
Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 97 (1979)

Heft: 12

Artikel: Katastrophentheorie

Autor: Blatter, Christian

DOI: https://doi.org/10.5169/seals-85431

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-85431
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Mathematik Schweizer Ingenieur undArchitekt 12/79

Katastrophentheorie

Von Christian Blatter, Zürich*)

«Die Natur macht keine Sprünge»,
lehrt Aristoteles. In der Tat: Sanft
ziehen die Planeten ihre Bahnen, und
kontinuierlich verbreitet sich die Wärme in
Raum und Zeit, wenn einer ein Feuerchen

entfacht Trotzdem: Der Philosoph

hat nicht in allem recht. Gäbe es

wirklich keine Sprünge, so mussten wir
die Welt noch im Zustand einer gestaltlosen

Ursuppe vorfinden. Aber schon

am zweiten Schöpfungstag hat Gott das
Wasser vom Himmel geschieden und
damit Gebiete radikal verschiedenen
Zustands hautnah voneinander
getrennt (Bild 1).

nx

Himme

Hau

Wasser

Bild 1. «Die erste Katastrophe»: abrupter Obergang
zwischen radikal verschiedenen Zuständen des Rau-

Die Katastrophentheorie beschäftigt sich
nicht mit der Voraussage oder gar der
Verhütung von Katastrophen. Vielmehr
versuclpbie, gewisse «Katastrophen»,
z. B. die in Bild 1 dargestellte, besser zu
verstehen und unter einem einheitlichen

Gesichtspunkt zu beschreiben. In
diesem Sinne handelt die
Katastrophentheorie von mathematischen Gebilden,

die rein phänomenologisch, d.h.
ohne Zuhilfenahme von Atomen,
Wahrscheinlichkeiten usw., Zustands-
sprünge innerhalb kürzester räumlicher
und zeitlicher Distanzen simulieren,
und sie gibt an, welche Formen die
«Häute zwischen den Weltkamménja|?
typischer Weise annehmen. Dieser
universelle Anspruch der Katastrophentheorie

wird in erster Linie von ihrem
Begründer, dem französischen
Mathematiker René Thorn, vertreten. Als rein
mathematische Disziplin betrachtet,
handelfpie Katastrophentheorie von
den strukturell stabilen Singularitäten
r-parametriger Familien von Funktionen
aufMannigfaltigkeiten.
Es ist wohl nötig, mit einem ganz einfachen

Beispiel zu beginnen. Der folgende
Sachverhalt ist wohlbekannt: Verlagert

die Besatzung eines Bootes ihr Ge¬

wicht langsam nach einer Seite, so wird
sich das Boot entsprechend neigen, fürs
erste aber in geneigtem Zustand stabil
und gegen kleine Stösse unempfindlich
bleiben. Wenn jedoch die Gewichtsverlagerung

eine gewisse kritische Grenze
erreicht, so tritt eben eine Katastrophe
ein: Das stabile Gleichgewicht verwandelt

sich unversehens in ein labiles, und
das Boot kippt vollständig, d. h. es

sucht in kürzester Zeit eine radikal
andere Gleichgewichtslage auf. Trotz
ihres schlimmen Ausgangs ist diese
Geschichte stabil in einem höheren Sinn:
Milde Änderungen der Bootsgeometrie,
der Gesamtlast usw. haben keinen
Einfluss auf die qualitative, mit Worten
beschreibbare Struktur des Gesamtphänomens.

Auf diese sogenannte strukturelle
Stabilitätwitd zurückzukommen sein.

Die Zeemansche
«Katastrophenmaschine»

Christopher Zeeman, der bekannteste
Promoter von Anwendungen der
Katastrophentheorie, hat eine genial einfache

Katastrophenmaschine erfunden,
die verschiedene Wesenszüge der
mathematischen Katastrophen zum
Vorschein bringt und sich auch gut zum
Selbermachen eignet. Man kann damit
ein zu dem geschilderten analoges
Experiment durchführen und in verschiedener

Weise variieren, ohne sich nass

zu machen.
Bild 2 zeigt eine Drehscheibe, deren
Achse in ein Grundbrett eingelassen ist.

