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Katastrophentheorie

Von Christian Blatter, Ziirich*)

«Die Natur macht keine Spriinge»,
lehrt Aristoteles. In der Tat: Sanft zie-
hen die Planeten ihre Bahnen, und kon-
tinuierlich verbreitet sich die Wéarme in
Raum und Zeit, wenn einer ein Feuer-
chen entfacht. Trotzdem: Der Philo-
soph hat nicht in allem recht. Gibe es
wirklich keine Spriinge, so miissten wir
die Welt noch im Zustand einer gestalt-
losen Ursuppe vorfinden. Aber schon
am zweiten Schopfungstag hat Gott das
Wasser vom Himmel geschieden und
damit Gebiete radikal verschiedenen
Zustands hautnah voneinander ge-
trennt (Bild 1).

Himmel

<— Haut

Wasser

Bild 1. «Die erste Katastrophe»: abrupter Ubergang
zwischen radikal verschiedenen Zustdnden des Rau-
mes

Die Katastrophentheorie beschdftigt sich
nicht mit der Voraussage oder gar der
Verhiitung von Katastrophen. Vielmehr
versucht sie, gewisse «Katastrophen»,
z. B. die in Bild 1 dargestellte, besser zu
verstehen und unter einem einheitli-
chen Gesichtspunkt zu beschreiben. In
diesem Sinne handelt die Katastro-
phentheorie von mathematischen Gebil-
den, die rein phianomenologisch, d.h.
ohne Zuhilfenahme von Atomen,
Wahrscheinlichkeiten usw., Zustands-
spriinge innerhalb kiirzester raumlicher
und zeitlicher Distanzen simulieren,
und sie gibt an, welche Formen die
«Héaute zwischen den Weltkammern»
typischer Weise annehmen. Dieser uni-
verselle Anspruch der Katastrophen-
theorie wird in erster Linie von ihrem
Begriinder, dem franzosischen Mathe-
matiker René Thom, vertreten. Als rein
mathematische Disziplin betrachtet,
handelt die Katastrophentheorie von
den strukturell stabilen Singularitdten
r-parametriger Familien von Funktionen
auf Mannigfaltigkeiten.

Es ist wohl nétig, mit einem ganz einfa-
chen Beispiel zu beginnen. Der folgen-
de Sachverhalt ist wohlbekannt: Verla-
gert die Besatzung eines Bootes ihr Ge-

*) Uberarbeitete Fassung eines Vortrags, gehalten
am ETH-Tag 1978 und am anschliessenden Tag
der Offenen Tiir der Abteilung fiir Mathematik
und Physik.

wicht langsam nach einer Seite, so wird
sich das Boot entsprechend neigen, fiirs
erste aber in geneigtem Zustand stabil
und gegen kleine Stosse unempfindlich
bleiben. Wenn jedoch die Gewichtsver-
lagerung eine gewisse kritische Grenze
erreicht, so tritt eben eine Katastrophe
ein: Das stabile Gleichgewicht verwan-
delt sich unversehens in ein labiles, und
das Boot kippt vollstdndig, d.h. es
sucht in kiirzester Zeit eine radikal an-
dere Gleichgewichtslage auf. Trotz ih-
res schlimmen Ausgangs ist diese Ge-
schichte stabil in einem hoheren Sinn:
Milde Anderungen der Bootsgeometrie,
der Gesamtlast usw. haben keinen Ein-
fluss auf die qualitative, mit Worten be-
schreibbare Struktur des Gesamtphano-
mens. Auf diese sogenannte strukturelle
Stabilitdt wird zuriickzukommen sein.

Die Zeemansche
«Katastrophenmaschine»

Christopher Zeeman, der bekannteste
Promoter von Anwendungen der Kata-
strophentheorie, hat eine genial einfa-
che Katastrophenmaschine erfunden,
die verschiedene Wesenszlige der ma-
thematischen Katastrophen zum Vor-
schein bringt und sich auch gut zum
Selbermachen eignet. Man kann damit
ein zu dem geschilderten analoges Ex-
periment durchfiihren und in verschie-
dener Weise variieren, ohne sich nass
zu machen.

Bild 2 zeigt eine Drehscheibe, deren
Achse in ein Grundbrett eingelassen ist.

