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Tragwiderstand von Stäben und
Stabsystemen unter Druck und Biegung
Von Pierre Dubas, Zürich

Einleitung

Das Knickverhalten des zentrisch
gedrückten geraden Stabes ist durch eine
Verzweigung des Gleichgewichtes
gekennzeichnet. Beim exzentrisch belasteten,

vorgekrümmten oder querbelasteten
Stab aus elastoplastischem Material

liegt dagegen ein Traglastproblem vor
(Gleichgewichtsdivergenz). Der
entsprechende Verlauf der seitlichen
Auslenkungen w in Funktion der
einwirkenden Last JVgeht aus Bild 1 hervor.
Stabilitätsprobleme mit Verzweigungslast

(bzw. Eigenwertprobleme in der
mathematischen Ausdrucksweise) sind

allerdings nicht nur bei Systemen ohne
primäre Biegemomente möglich: nach
dem Kriterium von Kloeppelund Lie[l]
muss für eine virtuelle Verformung Sv

aus einer ausgelenkten Gleichgewichtslage

folgende Bedingung erfüllt sein:

84=0 bzw. 5/la 0

Dabei ist ôv der niedrigsten Eigenfunktion
des untersuchten Systems zugeordnet,

so dass sich SA, für einen Stab der
Länge /in folgender Form anschreibt
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Bild 1. N-w Verlaufbei Stabilitätsproblemen

wobei M das primäre Moment aus
Exzentrizitäten, Querbelastung usw.
bedeutet und 8M der Momentenfläche für
die massgebende Knickform entspricht
Die Bedingung &A-, 0 ist erfüllt, wenn
¦{M} und {öM} orthogonal aufeinander
stehen, insbesondere wenn eine der
M-Flächen symmetrisch und die andere
antimetrisch verläuft.
Ein bekanntes Beispiel für ein solches
Problem mit Gleichgewichtsverzweigung

ist der Stab mit verschränkten
Endexzentrizitäten (Zimmermann-
Stab, vgl. [2]). Für den aus Bild 2a
ersichtlichen Verlauf von SM, entsprechend

dem beidseitig gelenkig gelagerten

Eulerschen Stab, ist die Bedingung
Sv4; 0 erfüllt. Nach dem soeben er-
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wähnten Kriterium liegt somit ein
Verzweigungsproblem vor, mit dem in
Bild 2b dargestellten Verlauf des

Zusammenhanges N-w. Bei schlanken
Stäben ist die Verzweigungslast JVcr

praktisch gleich gross wie die Eulersche
Knicklast n2 • EJ/P-. Bei gedrungenen
Stäben bewirken dagegen die primären
Momente und die Eigenspannungen
Plastifizierungen, die zu einer merklichen

Abminderung der Knicklast ge-
genüber dem zentrisch gedrückten Stab
führen.
Ein ähnliches Verhalten zeigen
verschiebbare symmetrische Rahmen unter

lotrechter Riegelbelastung: im
Verzweigungspunkt kommen nicht nur die
primäre symmetrische Gleichgewichtslage

sondern auch eine antimetrische
Knickform in Frage.
Ist die Bedingung 8.4: 0 bzw. 84a 0

nicht erfüllt, so liegt ein Stabilitätsproblem

mit Gleichgewichtsdivergenz vor.
Die Ermittlung der dazugehörigen
Traglast Nu, entsprechend Bild 1, verlangt
meistens recht aufwendige Berechnungen,

weil das elastoplastische Material-
verhalten bei endlichen Auslenkungen
zu berücksichtigen ist. Man begnügt
sich daher öfters mit einer Untersuchung

als Spannungsproblem zweiter
Ordnung: man verzichtet auf eine
genaue Bestimmung der Traglast und
weist einfach nach, dass unter der y-fa-
chen Belastung die durch den elastischen

Verformungseinfluss vergrösser-
ten, massgebenden Spannungen
nirgends die Fliessgrenze überschreiten.
Mit dem bekannten Vergrösserungsfak-
tor zweiter Ordnung 1/(1 - N*/Na)
erhält man für den beidseitig gelenkig
gelagerten Stab unter fest gehaltenen
Endmomenten die in der Norm SIA
161/1979 angegebene Formel (11) für
den elastischen Nachweis bzw. (12) für
den plastischen Nachweis. In diesen
Beziehungen wurde die Wirkung der
unvermeidlichen Imperfektionen, d.h.
der anfanglichen Auslenkungen einerseits

und der Eigenspannungen
andererseits, durch die Einführung einer
pauschalen Exzentrizität e0 näherungsweise

abgedeckt Die Werte «o ergeben
sich aus dem Verlauf der
Knickspannungskurven und betragen [3]

m 5k Of
Wm (1

w
A

Bild 3. Untersuchtes Praß HEA 200

für den elastischen Nachweis, während
beim plastischen Nachweis die Kern-
weite 1ÊLA, einfach durch den
entsprechenden Ausdruck Z/A zu ersetzen ist.
Die Norm enthält für e0 schlankheitsunabhängige

Näherungswerte.
In der Norm konnten die Grenzen der
Anwendbarkeit der soeben erwähnten
Formeln (11) und (12) nur sehr summarisch

abgesteckt werden. Wir wollen
anschliessend bei einigen einfachen
Tragsystemen, deren Elemente auf
Druck mit Biegung beansprucht sind,
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den bereits erwähnten Einfluss der Pla-
stifizierungen sowie der Eigenspannungen

zeigen und mögliche Wege für die
Bemessung skizzieren.