*) Überarbeitete Fassung eines Vortrags, gehalten
am ETH-Tag 1978 und am anschliessenden Tag
der Offenen Tür der Abteilung für Mathematik
und Physik.

Bild 2. Die Zeemansche Katastrophenmaschine

Zwei Gummibänder verbinden einen
vertikalen Stift an der Peripherie der
Scheibe einerseits mit einem festen Stift
an der Stirnseite des Grundbretts und
anderseits mit einem dritten Stift, den
der Versuchsleiter an beliebiger Stelle
fixieren oder langsam über das Grundbrett

hinwegbewegen kann. Dieser
fahrbare Stift entspricht dem sich
verschiebenden Seh werpu n k t im obigen
Bootsbeispiel, während die Drehschei-

C y^
1-2 X X

Vp

Ili

Bild 3. Befindet sich der Fahrstift unterhalb der Ku-
spe. so gibt es nur eine stabile Gleichgewichtslage der
Scheibe; befindet er sich oberhalb, so gibt es deren

zwei

be das resultierende Verhalten des Bootes

simuliert.
Wir denken uns zunächst den Fahrstift
z. B. an der Stelle F des Grundbretts
festgehalten. Die Scheibe nimmt
sogleich eine ganz bestimmte Position ein,
und nach kleinen Störungen begibt sie

sich sofort wieder in diese Position
zurück. Sie befindet sich hier im stabilen
Gleichgewicht, sozusagen an ihrem
tiefsten Punkt. In allen nahebei gelegenen
Positionen ist die Gesamtspannung in
den Gummibändern, physikalisch: die
potentielle Energie des Systems, grösser.

Das sieht man daran, dass es Kraft
und Energie kostet, die Scheibe in
irgend einer Richtung aus der
Gleichgewichtslage zu verschieben.
Soweit ist alles einfach. Nun zeigt sich
aber beim weiteren Probieren, dass es

zu gewissen Stellungen des Fahrstifts
nicht nur eine, sondern zwei verschiedene
stabile Gleichgewichtslagen der Scheibe

gibt, z. B. an der Stelle C in Bild 2. Im
Gegensatz zu vorher, wo die Scheibe
eine Art Pendel vorstellte, wird man
hier an einen Kippschalter erinnert.
Die in Bild 3 oben eingezeichnete Kurve

trennt die Stellungen mit einer stabilen

Gleichgewichtslage von den
Stellungen mit zwei Gleichgewichtslagen,
trennt also Bereiche ganz verschiedener
Qualität voneinander. Die
Katastrophentheorie sagt voraus, dass unter den
gegebenen Umständen eine Kurve von
dieser charakteristischen Form (Kuspe;
engl, cusp) herauskommen muss, und
zwar unabhängig von den genauen
geometrischen und physikalischen Daten
der Maschine. Das folgt aus der
strukturellen Stabilität des hier vorliegenden
Katastrophentyps.
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Das alles scheint vielleicht nicht sehr
katastrophal. In Wirklichkeit hat aber
diese angebliche und jedenfalls ziemlich

abstrakte Katastrophe etwas zu tun
mit konkreten Katastrophen, wie wir
Sie in der realen Welt, zum Beispiel auf
einem Boot, erleben. Dies geht aus den
folgenden VerSUÄen hervor.
Bis jetzt haben wir den Fahrstift an
einzelnen Stellen des Grundbretts festgehalten