Bild 2. Die Zeemansche Katastrophenmaschine

Zwei Gummibédnder verbinden einen
vertikalen Stift an der Peripherie der
Scheibe einerseits mit einem festen Stift
an der Stirnseite des Grundbretts und
anderseits mit einem dritten Stift, den
der Versuchsleiter an beliebiger Stelle
fixieren oder langsam tiber das Grund-
brett hinwegbewegen kann. Dieser
fahrbare Stift entspricht dem sich ver-
schiebenden Schwerpunkt im obigen
Bootsbeispiel, wihrend die Drehschei-

Bild 3. Befindet sich der Fahrstift unterhalb der Ku-
spe, so gibt es nur eine stabile Gleichgewichtslage der
Scheibe; befindet er sich oberhalb, so gibt es deren
zwei

be das resultierende Verhalten des Boo-
tes simuliert.

Wir denken uns zunichst den Fahrstift
z.B. an der Stelle F des Grundbretts
festgehalten. Die Scheibe nimmt so-
gleich eine ganz bestimmte Position ein,
und nach kleinen Stérungen begibt sie
sich sofort wieder in diese Position zu-
riick. Sie befindet sich hier im stabilen
Gleichgewicht, sozusagen an ihrem tief-
sten Punkt. In allen nahebei gelegenen
Positionen ist die Gesamtspannung in
den Gummibédndern, physikalisch: die
potentielle Energie des Systems, gros-
ser. Das sieht man daran, dass es Kraft
und Energie kostet, die Scheibe in ir-
gend einer Richtung aus der Gleichge-
wichtslage zu verschieben.

Soweit ist alles einfach. Nun zeigt sich
aber beim weiteren Probieren, dass es
zu gewissen Stellungen des Fahrstifts
nicht nur eine, sondern zwei verschiedene
stabile Gleichgewichtslagen der Scheibe
gibt, z. B. an der Stelle C in Bild 2. Im
Gegensatz zu vorher, wo die Scheibe
eine Art Pendel vorstellte, wird man
hier an einen Kippschalter erinnert.

Die in Bild 3 oben eingezeichnete Kur-
ve trennt die Stellungen mit einer stabi-
len Gleichgewichtslage von den Stel-
lungen mit zwei Gleichgewichtslagen,
trennt also Bereiche ganz verschiedener
Qualitdt voneinander. Die Katastro-
phentheorie sagt voraus, dass unter den
gegebenen Umstdnden eine Kurve von
dieser charakteristischen Form (Kuspe;
engl. cusp) herauskommen muss, und
zwar unabhéngig von den genauen geo-
metrischen und physikalischen Daten
der Maschine. Das folgt aus der struk-
turellen Stabilitét des hier vorliegenden
Katastrophentyps.
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Das alles scheint vielleicht nicht sehr
katastrophal. In Wirklichkeit hat aber
diese angebliche und jedenfalls ziem-
lich abstrakte Katastrophe etwas zu tun
mit konkreten Katastrophen, wie wir
sie in der realen Welt, zum Beispiel auf
einem Boot, erleben. Dies geht aus den
folgenden Versuchen hervor.

Bis jetzt haben wir den Fahrstift an ein-
zelnen Stellen des Grundbretts festge-
halten und zugehorige Gleichgewichts-
lagen der Drehscheibe gesucht. Wir ge-
hen nun daran, die Geometrie des Sy-
stems kontinuierlich zu verdndern und
fahren mit dem Stift z. B. der Linie Li in
Bild 3 entlang. Wir beobachten, dass
die Drehscheibe die Bewegung des
Fahrstifts in bestimmter Weise nach-
vollzieht. Thre innere Dynamik ldsst sie
wahrend des ganzen Vorgangs laufend
die gerade giiltige Gleichgewichtslage
aufsuchen, und diese Gleichgewichtsla-
ge dndert sich gleich langsam wie die
Stellung des Fahrstifts, in kleinen Zeit-
rdumen also nur wenig. Wir wiederho-
len nun das Experiment, halten uns
aber mit dem Fahrstift an die Linie L..
Zunichst dasselbe Bild wie vorher: Die
Drehscheibe folgt langsam der Bewe-
gung des Fahrstifts und ist in jedem
Moment im stabilen Gleichgewicht.
Auch beim erstmaligen Uberkreuzen
der «Katastrophenkurve»  passiert
nichts. Es gibt jetzt noch ein zweites sta-
biles Gleichgewicht, aber die Scheibe
weiss nichts davon. Wir setzen den Weg
fort, und in dem Moment, wo wir mit
dem Stift den rechten Ast der Katastro-
phenkurve iiberfahren, schnappt die
Drehscheibe plotzlich in eine weit ent-
fernte andere (und nunmehr wieder ein-
zige) Gleichgewichtslage liber (Bild 4).
Fahren wir schliesslich mit dem Stift
der Linie L2 entlang zuriick, so tritt der

Bild 4. Plotzlicher Umschlag, wenn der langs Ljbe-
wegte Fahrstift den Punkt D erreicht
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analoge Umschlag, vulgo eben: die Ka-
tastrophe, beim Uberkreuzen des linken
Astes der Katastrophenkurve ein.

