51-71, bemerkbar.
Das Eckmoment M, nimmt dagegen
entsprechend ab.

Der verschiebbare Rahmen zeigt somit
ein dhnliches Verhalten wie der Zim-

mermann-Stab in Bild 4 sowie der Zwei-
feldtriger in Bild 5: die quasi-symmetri-
sche Biegelinie unter den primédren Mo-
menten schlidgt zu einer antimetrischen
Form mit betrdchtlichen waagrechten
Auslenkungen um, die unweigerlich
zum Versagen fithren. Im vorliegenden
Fall ist allerdings der Tragwiderstand
nur leicht kleiner als derjenige des un-
verschiebbaren Rahmens, ermaissigt
sich doch der Lastmultiplikator nur von
1,35 auf 1,325. Diese Schlussfolgerung
darf allerdings nicht verallgemeinert
werden.

Die beschleunigte Zunahme der waag-
rechten Auslenkungen u ist hauptséch-
lich durch die Plastifizierungen in Rie-
gelmitte und im Eckbereich 51 bedingt:
nach Bild 9 erreichen sowohl Ms¢ als
auch Mjs, nahezu das plastische Mo-
ment M, so dass die dazugehorigen
Biegesteifigkeiten empfindlich verklei-
nert werden, so z.B. auf weniger als die
Hilfte des elastischen Wertes im ober-
sten Element des auf Druck und Bie-
gung beanspruchten Stieles 51-71.

Der verschiebbare Rahmen ohne waag-
rechte Belastung soll nicht weiter be-
trachtet werden, ist doch der im néch-
sten Abschnitt untersuchte Lastfall mit
Seitenkriften (Wind, Kranschub) in der
Regel fiir die Bemessung massgebend
(vgl. die Multiplikatoren in den Bildern
9 und 10). Hier liegt ein wesentlicher
Unterschied zum vorher untersuchten
Zweifeldtrager, bei dem in vielen prak-
tischen Fillen (Pfetten, usw.) grossere
antimetrische Lastanteile fehlen.

Mit lotrechter und waagrechter Bela-
stung

Die lotrechte Belastung entspricht
genau der des soeben untersuchten
Rahmens, d.h. 30kN in 21, je 4kN in
den Punkten 22 bis 50, und 100 kN in
51. Zudem wirkt in 21 und 51 je eine
waagrechte Kraft von 5 kN, Richtung
21-51. Die Anfangsverschiebungen
sind ebenfalls die gleichen wie im Ab-
schnitt zuvor erortert, d. h. insbesondere
Uo Rieget = 13 mm (gleiche Richtung wie
die waagrechten Krifte).

Die primdren Momente infolge der Ho-
rizontallasten sowie infolge der Ver-
schiebungen u, verlaufen antimetrisch,
d.h. dhnlich wie die massgebende
Knickfigur des verschiebbaren Rah-
mens: es liegt deshalb kein Verzwei-
gungsproblem, sondern ein Traglast-
problem vor. Um den Vergrdsserungs-
faktor 1/(1- N*/N,) zu ermitteln, beno-
tigt man trotzdem die Verzweigungs-
last. Die Eigenwertberechnung fiihrt
hier zu y, = 3,734, d.h. fast zum glei-
chen Wert wie beim Fall «Ohne waag-
rechte Belastung»: in diesem Zusam-
menhang spielen ndmlich die waag-
rechten Krifte nahezu keine Rolle,
wird doch die eine Stielkraft wohl ver-
grossert, die andere aber entsprechend
verkleinert.
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Wie bei den anderen Problemen soll
zuerst der Verlauf kennzeichnender
Momente und Verformungen in Bild 10
dargestellt werden. Wegen der waag-
rechten Belastung ist nun Ms, immer
deutlich grosser als das max. Feldmo-
ment M;s. Das Eckmoment Ms; zeigt
zuerst einen merklichen Einfluss zwei-
ter Ordnung; fiir hohe Werte N/N, be-
wirken allerdings die hohen Plastifizie-
rungen des Eckbereiches eine Umlage-
rung zum Feld hin, so dass eine Ten-
denzwende eintritt. Das in Bild 10b
dargestellte Verhiltnis M - p/EJ der
plastischen zur elastischen Steifigkeit
im obersten Stielelement 51 (hohe Nor-
malkraft, kleiner Momentengradient)
weist auf die zunehmende Plastifizie-
rung.