Berechnungsgrundlagen

Alle anschliessend behandelten Tragsysteme

wurden mit einem elastoplasti-
schen Verfahren zweiter Ordnung
untersucht (vgl. [4]). Bild 3 zeigt den
betrachteten Querschnitt HEA 200 mit der
Verteilung der Eigenspannungen os. Zu
jedem Wertepaar em (Schwerpunktdehnung)

und 1/p (Krümmung) gehören
Schnittkräfte .Wund M. Bei jedem Last-
inkrement wird im Computerprogramm

(finite Elemente) die neue
Gleichgewichtslage gesucht, dies unter
Berücksichtigung der eingetretenen
Verformungen und der Plastifizierung
der Querschnitte. Selbstverständlich
sind dabei Iterationen nötig, um mit
den Verformungen und dem Ausmass
der Plastifizierungen verträgliche
Schnittkräfte zu erhalten. Es ist somit
nicht erstaunlich, dass solche Berech-

nungen aufwendig sind und sich daher
kaum für eine direkte Anwendung in
der Konstruktionspraxis eignen!
Für die der Berechnung zugrundegelegte

Form der Tragwerksachsen wurden
mögliche Abweichungen von der Soll-
Lage angenommen. Der Verlauf dieser
anfänglichen Auslenkungen folgt
grundsätzlich dem der massgebenden
Knickfigur, während die max. Ordinate
1/1000 der Knicklänge betragen soll.
Die durchgeführten Berechnungen
haben somit die gleichen Grundlagen wie
die Knickspannungskurven der Norm
SIA 161 und sollten als Vergleichsmassstab

brauchbar sein.
Als Materialkennwerte gelten durchwegs

eine Fliessgrenze von 235 N/mm2
sowie ein Elastizitätsmodul von 210
kN/mm2. Bei allen untersuchten Systemen

soll Kippen bzw. Biegedrillknik-
ken durch geeignete Halterungen
ausgeschlossen sein, so dass nur ebene
Verformungen (u, w) zu berücksichtigen
sind.

Der beidseitig gelenkig gelagerte,
zentrisch gedrückte Stab

Zu Vergleichszwecken wurden zuerst
mit dem soeben erwähnten Computerprogramm

die Knicklasten von
zentrisch gedrückten Stäben mit Imperfek-
tionen ermittelt. Die Ergebnisse sollten
grundsätzlich mit den Werten aus den
Knickspannungskurven der Norm
übereinstimmen, wobei aber aus den
anschliessend zu erläuternden Gründen
gewisse Abweichungen vorkommen.

Knicken um die schwache Achse des

HEA 200 aus Stahl Fe 360

Die Knickspannungskurve c wurde
gerade aus dem Verhalten des HEA 200
beim Knicken um die schwache Achse
ermittelt, so dass hier die Übereinstimmung

sehr gut ist.

Tabelle 1. Werte Afcy i" kN

länge Sihkmkheil be:.Sehhnkheit SU-Kumt Programm

3000 60,2 0,6413 957 971

5056,6 101.5 1.0810 626 633

8000 160.6 1,7102 332 336
10000 200,8 2,1378 229 230

Knicken um die starke Achse des HEA
200 aus Stahl Fe 360

Für die Ermittlung der
Knickspannungskurve b wurde nicht das Knicken
eines Querschnittes HEA 200 um die
starke Achse, sondern das eines IPE
160 um die schwache Achse zugrundegelegt.

Für solche Profile mit hohem
Verhältnis der Höhe zur Flanschbreite
gelten nämlich günstigere Kurven als
für die «quadratischen» HE-Profile
(vgl. [5] und [6]). Die Unterschiede sind
somit hier grösser.

Tabelle 2. Werte Nyix in kN

längt ScnlmHmi k: SiiilanUial SU-Kumt Programm

5000
7778

10000

60,4
93,9

120,8

0,6429
1,00
1,2858

1032
757
551

1087
816
591

Der Zimmermann-Stab mit
B m Perfektionen

Wir haben bereits in der Einleitung
erwähnt, dass der idealgerade, elastische
Zimmermann-Stab das von Kloeppel
und Lie aufgestellte Kriterium erfüllt:
Knicken stellt somit in diesem Fall ein
Stabilitätsproblem mit Gleichgewichtsverzweigung

dar (vgl. Bild 2). Für die
numerischen Untersuchungen wurden
allerdings sinusförmig verteilte
Anfangsauslenkungen wo mit einem
Maximalwert von //1000 in Stabmitte
angenommen. Damit verlaufen die primären

Momente nicht mehr genau antimetrisch,

wie dies für ihren Hauptanteil
aus den verschränkten Exzentrizitäten
gilt.
Das Verhalten des mit geometrischen
Imperfektionen und mit Eigenspannungen

behafteten Stabes weist den-
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Bild 4. Verlaufder Auslenkungen und der Momente

beim Zimmermann-Stab

noch eine gewisse Ähnlichkeit mit dem
des idealen Systems auf: Bild 4 zeigt den
Verlauf der Auslenkungen w für die
Stabmitte (11) sowie für Punkte jeweils
in der Nähe des Viertels: Punkt 15 liegt
dabei in der Stabhälfte, für welche die
primären Momente aus der Endexzentrizität

und die aus den Anfangsverformungen

w0 sich addieren; beim Punkt 7,
dagegen, haben die Momente aus Wo das

umgekehrte Vorzeichen als die aus der
Exzentrizität e. Der Stab zeigt zuerst
eine S-förmige Verformung auf, schlägt
bei einem Verhältnis N/Nu von rund 0,8
nach einer Seite durch und erreicht seine

Tragfähigkeitsgrenze mit einer
einfach gekrümmten Biegelinie.
Dieses Verhalten geht auch sehr deutlich

aus dem Verlauf des Biegemomentes
im Knoten 9 hervor: M9 hängt zuerst

direkt von der anfänglichen Exzentrizität
der Last im Punkt 9 ab und nimmt

daher linear mit Nza; bei höheren Werten

von N überwiegen dagegen die
Knickauslenkungen, das Moment
nimmt rasch ab und wechselt schliesslich

das Vorzeichen. Obwohl man hier
nicht von einer eigentlichen
Gleichgewichtsverzweigung sprechen kann, fällt
der rasch eintretende Wechsel von der
primären Verformungsfigur zur
quasisymmetrisch verlaufenden Knickfigur
auf.
In Tabelle 3 sind die Ergebnisse der
durchgeführten elastoplastischen
Berechnungen für eine Biegung um die
schwache Achse zusammengefasst.
Selbstverständlich wurden nur solche
Endexzentrizitäten berücksichtigt, für
welche der Tragwiderstand durch eine
«Gleichgewichtsverzweigung» und
nicht durch Erschöpfung des
Biegewiderstandes an den Stabenden erreicht
wird. Zum Vergleich wurden auch die
Werte für e 0 nach Tabelle 1

aufgenommen.