Mathematische Beschreibung

Wenn wir verstehen wollen, was hier
passiert, so mussen wir die Katastro-
phenmaschine mathematisch beschrei-
ben. Im folgenden bezeichnen 1,7 die

Ruheldngen der beiden Bénder, A deren’

Elastizitdtskoeffizient, weiter (siehe
Bild 5) s, § die aktuellen Langen der

Ay

~N
-
=

(X,Y)

|

Gleichung rein numerisch, etwa mit
einem Taschenrechner, behandeln und
wiirde fiir gewisse Parameterwerte X,Y
z. B. drei Gleichgewichtslagen 91, 93, 93
finden. Aber an wirklicher Einsicht
widre damit nicht viel gewonnen. Nun
kommt es auf die genauen Werte dieser
9y gar nicht an, sondern vielmehr auf
die qualitativen Eigenschaften ihrer
Abhangigkeit vom Punkt (X,Y), an dem
sich der Fahrstift befindet. Wir konnen
uns also auch mit einer Approximation
der Funktion V(9;X,Y) zufriedengeben,
die diese Eigenschaften korrekt wieder-
gibt.

Die interessanteste Stellung des Fahr-
stifts ist offenbar der Punkt P. Es liegt
daher nahe, erst den Punkt P zu berech-
nen, das ist nicht so schwierig, und
dann fiir V(9,X,Y) eine Taylor-Entwick-
lungum den Punkt P herum anzusetzen.
Wieviel Glieder der Entwicklung miis-
sen wir beriicksichtigen? Diese Frage
geht nun ans eigentliche Mark der Ka-
tastrophentheorie; sie allgemein zu be-
antworten hat die méchtigsten Werk-
zeuge der Analysis, der Algebra und der
Geometrie erfordert.

Az

z=f(t)

T g >
t

Bild 5. Geometrische Daten der Katastrophenma-
schine

Binder, 9 die Auslenkung der Scheibe
und schliesslich (X,Y) die Position des
Fahrstifts. Nach dem Hookeschen Ge-
setz ist die potentielle Energie V der
Scheibe gegeben durch

A 4 A
=Sy Ly
|4 2(5 /)+2(s )

Werden hier s und § durch die Zu-
stands- oder Verhaltensvariable 9 und
dieSteuervariablen X,Y ausgedriickt, so
ergibt sich (vgl. Bild 5):

V(3 X,Y) = %(V (X —rsin 92 + (Y + rcos )2 — 1)

Die zu gegebenem (X,Y) gehorigen
Gleichgewichtslagen, stabile und ande-
re, bestimmen sich aus der Gleichung

die wir lieber nicht in ausgepackter
Form hinschreiben. Man konnte diese

Bild 6. Die Funktion z = f{t) wird in der Umgebung
der Stelle t; durch das Taylor-Polynom 1. Ordnung,
in der Umgebung von 1> aber erst durch das Taylor-
Polynom 2. Ordnung qualitativ befriedigend wieder-
gegeben

Worum es dabei geht, erldutern wir an-
hand Bild 6. Zur Vereinfachung ist hier
von Funktionen einer Variablen die
Rede. Es soll das qualitative Verhalten
der Funktion z=f(1) in der Umgebung
des Punktes ti beschrieben werden. Der
Beginn der Taylor-Entwicklung lautet:

PAGY

f@t) =f(t) + /(1) (t—11) + 5

(t—=t1*+ ...