Das Moment M,, in der linken, ela-
stisch  verbleibenden = Rahmenecke
nimmt wegen der fortschreitenden Aus-
lenkungen u, die eine Krimmung ande-
ren Vorzeichens als die Vertikalbela-
stung bewirken, immer langsamer zu,
um am Schluss sogar leicht abzuneh-
men.

Das Verhalten des verschiebbaren Rah-
mens mit Horizontallasten ist somit
recht verwickelt und kann kaum mit
einfachen Mitteln beschrieben werden.
Zudem muss unterschieden werden, ob
die Schnittkrifte elastisch oder pla-
stisch berechnet werden und ob der
Querschnittswiderstand elastisch oder
plastisch ermittelt wird.

Bei elastisch berechneten Schnittkriiften
und elastisch ermitteltem Querschnitts-
widerstand (Verfahren 1 nach Tabelle 2
der Norm SIA 161) bilden sich wohl in-
folge der Wirkung der Eigenspannun-
gen Ortliche Plastifizierungen aus. Ge-
geniiber dem sich aus den elastoplasti-
schen Berechnungen zweiter Ordnung
ergebenden Multiplikator von 0,975,
fiihrt das Verfahren (1), unter Beriick-
sichtigung des elastischen Verfor-
mungseinflusses und der Anfangsaus-
lenkungen u,, zu einem Wert von nur
0,86, insbesondere wegen der ungiinsti-
gen Interaktion Normalkraft-Biegemo-
ment innerhalb der elastischen Ermitt-
lung des Querschnittswiderstandes.
Bild 10 zeigt, dass bis zu dieser «elasti-
schen Grenze» nur sehr beschrinkte, in
ihrer Wirkung vernachlissigbare Plasti-
fizierungen eingetreten sind.

Vergleichsberechnungen an einem sol-
chen elastischen System mit Verfor-
mungseinfluss zeigen zudem, dass der
Vergrosserungsfaktor zweiter Ordnung
mit brauchbarer Néiherung nach der
Beziehung 1/(1-N*/N,) bzw. 1/(1-y/
Yr) ermittelt werden darf. Dieser Faktor
bezieht sich auf die dhnlich zur Knickfi-
gur verlaufenden Schnittkrifte bzw.
Verformungen. Bei unserem verschieb-
baren Rahmen handelt es sich somit um
die antimetrischen Momentenanteile
infolge waagrechter Belastung (sowie
der anfanglichen Auslenkungen u,).
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Bild 10.  Verlauf der Auslenkungen und der Momente beim verschiebbaren Rahmen mit lotrechter

und waagrechter Belastung

Fiir die den Untersuchungen zugrunde-
gelegten Lasten ergeben sich mit dem
bereits erwidhnten Eigenwertmultiplika-
tor v, = 3,734 Vergrosserungsfaktoren
fiir einige Laststufen, wie sie in der
zweiten Kolonne in Tabelle 5 wiederge-
geben sind. Die anderen Kolonnen ent-
halten die Werte, die direkt aus elasti-
schen Berechnungen zweiter Ordnung
gewonnen wurden. Die Ubereinstim-
mung ist zufriedenstellend, insbesonde-
re weil fiir die Biegemomente die For-
mel auf der sicheren Seite liegende
Niherungswerte liefert.