Die letzte Zeile enthält zudem die Werte,

die sich aus der Formel 12) der

Tabelle 3. Ergebnisse der Berechnungen am Zimmermann-Stab

/k - 5056,5 mm (Äk " 1,0810) fK 8000mm (XK-1,7102)

e-0 60 mm 75 mm 90 mm e-0 50 mm 100 mm 150 mm

•633 kN 535 kN
521 kN

507 kN
501 kN

472 kN
482 kN

336 kN 312kN
309 kN

285 kN
287 kN

260 kN
268 kN
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Norm SIA 161 ergeben, wenn man fol-
gendermassen vorgeht
- Einführung der Exzentrizitäten eo

nach der in der Einleitung wiedergegebenen

Formel, wobei o"k aus dem
jeweiligen Wert Njr_y nach Tabelle 1

ermittelt wird. Man erhält damit eo

15,5 mm für eine Stablänge von
5056,5 mm und e§ 22,8 mm für
8000 mm.

- Zy ohne Steganteil, d.h. zu 200-103
mm3 ermittelt, weil im Computerprogramm

die Stegdicke einer einzigen
Faserhöhe entspricht und daher keine

Biegesteifigkeit berücksichtigt
werden kann.

- Reduktionsfaktor to 0,2 eingesetzt,
d.h. es wird mit dem Wert gerechnet,
der sich aus Ziffer 3 064 5 der Norm
für M*min/M*max -1 ergibt, statt mit
dem vorgeschriebenen Mindestwert
von 0,4.

- Als Knicklänge /k für die Bestimmung

von Na wird die ganze Stablänge

eingeführt.

Tabelle 3 zeigt, dass die so ermittelten
Werte befriedigend mit den Ergebnissen

der Computerberechnung
übereinstimmen. Bei direkter Anwendung der
Normvorschrift, d.h. mit den leicht
höheren Werten eo von 20,2 bzw. 32 mm
und mit ram;n 0,4, wird man somit auf
der sicheren Seite sein. Es muss
allerdings betont werden, dass die Formeln
(11) und (12) nur für feste Endmomente
M*m-m und M*max gelten, d.h. diese
Momente sollen selber, wie im vorliegenden

Problem, keine Vergrösserung
durch Einflüsse zweiter Ordnung erfahren.

Ein solcher Idealfall kommt aber in der
Konstruktionspraxis äusserst selten
vor, sind doch in der Regel die Endmomente

nicht etwa durch in ihrer Grösse
unveränderliche Exzentrizitäten festgelegt,

sondern durch eine biegesteife
Verbindung des Stabes mit anderen
Elementen bedingt: die betrachtete Stütze
ist z.B. Bestandteil eines Rahmens und
als Rahmenstiel auf Biegung
beansprucht. Der Verformungseinfluss wird
sich deshalb nicht nur im Feld bemerkbar

machen, sondern auch am Stützenkopf

und am Stützen fuss: zudem treten
allenfalls merkliche Einflüsse zweiter
Ordnung auch in den Rahmenriegeln
auf.
Bei der Anwendung der Formeln (11)
und 12) und insbesondere bei der Wahl
des Reduktionsfaktors ra für Stäbe mit
Endmomenten, ist somit genau zu
überlegen, ob eine Vergrösserung der
Momente nur im Feld stattfinden kann,
wie dies für die Anwendbarkeit der
Formeln erforderlich ist, oder ob die
Stabendmomente MVn und M*„uu durch
Verformungseinfluss ebenfalls zunehmen.

In den folgenden Abschnitten sollen
deshalb Stäbe unter Druck und Biegung
untersucht werden, die Bestandteile

eines statisch unbestimmten Tragsystems

bilden und somit Verformungseinflüsse

auf ihrer ganzen Länge erfahren.

Der längsgedrückte
symmetrische Zweifeldträger

Der symmetrisch belastete Durchlaufträger

mit zwei gleichen Feldern weist
eine zur Zwischenstütze symmetrische
Momentenflache auf, während die
massgebende Knickfigur S-förmig
verläuft. Das Kriterium für eine
Gleichgewichtsverzweigung ist somit erfüllt, wobei

die entsprechende Last im Rahmen
einer elastischen Untersuchung praktisch

den Wert 7t2 • EJ/P besitzt (vgl. [7]).
Um den Einfluss der Imperfektionen
sowie der Plastifizierungen zu verfolgen,

wurde ein Durchlaufträger HEA
200 (Biegung um die starke Achse) mit
zwei 10 m langen Feldern untersucht.
Wirkt keine Längskraft und ist Kippen
ausgeschlossen, so kann der
Biegewiderstand plastisch (Verfahren 3 nach
Tabelle 2 der Norm SIA 161) ermittelt
werden. Das max. Feldmoment und das
Stützmoment betragen somit ± q-P/
11,7, und die max. aufnehmbare
Querbelastung ergibt sich zu 11,8 kN/m für
einen Stahl Fe 360.
Wirkt zugleich eine Längskraft, wie
dies für Pfetten als Bestandteil einer
Windversteifung vorkommt, so vermindert

sich die aufnehmbare Querlast, um
zu verschwinden im Grenzfall einer
reinen Druckbeanspruchung. Mit der
massgebenden Knicklänge von 10 m
beträgt dabei nach Tabelle 2 TVkx 591
kN.
Bild 5 zeigt den Verlauf kennzeichnender