B e %(vzzr,-z —2Jarcoss — 1)

Da f7(t) # 0 ist, gibt das erste Taylor-
Polynom, also

Ti(t) = f(t) + f'(h) (2 = t1),

die Funktion fin der Umgebung von h
nicht nur numerisch, sondern auch qua-
litativ befriedigend wieder. An der Stel-
le 12 jedoch, wo die erste Ableitung ver-
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schwindet, lautet das entsprechende
Taylor-Polynom:

T(¢) = f(t2) (= const.),

was vielleicht numerisch durchaus be-
friedigt, qualitativ aber nicht: Die Kon-
stante bringt nicht zum Ausdruck, dass
fan der Stelle t2 ein lokales Maximum
besitzt. Hingegen leistet hier das zweite
Taylor-Polynom, also

fr(12)
2

das Gewiinschte. Das lédsst sich verall-
gemeinern: Man darf die Taylor-Ent-
wicklung abbrechen, sobald zum ersten
Mal eine Ableitung + 0 wird und ein
wirklich interessanter Term dasteht.
Das resultierende Polynom ist dann in
der Umgebung der untersuchten Stelle
qualitativ dquivalent zur Ausgangs-
funktion f.

Bei mehreren Variablen ist die Sache
eben wesentlich schwieriger. Das Er-
gebnis ist folgendes: Man soll an dem
interessierenden Punkt die Taylor-Ent-
wicklung der betrachteten Funktion
V(9;X,Y) soweit anschreiben, bis die Li-
ste der tatsdchlich auftretenden Glieder
eine gewisse algebraisch definierte
Reichhaltigkeit aufweist. Dann ist die
wahre Funktion V($;X,Y) qualitativ
dquivalent zu dem hingeschriebenen
Taylor-Polynom. In unserem Beispiel
ergibt sich, dass V(9;X,Y) qualitativ
dquivalent ist zu dem Polynom

T(t) = f(t2) +

(t — 12)?

1 )
V®ix,y) =79 — %ﬂl—xﬂ,

Ay

A>0 ,0
>
N c D £
Lo
£<0
B
P X

Bild 7. A = A (x.y) ist die Diskriminante der kubi-

schen Gleichung (*). Diese Gleichung besitzt eine
reelle Losung 9, falls A<O, und drei reelle Losun-
gen, falls A>0O

wobei wir den Ursprung des (x,y/
Koordinatensystems an die Stelle P ge-
setzt (Bild 7) und die Einheiten geeignet
gewihlt haben. Wenn alles seine Rich-
tigkeit hat, so sollten wir durch die Un-
tersuchung dieser einfacheren Funktion
V hinter das Geheimnis der Katastro-
phenmaschine und der charakteristi-
schen Spitze (Bild 3) kommen.
Wie vorher betrachten wir fiir gegebene
Werte der Parameter x und y die Gleich-
gewichtsbedingung

Vv
5 =0
die wir nunmehr leicht in ausgepackter
Form hinschreiben kénnen:

™) ®—yp—x=0

Diese Gleichung hat eine oder drei reel-
le Losungen 9, je nachdem, ob die soge-
nannte Diskriminante

A: =4y —27x2

negativ oder positiv ist. Die Katastro-
phenkurve ist nun nichts anderes als die
Kurve

27 ) %) . %)
4

A=0,dhy= (—

in der Parameterebene. Zu den Para-
meterpunkten (x,y)unterhalb der Kurve
gehort eine Gleichgewichtslage 3, zu
den Parameterpunkten oberhalb der
Kurve gehoren drei Gleichgewichtsla-
gen.

Wir wollen nun die Funktion V(9;x,y)
fiir verschiedene Punkte (x,y) auf der
Linie L» aufzeichnen (Bild8, A)-E).
Der Punkt A liegt im Bereich A < 0,
also hat dort V als Funktion von 9
genau ein Minimum. Erreichen wir mit
dem Fahrstift den Punkt B, so wird ein
zweites Minimum (und gleichzeitig
auch ein Maximum) geboren, aber die
Scheibe merkt, wie gesagt, nichts da-
von. Im Punkt C haben wir in der Tat
drei Gleichgewichtslagen, eine davon
labil. Wiahrend wir uns nun mit dem
Fahrstift dem Punkt D ndhern, wird das
Minimum, in dem sich die Scheibe be-

findet, kontinuierlich abgebaut (Bild 8,
C), und im kritischen Moment haben
wir Bild 8, D). Die Scheibe befindet sich
nun im labilen Gleichgewicht. Wird der
Fahrstift nur um Haaresbreite weiter
nach rechts verschoben, so gibt es linker
Hand keine stationédre Stelle mehr. Die
Scheibe erfihrt ein schwaches, dann zu-
nehmendes Drehmoment, und sie saust
herum in die andere, einzige und nun-
mehr zugingliche Gleichgewichtslage
rechts. An der Stelle E schliesslich
(Bild 8, E) haben wir die gegeniiber
Bild 8, A) gespiegelte Figur.