Tabelle 5. Vergleich der Vergrisserungfaktoren
7
¥ 1/(1-v/Yer) 36 M5 antim.
0,5 1,16 1,16 1,14
1,0 1,37 1,38 23
18 1,67 1,70 1,62

Obwohl das Verhalten zweiter Ordnung
des verschiebbaren Rahmens nicht
durch die Ziffern 30643 und 30645
der Norm abgedeckt ist, weil die Sta-
benden nicht unverschiebbar gehalten
sind, darf in erster Ndherung Formel
(11) fiir den elastischen Nachweis den-
noch verwendet werden. Dabei ist der
Korrekturfaktor @ immer zu 1,0 einzu-
setzen. Zudem bezieht sich der Vergros-
serungsfaktor 1/(1-y/y.) nur auf den
antimetrischen Momentenanteil (ohne
u, ermittelt) sowie auf das Glied N* -
e,, wihrend die Biegespannung aus
dem symmetrischen Momentenanteil
direkt zu My, / Weingesetzt wird.

Aus vy, erhdlt man eine Knicklidnge von
11200 mm fiir den massgebenden Stiel
51-71 (unter Beriicksichtigung des An-
teils der Normalkraft aus der waagrech-
ten Belastung), so dass nach Ziffer
30643 der Norm e, = [x/300, d.h.
37 mm betrdgt. Formel (11) fithrt dann
aus dem Nachweis im Punkte 51 des
Stieles zu einem Multiplikator y,, =
0,82, so dass das Verfahren (1) der
Norm auf der sicheren Seite liegt.

Beim Verfahren (2), bzw. nach Formel

(12) mit elastisch ermittelten Momenten
erster Ordnung, ist einzig Wdurch Zzu
ersetzen, wihrend die Interaktion Bie-
gung-Normalkraft weiterhin einen
«elastischen»  Aufbau besitzt. Der
Nachweis im Eckpunkt 51, mit e, =
Ix/250 = 45mm, fithrt jetzt zu v,, =
0,84, d. h. zu einem nur wenig grosseren
Lastmultiplikator.
Bei Anwendung des Verfahrens (3)
nach Tabelle 2 der Norm muss nach
Ziffer 30432 fir verschiebbare Rah-
men der Vergrosserung der Momente
durch Einfliisse zweiter Ordnung Rech-
nung getragen werden. Bild 10 bestétigt
die Richtigkeit dieser Forderung. Eine
einfache Uberlegung fiihrt auch zur Er-
kenntnis, dass der Rahmen nach Bil-
dung eines Fliessgelenkes im Eckpunkt
51 eine bedeutend kleinere seitliche
Steifigkeit aufweist. Als Mass fiir die
Verschiebbarkeit gilt der Eigenwert des
so entstandenen Dreigelenkrahmens
(Gelenke in 1 und 71, Fliessgelenk in
51). Der Multiplikator y,, betrdgt dann
nur noch 1,338 gegentiber 3,734 fiir den
der gleichen Belastung ausgesetzten
Zweigelenkrahmen. Diese Tatsache er-
kldart die rasche Zunahme der waag-
rechten Auslenkung us¢ im Bereich der
hohen Werte N/N, (vgl. Bild 10 b).
Der Einfluss der Verformungen auf den
plastischen Tragwiderstand geht ein-
deutig aus dem Vergleich der Lastmulti-
plikatoren hervor:
- Fliessgelenkmethode erster Ordnung
Vo= 1,22

(mit Einfluss der Normalkraft auf

M, siier)
- Elastoplastische Berechnung zweiter

Ordnung vy = 0,975 (Bild 10)
Der Unterschied darf nicht mehr als ge-
ring bezeichnet werden. Der untersuch-
te Rahmen ist ndmlich relativ weich,
obwohl er beziiglich der waagrechten
Auslenkung erster Ordnung der Stiit-
zenkopfe im Gebrauchszustand (ent-
sprechend einem Multiplikator von
0,975/1,6 fiir die Horizontallasten) die
Bedingung der Ziffer 3 072 6 (< h/150)
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erfiillt. Dagegen ist die in [6] aufgenom-
mene Forderung eines Verhéltnisses
Yo/Yp > 10 mit 3,734/1,22 = 3,1 bei
weitem nicht eingehalten. Fir die Be-
riicksichtigung des Verformungsein-
flusses im Rahmen der Fliessgelenkme-
thode sei z. B. auf[8] verwiesen.