Verformungen und Momente bei
einer Druckkraft von rund 0,9 • Afc. Für

</
1/

Nu/NK O905

w resp. M

Bild 5. Verlaufder Auslenkungen und der Momente
beim Zweifeldträger

die geometrischen Imperfektionen wurde
eine antimetrische Verteilung

angenommen, mit Ordinaten von ± 10 mm
jeweils in Feldmitte. Die Auslenkung
des Punktes 31 (AnfangsVerformung

nach unten, wie die Durchbiegung aus
der Querlast) und des Punktes 11

(Anfangsverformung nach oben) weisen
auf die bei hohen VerhälfjEssen N/N„
eintretende Gleichgewichtsverzweigung:

in diesem Bereich schlägt die
anfängliche quasi-symmetrische Biegelinie

zu einer S-förmigen Form durch, so
dass schliesslich das Moment Mt2 das
Vorzeichen ändert.
Bei kleineren Längskräften, wie dies für
die vorher erwähnten Pfetten meistens
zutrifft, können die durch die
Anfangsverformungen bedingten antimetrischen

Ablenkungskräfte die Biegelinie
nicht mehr so nachhaltig beeinflussen:
das Versagen tritt hier durch Erreichen
des.plastischen Biegewiderstandes auf
der Stütze und im Feld ein. Dabei
macht sich der Verformungseinfluss
weiterhin bemerkbar: zudem vermindert

die Druckkraft das aufnehmbare
Moment.
Das verwendete Computer-Programm
erlaubt es allerdings nicht, solche
Tragfähigkeitsprobleme ohne klare
Stabilitätsgrenze zu verfolgen, weil numerische

Konvergenzschwierigkeiten bei
den zur Momentenumlagerung nötigen
grossen Plastifizierungen die Bestimmung

einer eindeutigen
Gleichgewichtslage fast verunmöglichen. Eine
Fliessgelenktheorie zweiter Ordnung
(vgl. z.B. [8]) ist für solche Probleme
besser geeignet, während rein elastische
Untersuchungen zweiter Ordnung
kaum zu zutreffenden Ergebnissen führen

würden.
Eine direkte Anwendung der Gleichung
(12) nach Norm SIA 161 stösst andererseits

auf gewisse Schwierigkeiten: das
Stabendmoment, d.h. das Stützmoment,

darf nämlich nicht nach Theorie
erster Ordnung bestimmt werden, weil
der Verformungseinfluss auch hier
wirksam ist Im untersuchten Fall führen

folgende Anpassungen zu einer
brauchbaren Näherung.

Bei grösseren Druckkräften, für die eine
Art antimetrischen Knickens eintritt,
soll der Vergrösserungsfaktor in der
Form 1/(1 - N*/Na) benützt werden,
wobei Na die Eulersche Verzweigungslast

für eine Knicklänge gleich der
Feldlänge bedeutet Da der Verlauf der
primären Momente auch innerhalb
eines Feldesywesentlich von denen der
Knickauslenkungen abweicht, darf der
Vergrösserungsfaktor nicht direkt auf
die Momente bezogen werden. Für die
Biegelinie, dagegen, wird die
Übereinstimmung wohl besser ausfallen.

Mit einer max. Durchbiegung von w
q-t*/\85EJ für den symmetrischen
Zweifeldträger beträgt das Moment
infolge der Längskraft im Grundsystem
N*-w. Beim vorliegenden statisch
unbestimmten Träger ergibt sich daraus
ein Wert von rund 0,7- N*-w im Feld.
Mit N„ ¦ 7t2 • EJ/P schreibt sich daher
das Feldmoment zweiter Ordnung im
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Rahmen dieser sehr vereinfachenden
Betrachtung (Mischung von elastischer
und plastischer Theorie!) zu

M* q* • l2
+ 0,7

¦ t
11,7

q*
\%5EJ

q* ¦ P

N*

1

11,7

1 - N*/Na
- 0,6 • ATVAL,

1 - AfVAL.

Zur Abgeltung der Wirkung der
Imperfektionen ist zudem eine Exzentrizität
e0 einzuführen, die im Feld wieder zu
einem Moment von 0,7 • Af*. e0 führt. An
Stelle der Formel (12) ist somit folgende
Bedingung zu erfüllen

N* 1 - 0,6 • N*/Na
1 _ N*/Nrr

P/11,7 + 0,7 • N* ¦ e0

M„
^1

(bzw. 1 für Af* — Afu und q* —¦ qu)

Die Exzentrizität eo wird ebenfalls
gemäss der Beziehung in der Einleitung
eingesetzt, wobei o"k aus dem oben
erwähnten Wert JVK 591 kN ermittelt
wird; sie beträgt 21 mm. Tabelle 4
enthält die daraus gewonnenen Ergebnisse
sowie die Resultate der elastoplasti-
schen Computerberechnungen zweiter

Verzweigung

'¦N

0.5
<eine

Verzweigung \\

—Spsi
1.0

Bild 6. Interaktion N-q beim Zweifeldträger

Ordnung. Diese Werte sind zudem in
Bild 6 graphisch dargestellt, die deutlich

d*äi Abfall der aufnehmbaren
Querbelastung, im Vergleich zum maxi-
malen Wert von 11,8 kN/m bei fehlender

Längskraft, zeigt.

Formel (12) der Norm rechnen. Die
Verzweigungslast entspricht aber hier
dem Knickfall mit symmetrischem Verlauf

und beträgt daher rund 2 • 7t2 • EJ/P.
Zudem ist auch die Exzentrizität eo auf
eine Knicklänge von 0,7- /zu beziehen
und erreicht somit rund 14 mm. Mit
dem im Feld massgebendem Anteil von
0,7 ' N* • eg schreibt sich Formel (12),
mit N„ n1 • EJ/P, zu

AT* 1

N?
+

1 - N*/2 • AL

q* •P/11,7 + 0,7 N* eo

M„
^1

(bzw. 1 für Af* -* Afu und q*^ qa)

Im vorliegenden Fall gilt dieser in Bild
6 gestrichelte Teil des Interaktionsdia-
grammes nur für Verhältnisse Afu/AfK <
0,75.
Die vorgeschlagene Näherung, die aus
den vorher erwähnten Gründen leider
nicht mittels elastoplastischer
Kontrollrechnungen bestätigt werden konnte,
dürfte eine Abschätzung der Tragfähigkeit

bei Biegung eines Zweifeldträgers
unter massiger Längskraft erlauben. Bei
geringen Werten Af*/AfK (bzw. N*/Np)
liegen die Ergebnisse auf der sicheren
Seite, wird doch nach Formel 12) eine
«elastische» Interaktion zwischen der
Normalkraft und dem Biegemoment
angenommen, die ungünstiger ist als
die plastischen Interatkionsformeln
nach Ziffer 3 102 2 der Norm (insbesondere

Formel 26).