und zugehörige Gleichgewiçp|<»,*
lagen der Drehscheibe gesucht. Wir
gehen nun daran, die Geometrie des
Systems kontinuierlich zu verändern und
fahren mit dem Stift z. B. der Linie Li in
Bild 3 entlang, jfih* beobachten, dass
die Drehscheibe die Bewegung des
Fahrstifts In bestimmter Weise
nachvollzieht. Ihre innere Dynamik lässt sie
Während des ganzen Vorgangs laufend
die gerade gültige Gleichgewichtslage
aufsuchen, und diese|pieißhgewichtsia-
ge ändert sich glêich langsam wie die
Stellung des Fährstifts, in kleinen
Zeiträumen also nur wenig. Wir wiederhö-
lëfl nun das Experiment, halten uns
aber Mit dem Fahrstift an die Linie Lz.
Zunächst dasselbe Bild wie vorher: Die
Drehscheibe folgt langsam der Bewegung

des Fahrsftfts und ist in jedem
Moment im stabilen Gleichgewicht.
Auch beim erstmaligen Überkreuzen
der «Katastrophenkurve» passiert
nichts, ES gibt jetzt noch ein zweites Sta»
bites Gleichgewicht, abef^äie Scheibe
weiss nichts davon. Wir setzen den Weg
fort, und in dem Moment, wo wir mit
dem Stift den rechten Ast der
Katastrophenkurve überfahren, schnappt die
Drehscheibe plötzlich in eine Weit
entfernte andere (und nunmehr wieder
einzige) Gleichgewichtslage über (Bild 4).
Fahren wir schliesslich mit dem Stift
der Linie L2 entlang zurück, so tritt der

P /

analoge Umschlag, vulgo eben: die
Katastrophe, beim Überkreuzen des linken
Astes der Katastrophenkurve ein.

Mathematische Beschreibung

Wenn IBr verstehen wollen, was hier
passiert, SO müssen mit die Katastro-
phenmaschffil mathematisch beschrei-
flpn^ïm folgenden bezeichflettä, 7 die
Ätlhelängen der beiden Bänder, X deren'
Elastizitätskoeffizient, weiter (siehe
Bild 5) S, s die aktuellen Längen der

i

f? (X,Y)

/s

a

tsj x

jBïïaMÏÙeOrnêtrtsche Daten der Katastrophenma-
Èéhiflè

Bänder, ê die Auslenkung der Scheibe
und schliesslich (X,Y) die Position des
Fahrstifts, Nach dem Hookeschen Ge-

setz ist die potentielle Energie V der
Scheibe gegeben durch

V=^(s-iy+mt~lY

Werden hier s und i durch die Zu-
stands- oder Verhaltensvariable 3 und
dieSteuervariablen X, Y ausgedrückt, SO

ergibt sich (vgl, Bild 5):

Gleichung rein numerisch, etwa mit
einem Jlschenrechner, behandeln und

^ffjnpé für gewisse Parameterwerte X,Y
z. B. drei Gleichgewichtslagen Si, Q2, $3

finden. Aber an wirklicher Einsicht
wäre damit nicht viel gewonnen. Nun
kommt es auf die genauen Werte dieser
$k gar nicht an, sondern Vielmehr auf
die qualitativen Eigenschaften ihrer
Abhängigkeit vom Punkt (X,Y), an dem
sich der Fahrstift beilüdet, Wir können
uns also auch mit einer Approximation
der Funktion V(Q;X,Y) zufriedengeben,
die diese Eigenschaften korrekt wiedergibt.