Geometrie der
Gleichgewichtslagen

Nachdem wir so das vielleicht verblif-
fende Verhalten der Maschine erklért
haben, wollen wir die Dynamik wieder
ausblenden und zur Geometrie der
Gleichgewichtslagen zuriickkehren. Die
ganze Information dariiber steckt in der
Gleichung (*):

r =9 —yP—x=0,

die eine Fliche M im dreidimensiona-
len (x,y,9)-Raum definiert. Diese Fla-

AV )

E)

¥
<

A V)

Bild 8. Potentialverlauf V (9),9 die Auslenkung
der Scheibe, fiir die Positionen A-E des Fahrstifts

195




Mathematik

Schweizer Ingenieur und Architekt  12/79

che ist die sogenannte Katastrophen-
mannigfaltigkeit. Jeder Punkt von M
entspricht einer moglichen Gleichge-
wichtslage der Maschine. Diese Fliche
ist in Bild 9 gezeichnet. Wie erwartet,

Bild 9. Katastrophenmannigfaltigkeit M iiber der
Parameterebene. Uber Punkten (x,y) ausserhalb der
Kuspe liegt ein Punkt von M, iiber Punkten (x,y) in-
nerhalb der Kuspe liegen drei Punkte von M

liegt iber jedem Punkt (x,y) ausserhalb
der Kuspe genau ein Punkt von M und
liegen iiber jedem Punkt (x,y) innerhalb
der Kuspe drei Punkte von M. Der un-
tergefaltete Teil von M besteht aus labi-
len Gleichgewichtslagen, die fiir das
tatsdchliche Verhalten der Maschine
unter gegebenen Einfliissen ausser Be-
tracht fallen. Einem bestimmten Weg
des Fahrstifts entspricht in diesem Bild
ein Weg auf M, der so lange wie mog-
lich kontinuierlich bleibt. In dem Mo-
ment, wo eine kontinuierliche Fortset-
zung nicht mehr moglich ist, springt die
Zustandsvariable 9 auf einen weit ent-
fernten anderen Gleichgewichtswert.

Diese Figur, die wir fiir unsere kleine
Maschine herausdestilliert haben, be-
sitzt in Wirklichkeit universellen Cha-
rakter. Thom hat ndmlich bewiesen,
dass es bei zwei Steuervariablen x und y
nur zwei Typen von strukturell stabilen
Katastrophen gibt: den Falt, der eigent-
lich zu einer einzigen Steuervariablen
gehort (Bild 10, vgl. Bild 1!), und die
Kuspe, aus der zwei Falten entspringen.

17»1\/

,/ Faltpunkte

Bild 10. Bei einer Steuervariablen x ist der Falt die
einzige elementare Katastrophe
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Bis und mit vier Steuervariablen gibt es
nur sieben verschiedene Typen, die zum
Teil poetische Namen wie «Indianer-
zelt» oder «Schwalbenschwanz» haben
und zusammen die berithmte Liste der
sieben elementaren Katastrophen bil-
den. Leider ist es nicht moglich, einfa-
che Zeichnungen von den héheren Ty-
pen anzufertigen, da die Anzahl der we-
sentlichen Dimensionen zu gross ist.
Soviel zum rein mathematischen
Aspekt der Katastrophentheorie. Wer
als interessierter Wissenschafter, aber
Nicht-Spezialist mehr dartiber erfahren
will, dem sei das eben erschienene Werk
von Tim Poston & lan Stewart: «Cata-
strophe Theory and its Applications»
(London: Pitman 1978) empfohlen. Der
erste Teil dieses wunderbaren Buches
ist eine gerade an seinesgleichen adres-
sierte, ausgezeichnet lesbare und mit
unzédhligen suggestiven Figuren verse-
hene Einfithrung in die Ideenwelt der
mathematischen Katastrophen.

Anwendungen

Wir wollen zum Schluss noch auf An-
wendungen der Katastrophentheorie zu
sprechen kommen. Fiir mannigfache
Anwendungen in Physik und Technik,
z.B in der Optik, der Hydrodynamik,
der Thermodynamik, sei auf den zwei-
ten Teil des Werkes von Poston & Ste-
wart verwiesen. Auf die Bedeutung der
Katastrophentheorie in der Biologie,
vor allem in der Frage der Zelldifferen-
zierung, hat Thom schon mit dem Titel
seines Hauptwerks: «Stabilité structu-
relle et morphogénése» (New York: Ben-
jamin 1972)aufmerksam gemacht.