Unverschiebbarer
Zweigelenkrahmen

Die Hauptabmessungen des untersuchten

Rechteckrahmens gehen aus Bild 7

hervor. Es handelt sich eigentlich um
das Modell 1:3 eines Hallenrahmens
mit Krananlagen, wobei die aufgeführten

Lasten mit 9 und die Widerstandsmomente

der Querschnitte mit 27 zu
multiplizieren wären.
Da sowohl die primären Momente als
auch die massgebende Knickfigur des
unverschiebbaren Rahmens symmetrisch

verlaufen, ist das Kriterium für
eine Gleichgewichtsverzweigung nicht

Tabelle 4. Ergebnisse der Berechnungen am Zweifeldträger

Anfangswerte ATinkN
q in kN/m

281,25
2,459

281,25
1,968

312,5
1,606

350
1,5

Faktor y
beim Versagen

Computer
Formel

1,68

1,62
1,80
1,74

1.71

1,69
1,56
1,57

In Bild 6 sind zudem Ergebnisse
aufgenommen, die sich auf Fälle mit
beschränkter Längskraftbeziehen. Da hier
kein Umschlagen der Verformungsfigur
eintritt, darf man grundsätzlich nach

erfüllt: es handelt sich um ein Problem
mit Gleichgewichtsdivergenz, das in
erster Näherung als Spannungsproblem
zweiter Ordnung gelöst werden kann.
Bild 8 veranschaulicht, dass die Nichtli-

100 kN 100kN

29x4kNllUIIIHIIlJ i

"21 \ 36 IS

HEA 200

l

starke Achse
5000

>1 71< '

9000

Bild 7. Untersuchter Rahmen

05
M.[>

Lastmultiplikator 1 35

M resp. w

Bild 8. Verlaufder Auslenkungen und der Momente
beim unverschiebbaren Rahmen

nearität wenig ausgeprägt ist im
Vergleich zur elastischen Theorie 1.

Ordnung des Rahmens ohne Anfangsauslenkungen

(im Computerprogramm zu
9 mm in Riegelmitte eingesetzt) nimmt
sogar das Eckmoment M21 leicht ab
(0,3%), weil der längsgedrückte Stiel
durch den Verformungseinfluss an
Steifigkeit verliert und sich die Riegeleinspannung

somit vermindert.
Bei hohen Werten N/Na wird allerdings
diese Wirkung durch eine Momenten-
umlagerung von den plastischen Zonen
in Feldmitte zu den Stützen hin
kompensiert: das Feldmoment M36 weist
anfänglich einen merklichen
Verformungseinfluss auf, im Bereich des

Tragwiderstandes kehrt sich aber diese
Tendenz infolge der Umlagerung um.
Die Vergrösserung im Vergleich zur
elastischen Theorie erster Ordnung
erreicht gesamthaft nur rund 2%. Bezogen
auf die für die plastische Berechnung
massgebende Momentensumme (Stütze
+ Feld) beträgt die Zunahme rund 1%.

Der Verlauf der Durchbiegung vv16 in
Riegelmitte weist auch auf den Einfluss
der Plastifizierungen im Feld: die
raschere Zunahme im Bereich N/Nn as 1

ist hauptsächlich auf die Verringerung
der Riegelsteifigkeit zurückzuführen,
während der Verformungseinfluss
bescheiden ist.
Die Fliessgelenkmethode erster
Ordnung führt, unter Berücksichtigung der
Reduktion des plastischen Eckmomentes

durch die Stieldruckkraft (Formel 26
der Norm SIA 161), auf einen Multiplikator

Yp ™ 1,43 bezüglich der Belastung
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nach Bild 7. Aus den elastoplastischen
Berechnungen ergibt sich dagegen ein
Multiplikator y 1,35. Diese kleine
Reduktion ist durch den Verformungseinfluss

zu erklären, der mit brauchbarer
Näherung aus dem Faktor 1/(1—JV*/
Na) bzw. aus 1/(1-Yp/Ycr) geschätzt
werden kann. Mit einem Eigenwertprogramm

ergibt sich ein Lastmultiplikator
Y«- voir22,2 bezüglich der Lasten nach
Bild 7 und somit ein Vergrösserungsfaktor

von 1/(1-1,43/22,2) 1,07, der
praktisch dem Verhältnis Yp^Y 1,43/
1,35 entspricht. Die Lastmultiplikato-
ren y bzw. YPoder ya dürfen nicht dem
Sicherheitsfaktor der Norm SIA 161

gleichgesetzt werden, stellt doch die
Belastung nach Bild 7 nur eine mehr oder
weniger willkürlich gewählte
Vergleichsbasis dar.
Das untersuchte Beispiel bestätigt die
bekannte Tatsache, dass bei vernünftig
bemessenen unverschiebbaren Rahmen
der Verformungseinfluss keine grosse
Rolle spielt und deshalb vernachlässigt
werden darf. Sind die Beulbedingungen
für die Querschnittswandungen und die
Kipplängen eingehalten, so dürfen hier
die Schnittkräfte und der Querschnittswiderstand

plastisch ermittelt werden
(Verfahren 3 nach Tabelle 2 der Norm
SIA 161).
Der bis jetzt betrachtete Rahmen besitzt
Stiele und Riegel mit dem gleichen
Querschnitt. Die Materialausnützung

$™|i|rotzdem befriedigend, sind doch
auch bei elastischer Berechnung die
Eckmomente und das max. Feldmoment

nahezu gleich gross. Eine grund-
sätzlich andere Bemessungsmöglichkeit
besteht darin, den Riegel weit steifer
auszubilden und daher praktisch als
einfachen Balken wirken zu lassen. Die

jjjfflSile nehmen dann nur die Auflagerkraft

des Riegels sowie die Zwängungs-
momente aus dessen Enddrehung und
dürfen somit bedeutend schlanker werden.