Schlussbetrachtung

Aus den wenigen dargestellten Berech-
nungsbeispielen diirfen kaum allgemei-
ne Schlussfolgerungen gezogen werden.
Bei elastischer Berechnung der Schnitt-
krifte liefert eine Untersuchung als
Spannungsproblem zweiter Ordnung
meistens auf der sicheren Seite liegende
Ergebnisse. Werden die Schnittkrifte
dagegen plastisch ermittelt, so ist bei
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verschiebbaren Systemen immer Vor-
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Rochling & Cie GmbH, Basel
Sidercom AG, Ziirich

Schweizerischer Ingenieur- und
Architekten-Verein

Schweizerische Zentralstelle fiir Stahlbau
Reprisentantin folgender Firmen:

Alpha AG, Nidau

Bosshard Metallbau AG, Aadorf
Buss AG, Pratteln

Ferriere Cattaneo SA, Giubiasco
Dytan Stahl- und Maschinenbau AG,
Horw

Hans Egger, Bern

A. Felix, Bussigny

E. Fischer AG, Romanshorn

Ing. Franco Franzi, Lugano
Gauger & Co. AG, Ziirich
Geilinger Stahlbau AG, Winterthur
Gestle AG, Chur

Giovanola Freres SA, Monthey
Gogniat SA, Yverdon

Habegger AG, Thun

Hess SA, Carouge

Himag AG, Visp

Jakem AG, Miinchwilen/AG
Jos. Kaeser Stahlbau AG, Bellach
Lais AG, Basel

J.R. Lips S6hne AG, Dietikon
Metall- und Stahlbau AG, Endingen
Meto-Bau AG, Wiirenlingen
Josef Meyer AG Emmen, Luzern
Mésch, Schneider AG, Aarau

C. & R. Nyffenegger AG, Ziirich
Preiswerk & Esser, Basel
Ramelet Fréres SA, Lausanne

J. Sauter AG, Sulgen

Heinz Senn AG, Oftringen
Singeisen Stahlbau AG, Liestal
Stahlbau AG Basel, Muttenz
Stamet AG, Oensingen
Steinemann AG, Flawil

Stephan SA, Fribourg

Fratelli Tenconi SA, Airolo
Tensol SA, Piotta

Paul Tobler & Co., St. Gallen
Tuchschmid AG, Frauenfeld
Ateliers de constructions mécaniques de
Vevey SA, Vevey

Vohland & Bir AG, Riehen
Wartmann AG, Oberbipp

Hans Zingg, Romanshorn
Zschokke Wartmann AG, Brugg
Zwahlen & Mayr SA, Aigle

Vereinigungen
Stahlhandel-Verband, Basel

Schweizerische Stahlhandelszentrale, Basel

Kraftwerkunternehmungen
Nordostschweizerische Kraftwerke AG,
Baden

Bernische Kraftwerke AG, Bern
Kraftwerk Laufenburg, Laufenburg
Elektrizitits-Gesellschaft Laufenburg AG,
Laufenburg

Aare-Tessin Aktiengesellschaft fiir
Elektrizitiat, ATEL, Olten

Kernkraftwerk Gosgen Diniken AG,
Déniken

Kraftwerke Brusio AG, Poschiavo

SA I’Energie de I'Ouest-Suisse, Lausanne
Centralschweizerische Kraftwerke, Luzern

Einzelunternehmungen

A. & K. Schneider, Jona

Holorib SA, Genéve
Motor-Columbus AG, Baden
Giroud-Olma AG, Olten

Elemetal AG, Thun

Montana Stahl AG, Wiirenlingen
Donatsch S6hne AG, Landquart
Eisenbau Aktiengesellschaft, Basel
Rudolf Baltensperger, Hori
Schweissindustrie Oerlikon Biihrle AG,
Ziirich

Metkon SA, Stabio

A. Morel & Séhne AG, Klosters
Von Roll AG, Gerlafingen
Schippi AG, Ziirich

U. Schirer Sohne AG, Miinsingen
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