Die interessanteste Stellung des Fahrstifts

ist offenbar der Punkt P. Es liegt
daher nahe, erst den Punkt P zu beredt-
nen, das ist nicht so schwierig, und
dann für Vß;X,Y)eine Taylor-Entwiekr
lung um den Punkt P herum anzusetzen.
Wieviel Glieder der Entwicklung müs-
Seü wir berücksichtigen? Diese Frage
geht nun ans eigentliche Mark der
Katastrophentheorie; sie allgemein zu
beantworten hat die mächtigsten Werkzeuge

der Analysis, der Algebra und der
Geometrie erfordert.

ilZ r, (t)

ftf

BildS. Die Funktion z =f[t) wird in der Umgebung
der Stelli ti durch das Taylor-Polynom 1. Ordnung,
in der Umgebung voti tj aber erst durch das Taylor-
Polynom 2. Ordnung qualitativ befriedigend
wiedergegeben

Worum es dabei geht, erläutern wir
anhand Bild 6. Zur Vereinfachung 1st hier
Von Punktionen einer Variablen die
Rede. Es soll das qualitative Verhalten
der Funktion z*f(t) In der Umgebung
des Punktes ti beschrieben werden. Der
Beginn der Taylor-Entwicklung lautete

M SB +/'('¦) er-iö +^pe- ti?+...

V(»lX,Y)4*(]/'X' rsin&Y + (y+r cos &)*--/) + -y(Va*" + r2-2arcosi -v
Die zu gegebenem (X,Y) gehörigen
Gleichgewichtslagen, stabile und andere,

bestimmen sich aus der Gleichung

Bild4. Plötzlicher Umschlag, wenn dir längs L}be-
wegte Fdhntift den Punkt D erreicht

0,

die wtfjtlieber nicht In
Form hinschreiben. Man

ausgepackter
könnte diese

Da f(h) + 0 ist, gibt das erste Taylor-
Polynom, also

Tt't)=f(h)+f'h)'t-tl),

die Funktion /In der Umgebung von u

nicht nur numerisch, sondern auch
qualitativ befriedigend wieder. An der Stelle

ü jedoch, wo die erste Ableitung ver-
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das entsprechendeschwindet, lautet
Taylor-Polynom:

T(t)=f(.ti) const.),

was vielleicht numerisch durchaus
befriedigt, qualitativ aber nicht: Die
Konstante bringt nicht zum Ausdruck, dass

/an der Stelle t2 ein lokales Maximum
besitzt. Hingegen leistet hier das zweite
Taylor-Polynom, also

fili)7ï(0 =/(fa) + ¦{t-ti?
das Gewünschte. Das lässt sich
verallgemeinern: Man darf die Taylor-Entwicklung

abbrechen, sobald zum ersten
Mal eine Ableitung + 0 wird und ein
wirklich interessanter Term dasteht.
Das resultierende Polynom ist dann in
der Umgebung der untersuchten Stelle
qualitativ äquivalent zur
Ausgangsfunktion/

Bei mehreren Variablen ist die Sache
eben wesentlich schwieriger. Das Er-
gebnis ist folgendes: Man soll an dem
interessierenden Punkt die Taylor-Entwicklung

der betrachteten Funktion
V(8;X,Y) soweit anschreiben, bis die Liste

der tatsächlich auftretenden Glieder
eine gewisse algebraisch definierte
Reichhaltigkeit aufweist Dann ist die
wahre Funktion V(9;X,Y) qualitativ
äquivalent zu dem hingeschriebenen
Taylor-Polynom. In unserem Beispiel
ergibt sich, dass V(S;X,Y) qualitativ
äquivalent ist zu dem Polynom

V(^;x,y)^j^-^ x».

Ay
A>0 *o

.*>

A \b c D/S E

L2

A<0

p X

Bild 7. A « A (x,y) ist die Diskriminante der
kubischen Gleichung (*). Diese Gleichung besitzt eine
reelle Lösung Q, falls A<0, und drei reelle Lösungen,

falls AXD

wobei wir den Ursprung des (x,yf
Koordinatensystems an die Stelle P
gesetzt (Bild 7) und die Einheiten geeignet
gewählt haben. Wenn alles seine
Richtigkeit hat, so sollten wir durch die
Untersuchung dieser einfacheren Funktion
V hinter das Geheimnis der

Katastrophenmaschine und der charakteristischen

Spiaè (Bild 3) kommen.
g||Kvorher betrachten wir für gegebene
Werte der Parameter x und y die
Gleichgewichtsbedingung