In einem solchen Fall kann das

Stielkopfmoment genügend genau nach
der Theorie erster Ordnung ermittelt
werden, so dass Formel (12) der Norm
allenfalls eine Abschätzung des
Verformungseinflusses in Stielmitte erlaubt
Meistens, auf alle Fälle bei konstant
gehaltenem Stielquerschnitt, wird
allerdings der Festigkeitsnachweis erster
Ordnung am Stützenkopfmassgebend.

Verschiebbarer
Zweigelenkrahmen

Ohne waagrechte Belastung

In seinen geometrischen Abmessungen
soll der betrachtete Rahmen dem in
Bild 7 entsprechen. Die Belastung wird
dagegen leimt geändert, indem die in
der Rahmenecke 21 einwirkende Last
nun 30 kN statt 100 kN beträgt. Die
angenommenen anfänglichen Auslenkun¬

gen verlaufen affin zur antimetrischen
Knickfigur (seitliches Knicken).
Der Multiplikator ya ergibt sich aus
einer EigenWertberechnung zu 3,735, so
dass die Knicklänge des höher gedrückten

Stieles 51-71 11400 mm und die von
1-21 15300 mm erreicht. Die einzuführende

Anfangsauslenkung der Stützenköpfe

beträgt, wie im Abschnitt
«Berechnungsgrundlagen» dargelegt,
/k/1000, d.h. rund 13 mm aus /icmittei-

Nach Ziffer 5 05 8 der Norm SIA 161

dürfte die Abweichung des Stützenkopfes

von der Senkrechten sogar 0,0035 •

h, d.h. 17,5 mm betragen.
Da die massgebende Knickfigur
antimetrisch, die primären Momente dagegen

symmetrisch verlaufen, ist das
Kriterium von Klöppel und Lie für einen
Rahmen ohne Anfangsverschiebungen
erfüllt (vgl. dazu auch [9] und [10]). Mit
den soeben erwähnten waagrechten
Auslenkungen Uq, die zu einer
antimetrischen M-Fläche führen, ist dies
selbstverständlich nicht mehr genau der
Fall.
Aus Bild 9 kann man entnehmen, dass

D5 MnW

Lastmultiplikator 1.325

M resp. u

Bild 9. Verlaufder Auslenkungen und der Momente

beim verschiebbaren Rahmen ohne waagrechte
Belastung

sich der verschiebbare Rahmen ohne
waagrechte Belastung für massige Werte

N/Na ähnlich verhält wie der
unverschiebbare nach Bild 8. Dies ist kaum
erstaunlich, bleibt doch die lotrechte
Riegelbelastung gleich gross, während
die Normalkraft im Stiel 1-21 wohl
kleiner ist, aber keine grosse Bedeutung
aufweist. Wegen der angenommenen
waagrechten Anfangsauslenkung u„ ist
allerdings das Eckmoment MSi leicht
grösser, M2\ entsprechend kleiner als
beim unverschiebbaren Rahmen.
Kurz vor dem Erreichen des Tragwiderstandes

tritt aber eine dramatische
Wendung ein, indem die waagrechten
Verschiebungen rasch zunehmen (u^ in

Riegelmitte) bzw. das Vorzeichen wechseln

(U)8 im Stiel 1-21). Dieser Vorgang
macht sich auch in einer beschleunigten
Zunahme des Momentes Mbl, etwa in
der Mitte des Stieles 51-71, bemerkbar.
Das Eckmoment M2\ nimmt dagegen
entsprechend ab.
Der verschiebbare Rahmen zeigt somit
ein ähnliches Verhalten wie der Zim¬

mermann-Stab in Bild 4 sowie der
Zweifeldträger in Bild 5: die quasi-symmetri-
sche Biegelinie unter den primären
Momenten schlägt zu einer antimetrischen
Form mit beträchtlichen waagrechten
Auslenkungen um, die unweigerlich
zum Versagen führen. Im vorliegenden
Fall ist allerdings der Tragwiderstand
nur leicht kleiner als derjenige des
unverschiebbaren Rahmens, ermässigt
sich doch der Lastmultiplikator nur von
1,35 auf 1,325. Diese Schlussfolgerung
darf allerdings nicht verallgemeinert
werdemttN
Die beschleunigte Zunahme der
waagrechten Auslenkungen u ist hauptsächlich

durch die Plastifizierungen in
Riegelmitte und im Eckbereich 51 bedingt
nach Bild 9 erreichen sowohl M-^ als
auch M51 nahezu das plastische
Moment Mp-, so dass die dazugehörigen
Biegesteifigkeiten empfindlich verkleinert

werden, so z. B. auf weniger als die
Hälfte des elastischen Wertes im obersten

Element des auf Druck und
Biegung beanspruchten Stieles 51-71.
Der verschiebbare Rahmen ohne
waagrechte Belastung soll nicht weiter
betrachtet werden, ist doch der im nächsten

Abschnitt untersuchte Lastfall mit
Seitenkräften (Wind, Kranschub) in der
Regel für die Bemessung massgebend
(vgl. die Multiplikatoren in den Bildern
9 und 10). Hier liegt ein wesentlicher
Unterschied zum vorher untersuchten
Zweifeldträger, bei dem in vielen
praktischen Fällen (Pfetten, usw.) grössere
antimetrische Lastanteile fehlen.

Mit lotrechter und waagrechter Belastung

Die lotrechte Belastung entspricht
genau der des soeben untersuchten
Rahmens, d.h. 30 kN in 21, je 4kN in
den Punkten 22 bis 50, und 100 kN in
51. Zudem wirkt in 21 und 51 je eine
waagrechte Kraft von 5 kN, Richtung
21-51. Die Anfangsverschiebungen
sind ebenfalls die gleichen wie im
Abschnitt zuvor erörtert, d.h. insbesondere

"o.Riegei 13 mm (gleiche Richtung wie
die waagrechten Kräfte).
Die primären Momente infolge der
Horizontallasten sowie infolge der
Verschiebungen u0 verlaufen antimetrisch,
d.h. ähnlich wie die massgebende
Knickfigur des verschiebbaren
Rahmens: es liegt deshalb kein
Verzweigungsproblem, sondern ein Traglastproblem

vor. Um den Vergrösserungsfaktor

1/(1- N*/N„) zu ermitteln, benötigt

man trotzdem die Verzweigungslast.

Die Eigenwertberechnung führt
hier zu Ycr !" 3,734, d.h. fast zum
gleichen Vyert wie beim Fall «Ohne
waagrechte Belastung»: in diesem
Zusammenhang spielen nämlich die
waagrechten Kräfte nahezu keine Rolle,
wird doch die eine Stielkraft wohl
vergrössert, die andere aber entsprechend
verkleinert.
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Wie bei den anderen Problemen soll
zuerst der Verlauf kennzeichnender
Momente und Verformungen in Bild 10

dargestellt werden. Wegen der
waagrechten Belastung ist nun M51 immer
deutlich grösser als das max. Feldmoment

M36. Das Eckmoment MSi zeigt
zuerst einen merklichen Einfluss zweiter

Ordnung; für hohe Werte Af/Afu
bewirken allerdings die hohen Plastifizierungen

des Eckbereiches eine Umlage-
rung zum Feld hin, so dass eine
Tendenzwende eintritt. Das in Bild 10 b
dargestellte Verhältnis M • p/EJ der
plastischen zur elastischen Steifigkeit
im obersten Stielelement 51 (hohe
Normalkraft, kleiner Momentengradient)
weist auf die zunehmende Plastifizie-
rung.
Das Moment M2\ in der linken,
elastisch verbleibenden Rahmenecke
nimmt wegen der fortschreitenden
Auslenkungen u, die eine Krümmung anderen

Vorzeichens als die Vertikalbelastung

bewirken, immer langsamer zu,
um am Schluss sogar leicht abzunehmen.

Das Verhalten des verschiebbaren
Rahmens mit Horizontallasten ist somit
recht verwickelt und kann kaum mit
einfachen Mitteln beschrieben werden.
Zudem muss unterschieden werden, ob
die Schnittkräfte elastisch oder
plastisch berechnet werden und ob der
Querschnittswiderstand elastisch oder
plastisch ermittelt wird.

Bei elastisch berechneten Schnittkräften
und elastisch ermitteltem Querschnittswiderstand

(Verfahren 1 nach Tabelle 2
der Norm SIA 161) bilden sich wohl
infolge der Wirkung der Eigenspannungen

örtliche Plastifizierungen aus.
Gegenüber dem sich aus den elastoplasti-
schen Berechnungen zweiter Ordnung
ergebenden Multiplikator von 0,975,
führt das Verfahren (1), unter Berück-
sichtigung des elastischen Verfor-
mungseinflusses und der Anfangsauslenkungen

Uq, zu einem Wert von nur
0,86, insbesondere wegen der ungünstigen

Interaktion Normalkraft-Biegemoment
innerhalb der elastischen Ermittlung

des Querschnittswiderstandes.
Bild 10 zeigt, dass bis zu dieser «elastischen

Grenze» nur sehr beschränkte, in
ihrer Wirkung vernach 1 ässigbare Plasti-
fizierungen eingetreten sind.

Vergleichsberechnungen an einem
solchen elastischen System mit
Verformungseinfluss zeigen zudem, dass der
Vergrösserungsfaktor zweiter Ordnung
mit brauchbarer Näherung nach der
Beziehung l/(i-Af*/Afcr) bzw. l/(l-y/
Ycr) ermittelt werden darf. Dieser Faktor
bezieht sich auf die ähnlich zur Knickfigur

verlaufenden Schnittkräfte bzw.
Verformungen. Bei unserem verschiebbaren

Rahmen handelt es sich somit um
die antimetrischen Momentenanteile
infolge waagrechter Belastung (sowie
der anfänglichen Auslenkungen u0).

AN
.N

elast.
Grenze

0.5

MDW

Lastmultiphkator 0.975

i CS
1.0 Nu El

"W/' >^o

M* 5l\\

Iß \
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1 i Mp
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/
/

w, u, M-o/EJ

Bild 10. Verlauf der Auslenkungen und der Momente beim verschiebbaren Rahmen mit lotrechter
und waagrechter Belastung

Für die den Untersuchungen zugrundegelegten

Lasten ergeben sich mit dem
bereits erwähnten Eigenwertmultiplikator

Ycr 3,734 Vergrösserungsfaktoren
für einige Laststufen, wie sie in der
zweiten Kolonne in Tabelle 5 wiedergegeben

sind. Die anderen Kolonnen
enthalten die Werte, die direkt aus elastischen

Berechnungen zweiter Ordnung
gewonnen wurden. Die Übereinstimmung

ist zufriedenstellend, insbesondere
weil für die Biegemomente die Formel

auf der sicheren Seite liegende
Näherungswerte liefert.

Tabelle 5. Vergleich der Vergrösserungfaktoren

/
y i/(i- Y/y«) "36 Msi.antim.