ÉK '¦'•*. 'fv
die wir nunmehr leicht in ausgepackter
Form hinschreiben können:

(*) &-y»-x-0

Diese Gleichung hat eine oder drei reelle

Lösungen &, je nachdem, ob die
sogenannte Disloiminante

A: =4y3 — 21x2

negativ oder positiv ist. Die
Katastrophenkurve ist nun nichts anderes als die
Kurve

A 0, d.h.y (f) Vi %
x

in der Parameterebene. Zu den
Parameterpunkten (x,y) unterhalb der Kurve
gehört eine Gleichgewichtslage 9, zu
den Parameterpunkten oberhalb der
Kurve gehören drei Gleichgewichtslagen.

Wir wollen nun die Funktion V(Q;x,y)
für verschiedene Punkte (x,y) auf der
Linie L2 aufzeichnen (Bild 8, A)-E).
Der Punkt A liegt im Bereich A < 0,
also hat dort V als Funktion von -9

genau ein Minimum. Erreichen wir mit
dem Fahrstift den Punkt B, so wird ein
zweites Minimum (und gleichzeitig
auch ein Maximum) geboren, aber die
Scheibe merkt, wie gesagt, nichts
davon. Im Punkt C haben wir in der Tat
drei Gleichgewichtslagen, eine davon
labil. Während wir uns nun mit dem
Fahrstift dem Punkt D nähern, wird das
Minimum, in dem sich die Scheibe be¬

findet, kontinuierlich abgebaut (Bild 8,

C), und im kritischen Moment haben
wir Bild 8, D). DJjÉScheibe befindet sich

nun im labilen Gleichgewicht Wird der
Fahrstift nur um Haaresbreite weiter
nach rechts verschoben, so gibt es linker
Hand keine stationäre Stelle mehr. Die
Scheibe erfährt ein schwaches, dann
zunehmendes Drehmoment, und sie saust
herum in die andere, einzige und
nunmehr zugängliche Gleichgewichtslage
rechts. An der Stelle E schliesslich
(Bild 8, E) haben wir die gegenüber
Bild 8, A) gespiegelte Figur.

Geometrie der
Gleichgewichtslagen

Nachdem wir so das vielleicht verblüffende

Verhalten der Maschine erklärt
haben, wollen wir die Dynamik wieder
ausblenden und zur Geometrie der
Gleichgewichtslagen zurückkehren. Die
ganze Information darüber steckt in der
Gleichung (*):

*9"

die eine Fläche M im dreidimensionalen

(x,y,Q)-Kaum definiert Diese Flä-

llVMl

rf

U VW1)

c \.„
7/

IL v W

?- ¦&

V(i*

B
*!>

iivwi

^
D

•^

BildS. Potentialverlauf V $),§ die Auslenkung
der Scheibe, für die Positionen A-E des Fahrstifts
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che ist die sogenannte
Katastrophenmannigfaltigkeit. Jeder Punkt von M
entspricht einer möglichen
Gleichgewichtslage der Maschine. Diese Fläche
ist in Bild 9 gezeichnet. Wie erwartet,

1

a/3-yif-x=0

1

—
M/l

/////\/ ^
X ^rf

Bild 9. Katastrophenmannigfaltigkeit M über der
Parameterebene. Über Punkten (x,y) ausserhalb der
Kuspe liegt ein Punkt von M, über Punkten (x,y)
innerhalb der Kuspe liegen drei Punkte von M

liegt über jedem Punkt (x,y) ausserhalb
der Kuspe genau ein Punkt von M und
liegen über jedem Punkt (x,y) innerhalb
der Kuspe drei Punkte von M. Der
untergefaltete Teil von M besteht aus labilen