0,5 1,16 1,16 1,14
1,0 1,37 1,38 1,33
1,5 1,67 1,70 1,62

Obwohl das Verhalten zweiter Ordnung
des verschiebbaren Rahmens nicht
durch die Ziffern 3 0643 und 3 064 5

der Norm abgedeckt ist, weil die
Stabenden nicht unverschiebbar gehalten
sind, darf in erster Näherung Formel
(11) für den elastischen Nachweis
dennoch verwendet werden. Dabei ist der
Korrekturfaktor ca immer zu 1,0
einzusetzen. Zudem bezieht sich der
Vergrösserungsfaktor 1/(1-y/Y«) nur auf den
antimetrischen Momentenanteil (ohne
«o ermittelt) sowie auf das Glied N* •

e0, während die Biegespannung aus
dem symmetrischen Momentenanteil
direkt zu M^m/ Weingesetzt wird.
Aus y« erhält man eine Knicklänge von
11 200 mm für den massgebenden Stiel
51-71 (unter Berücksichtigung des
Anteils der Normalkraft aus der waagrechten

Belastung), so dass nach Ziffer
3 0643 der Norm e0 /K/300, d.h.
37 mm beträgt. Formel (11) führt dann
aus dem Nachweis im Punkte 51 des
Stieles zu einem Multiplikator yn
0,82, so dass das Verfahren (1) der
Norm auf der sicheren Seite liegt.
Beim Verfahren (2), bzw. nach Formel

(12) mit elastisch ermittelten! Momenten
erster Ordnung, ist einzig Wdurch Zzu
ersetzen, während die Interaktion
Biegung-Normalkraft weiterhin einen
«elastischen» Aufbau besitzt. Der
Nachweis im Eckpunkt 51, mit e0

/K/250 45 mm, führt jetzt zu Y12

0,84, d. h. zu einem nur wenig grösseren
Lastmultiplikator.
Bei Anwendung des Verfahrens (3)
nach Tabelle 2 der Norm muss nach
Ziffer 3 043 2 für verschiebbare Rahmen

der Vergrösserung der Momente
durch Einflüsse zweiter Ordnung Rechnung

getragen werden. Bild 10 bestätigt
die Richtigkeit dieser Forderung. Eine
einfache Überlegung führt auch zur
Erkenntnis, dass der Rahmen nach
Bildung eines Fliessgelenkes im Eckpunkt
51 eine bedeutend kleinere seitliche
Steifigkeit aufweist. Als Mass für die
Verschiebbarkeit gilt der Eigenwert des
so entstandenen Dreigelenkrahmens
(Gelenke in 1 und 7|||-Fliessgelenk in
51). Der Multiplikator ya beträgt dann
nur noch 1,338 gegenüber 3,734 für den
der gleichen Belastung ausgesetzten
Zweigelenkrahmen. Diese Tatsache
erklärt die rasche Zunahme der
waagrechten Auslenkung u36 im Bereich der
hohen Werte N/Nu (vgl. Bild 10 b).
Der Einfluss der Verformungen auf den
plastischen Tragwiderstand geht
eindeutig aus dem Vergleich der
Lastmultiplikatoren hervor:
- Fliessgelenkmethode erster Ordnung

Yp=1lll
(mit Einfluss der Normalkraft auf
Mp,stieD

- Elastoplastische Berechnung zweiter
Ordnung y 0,975 (Bild 10)

Der Unterschied darf nicht mehr als
gering bezeichnet werden. Der untersuchte

Rahmen ist nämlich relativ weich,
obwohl er bezüglich der waagrechten
Auslenkung erster Ordnung der
Stützenköpfe im Gebrauchszustand
(entsprechend einem Multiplikator von
0,975/1,6 für die Horizontallasten) die
Bedingung der Ziffer 3 072 6 < h/150)
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erfüllt. Dagegen ist die in [6] aufgenommene

Forderung eines Verhältnisses
Ycr/Yp > 10 mit 3,734/1,22 3,1 bei
weitem nicht eingehalten. Für die
Berücksichtigung des Verformungseinflusses

im Rahmen der Fliessgelenkme-
thode sei z. B. auf [8] verwiesen.

Schlussbetrachtung

Aus den wenigen dargestellten
Berechnungsbeispielen dürfen kaum allgemeine

Schlussfolgerungen gezogen werden.
Bei elastischer Berechnung der Schnittkräfte

liefert eine Untersuchung als

Spannungsproblem zweiter Ordnung
meistens auf der sicheren Seite liegende
Ergebnisse. Werden die Schnittkräfte
dagegen plastisch ermittelt, so ist bei
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Notz & Co. AG, Brügg bei Biel Preiswerk & Esser, Basel Kraftwerke Brusio AG, Poschiavo

Röchling & Cie GmbH, Basel Ramelet Frères SA, Lausanne SA l'Energie de l'Ouest-Suisse, Lausanne
Sidercom AG, Zürich J. Sauter AG, Sulgen

Heinz Senn AG, Oftringen
Centralschweizerische Kraftwerke, Luzern

Schweizerischer Ingenieur- und Singeisen Stahlbau AG, Liestal
Architekten-Verein Stahlbau AG Basel, Muttenz

Stamet AG, Oensingen Einzelunternehmungen
Schweizerische Zentralstelle für Stahlbau Steinemann AG, Flawil A. & K. Schneider, Jona

Repräsentantin folgender Firmen: Stephan SA, Fribourg Holorib SA, Genève

Fratelli Tenconi SA, Airolo Motor-Columbus AG, Baden

Alpha AG, Nidau Tensol SA, Piotta Giroud-Olma AG, Ölten
Bosshard Metallbau AG, Aadorf Paul Tobler & Co., St Gallen Elemetal AG, Thun
Buss AG, Pratteln Tuchschmid AG, Frauenfeld Montana Stahl AG, Würenlingen
Fernere Cattaneo SA, Giubiasco Ateliers de constructions mécaniques de Donatsch Söhne AG, Landquart
Dytan Stahl- und Maschinenbau AG, Vevey SA, Vevey Eisenbau Aktiengesellschaft, Basel
Horw Vohland & Bär AG, Riehen Rudolf Bai ten sperger, Höri
Hans Egger, Bern Wartmann AG, Oberbipp Schweissindustrie Oerlikon Bührle AG,
A. Felix, Bussigny Hans Zingg, Romanshorn Zürich
E. Fischer AG, Romanshorn Zschokke Wartmann AG, Brugg Metkon SA, Stabio
Ing. Franco Franzi, Lugano Zwahlen & Mayr SA, Aigle A. Morel & Söhne AG, Klosters
Gauger & Co. AG, Zu rieh Von Roll AG, Gerlafingen
Geilinger Stahlbau AG, Winterthur Vereinigungen Schäppi AG, Zürich
GestleAG,Chur Stahlhandel-Verband, Basel U. Schärer Söhne AG, Münsingen
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