Gleichgewichtslagen, die für das
tatsächliche Verhalten der Maschine
unter gegebenen Einflüssen ausser
Betracht fallen. Einem bestimmten Weg
des Fahrstifts entspricht in diesem Bild
ein Weg auf M, der so lange wie möglich

kontinuierlich bleibt. In dem
Moment, wo eine kontinuierliche Fortsetzung

nicht mehr möglich ist, springt die
Zustandsvariable S auf einen weit
entfernten anderen Gleichgewichtswert.
Diese Figur, die wir für unsere kleine
Maschine herausdestilliert haben,
besitzt in Wirklichkeit universellen
Charakter. Thom hat nämlich bewiesen,
dass es bei zwei Steuervariablen x und y
nur zwei Typen von strukturell stabilen
Katastrophen gibt: den Fait, der eigentlich

zu einer einzigen Steuervariablen
gehört (Bild 10, vgl. Bild 1 und die
Kuspe, aus der zwei Falten entspringen.

N
1

'

¦l
"

i

1

i^ j

_—*"^ _ Faltpunkte

•~v^^7
i ^^" i * X

Bild 10. Bei einer Steuervariablen x ist der Fait die
einzige elementare Katastrophe

Bis und mit vier Steuervariablen gibt es

nur sieben verschiedene Typen, die zum
Teil poetische Namen wie «Indianerzelt»

oder «Schwalbenschwanz» haben
und zusammen die berühmte Liste der
sieben elementaren Katastrophen
bilden. Leider ist es nicht möglich, einfache

Zeichnungen von den höheren
Typen anzufertigen, da die Anzahl der
wesentlichen Dimensionen zu gross ist.
Soviel zum rein mathematischen
Aspekt der Katastrophentheorie. Wer
als interessierter Wissenschafter, aber
Nicht-Spezialist mehr darüber erfahren
will, dem sei das eben erschienene Werk
von Tim Poston & lan Stewart:
«Catastrophe Theory and its Applications»
(London: Pitman 1978) empfohlen. Der
erste Teil dieses wunderbaren Buches
ist eine gerade an seinesgleichen adressierte,

ausgezeichnet lesbare und mit
unzähligen suggestiven Figuren versehene

Einführung in die Ideenwelt der
mathematischen Katastrophen.

Anwendungen

Wir wollen zum Schluss noch auf
Anwendungen der Katastrophentheorie zu
sprechen kommen. Für mannigfache
Anwendungen in Physik und Technik,
z. B in der Optik, der Hydrodynamik,
der Thermodynamik, sei auf den zweiten

Teil des Werkes von Poston &
Stewart verwiesen. Auf die Bedeutung der
Katastrophentheorie in der Biologie,
vor allem in der Frage der Zelldifferenzierung,

hat Thom schon mit dem Titel
seines Hauptwerks: «Stabilité structurelle

et morphogénèse» (New York:
Benjamin 1972) aufmerksam gemacht.
Das ist aber nicht alles. Die Universalität

der elementaren Katastrophen,
insbesondere der in Bild 9, hat verschiedene

Autoren, allen voran Zeeman, dazu
verleitet, Katastrophenmodelle auch
auf psychologische und ökonomische
Situationen anzuwenden. Es kommt nur
darauf an, die richtigen Steuervariablen
und die passende Verhalten svariable
auszumachen, und schon lässt sich ein
bestimmtes Phänomen, z. B. Angriffsund

Fluchtverhalten eines Hundes, eine
Gefangenenrevolte, ein Börsenkrach,
anhand dieser Figur «erklären». Hierüber

sind natürlich heftige Kontroversen

entstanden, und das letzte Wort
über die Zulässigkeit solcher Modelle
ist noch nicht gesprochen. Jedenfalls
haben Anwendungen dieser Art die
Katastrophentheorie in die Zeitungen
gebracht.

Ein Beispiel mag zeigen, wie etwa
argumentiert wird. Geht es um ein schwieriges

politisches Problem, etwa um die
Erstellung von weiteren Kernkraftwerken,

so haben wir als unabhängige
Steuervariablen die Aktivität der
Befürworter und die der Gegner, als Zu-
stands- oder Verhaltensvariable das

Ausmass der im Moment politisch
möglichen Verwirklichung, mfef kurz
als Realisierungsgrad bezeichnet
(Bild 11). Wir können dieses Achsensy-

Realisierunqsgrad

A'aJ
W2 %\»

U'ee
9r>

Bild 11. Bestimmung der massgebenden Variablen
impolitischen Anwendungsbeispiel

stem in Bild 9 eintragen und einen
möglichen Ablauf des Konfliktgeschehens
als Weg auf der Katastrophenmannigfaltigkeit

M verfolgen (Bild 12):

Realisier unqsqrad

txv.w£

^o<

Bild 12. Ablaufdes Konfliktgeschehens als Weg auf
der Katastrophenmannigfaliigkeil: Der von den
Aktivitäten der Befürworter und der Gegner gesteuerte
«Konfliktpunkt» aufM ändert seine Lage so lange
wie möglich kontinuierlich. Gerät er über den Fait
hinaus, so springt er aufein anderes Blatt von M

Für den Anfang kommt es wesentlich
darauf an, wer als erster die Aktivität
ergreift. Das seien hier die Befürworter.
Der Konfliktpunkt bewegt sich dann
aus neutraler Position (auch hinsichtlich

des Realisierungsgrades) auf das
oberste Blatt von M, und die Sache
sieht für disi Befürworter problemlos
aus. Nun werden aber auch die Gegner
wach, und während die Befürworter
vielleicht einen Moment innehalten,
verstärken die Gegner ihre Aktivität,
bis der Konfliktpunkt in die Nähe des
Faits gerät. Hier kann nun ein Quentchen

zusätzlichen Vorteils für die Gegner

(z. B. eine Panne in einem bestehenden

Kraftwerk) die «Katastrophe»
auslösen: Der Konfliktpunkt wird nicht
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mehr auf seiner Höhe gehalten und
springt hinter auf das unterste Blatt von
M, das durch minimen Realisierungsgrad

gekennzeichnet ist Hier wäre es

nun wichtig, dass die Gegner am Ball
bleiben, sonst gerät der Punkt in die
Gefahrenzone des anderen Faits, und er
könnte unversehens wieder nach oben
springen. Im ganzen ist ein stabiler
Ausgang der Geschichte erst möglich,

wenn eine der Parteien aufgibt (dann
wird der Konfliktpunkt am Schluss
oben oder unten vorne sein) oder wenn
beide «aufgeben» und kompromissbereit

sind: In diesem Fall kommt der
Konfliktpunkt hinten aus der Kuspe
heraus, und es gibt hinsichtlich der
Realisierung eine mittlere Lösung.
Man sieht, dass verschiedene Effekte,
die in derartigen Situationen oft zu

beobachten sind, durch das Modell
tatsächlich vernünftig wiedergegeben werden.

Wie ernst er das allerdings nehmen
will, mag der Leser selbst entscheiden.

Adresse des Verfassers: Dr. Ch. Blatter, Professor
für Mathematik an der ETHZ, ETH-Zentrum,
8092 Zürich

Luftschalldämmung von zweischaligen
Bauteilen

Von Jürgen Blaich, Zürich

Mit zweischaligen Bauteilen lassen sich
zum Teil erheblich bessere Dämmleistungen

erzielen als dies mit
gleichschweren einschaligen Konstruktionen
der Fall ist. Theoretische Betrachtungen
führen zu der Schlussfolgerung, dass es,
ähnlich wie für einschalige Bauteile,
auch für zweischalige Bauteile eine Art
«Massengesetz» geben muss, also eine
Beziehung zwischen dem Gewicht des
Bauteils und dem erreichbaren Luft-
schallisolationsindex. In Bild 1 wurde
aufgrund der theoretischen Gesetzmässigkeiten,

aufdie hier nicht näher
eingegangen werden kann, der Rahmen für
ein derartiges «Massengesetz» abgeleitet.

Auf der Abszisse wurde das
Flächengewicht des Bauteils in Form der
flächenbezogenen Masse, auf der Ordinate

wurde der Luftschallisolationsin-
dex aufgetragen. Das Diagramm zeigt
als sogenannte «Massengerade» die
Dämmwerte, die sich aus dem theoretischen,

Bergerschen Massengesetz ergeben.

Darunter befindet sich die
praxisbezogene Kurve von Gösele für einschalige

Bauteile.
Parallel zur Massengeraden, jedoch ins¬

gesamt günstiger, verläuft der abgeleitete
Bereich für zweischalige, schalltechnisch

richtig aufgebaute Bauteile. Auf
der rechten Bildhälfte sind Messergebnisse

zur Überprüfung der beiden
Kurvenäste eingetragen: helle Kreise:
Messungen von einschaligen, dunkle Kreise:

Messungen von zweischaligen
Bauteilen.

Die, mit 10 dB, relativ grosse Bandbreite
des zweischaligen Bereichs erklärt

sich aus den gewählten Randbedingungen.
Im vorliegenden Fall tolerieren die

Randbedingungen zweischalige Bauteile
mit Resonanzfrequenzen fR zwischen

71 Hz und 125 Hz. Toleriert werden
ausserdem Schallbrücken zwischen den
Schalen, sofern die Grenzfrequenz fg
mindestens einer der beiden Schalen
über 2000 Hz liegt. Berücksichtigt man,
dass, nach der Theorie, die Erhöhung
der Resonanzfrequenz eines zweischaligen

Bauteils von 71 Hz auf 125 Hz eine
Reduktion des Isolationsindexes um
6 dB zur Folge hat, so wird deutlich,
dass der hier abgesteckte Bereich, durch
Einengung der Randbedingungen, in
weitere Unterbereiche mit entsprechend

geringer Bandbreite unterteilt werden
kann.
Es muss betont werden, dass die
Schalldämmung zweischaliger Bauteile
keineswegs automatisch in dem abgesteckten

Rahmen zu liegen kommt. Voraussetzung

ist neben einer ausreichenden
Dämmung von Schallnebenwegen, ein
schalltechnisch richtiger Aufbau des

zweischaligen Bauteils nach bestimmten

Regeln. Ziel Ssr folgenden Ausführungen

ist es, diese Regeln aufzuzeigen,
in der Absicht, dem Mann in der Praxis
Richtlinien darüber zur Verfügung zu
stellen, was er bei der Konstruktion
zweischaliger Bauteile tun muss, bzw.
nicht tun darf, um die Dämmleistung
des in Bild 1 aufgezeigten Bereiches zu
erreichen.

Einfluss der Resonanzfrequenz

Die Resonanzfrequenz des zweischaligen

Bauteils muss richtig gewählt werden.

Bild 2 zeigt die Dämmleistung von
zwei zweischaligen Bauteilen, die sich
nur durch die Lage der Resonanzfrequenz

unterscheiden. Konstruktion
Nr. 1 mit einer Resonanzfrequenz von
120 Hz hat einen sehr günstigen
Dämmkurvenverlauf, ebenfalls einen guten
Luftschallisolationsindex, der um 8 dB
über dem Massengesetz liegt.
Konstruktion Nr. 2, mit einer sehr steifen
Zwischenschicht und einer Resonanz-
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Bild 1. Luftschallisolationsindex
von ein- und zweischaligen
Bauteilen in Abhängigkeit von der
flächenbezogenen Masse.
Randbedingungen: Resonanzfrequenz
fu zwischen 71 und 125 Hz,
Grenzfrequenz fo bei Schallbrük-
ken über 200 Hz
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