Das ist aber nicht alles. Die Universali-
tiat der elementaren Katastrophen, ins-
besondere der in Bild 9, hat verschiede-
ne Autoren, allen voran Zeeman, dazu
verleitet, Katastrophenmodelle auch
auf psychologische und ékonomische Si-
tuationen anzuwenden. Es kommt nur
darauf an, die richtigen Steuervariablen
und die passende Verhaltensvariable
auszumachen, und schon lésst sich ein
bestimmtes Phdnomen, z. B. Angriffs-
und Fluchtverhalten eines Hundes, eine
Gefangenenrevolte, ein Borsenkrach,
anhand dieser Figur «erkldren». Hier-
iber sind natiirlich heftige Kontrover-
sen entstanden, und das letzte Wort
iber die Zulissigkeit solcher Modelle
ist noch nicht gesprochen. Jedenfalls
haben Anwendungen dieser Art die Ka-
tastrophentheorie in die Zeitungen ge-
bracht.

Ein Beispiel mag zeigen, wie etwa argu-
mentiert wird. Geht es um ein schwieri-
ges politisches Problem, etwa um die
Erstellung von weiteren Kernkraftwer-
ken, so haben wir als unabhingige
Steuervariablen die Aktivitit der Befiir-
worter und die der Gegner, als Zu-
stands- oder Verhaltensvariable das

Ausmass der im Moment politisch
moglichen Verwirklichung, hier kurz
als  Realisierungsgrad  bezeichnet
(Bild 11). Wir kénnen dieses Achsensy-

Realisierungsgrad

Bild 11. Bestimmung der massgebenden Variablen
im politischen Anwendungsbeispiel

stem in Bild 9 eintragen und einen mog-
lichen Ablauf des Konfliktgeschehens
als Weg auf der Katastrophenmannig-
faltigkeit M verfolgen (Bild 12):

Realisierungsgrad

Yy, /

p ; . /\ L y
7 e —— — G‘”Qoe & A
Aot il e 7
/7 getur A

Bild 12. Ablauf des Konflikigeschehens als Weg auf
der Katastrophenmannigfaltigkeit: Der von den Ak-
tivitdten der Befiirworter und der Gegner gesteuerte
«Konflikipunkt» auf M dndert seine Lage so lange
wie moglich kontinuierlich. Gerdt er iiber den Falt
hinaus, so springt er auf ein anderes Blatt von M

Fiir den Anfang kommt es wesentlich
darauf an, wer als erster die Aktivitat
ergreift. Das seien hier die Befiirworter.
Der Konfliktpunkt bewegt sich dann
aus neutraler Position (auch hinsicht-
lich des Realisierungsgrades) auf das
oberste Blatt von M, und die Sache
sieht flir die Befiirworter problemlos
aus. Nun werden aber auch die Gegner
wach, und wihrend die Befiirworter
vielleicht einen Moment innehalten,
verstirken die Gegner ihre Aktivitét,
bis der Konfliktpunkt in die Nédhe des
Falts gerdt. Hier kann nun ein Quent-
chen zusitzlichen Vorteils fur die Geg-
ner (z. B. eine Panne in einem bestehen-
den Kraftwerk) die «Katastrophe» aus-
16sen: Der Konfliktpunkt wird nicht



Bauakustik

Schweizer Ingenieur und Architekt 12/79

mehr auf seiner Hohe gehalten und
springt hinter auf das unterste Blatt von
M, das durch minimen Realisierungs-
grad gekennzeichnet ist. Hier wire es
nun wichtig, dass die Gegner am Ball
bleiben, sonst gerdt der Punkt in die
Gefahrenzone des anderen Falts, und er
konnte unversehens wieder nach oben
springen. Im ganzen ist ein stabiler
Ausgang der Geschichte erst moglich,

wenn eine der Parteien aufgibt (dann
wird der Konfliktpunkt am Schluss
oben oder unten vorne sein) oder wenn
beide «aufgeben» und kompromissbe-
reit sind: In diesem Fall kommt der
Konfliktpunkt hinten aus der Kuspe
heraus, und es gibt hinsichtlich der Rea-
lisierung eine mittlere Losung.

Man sieht, dass verschiedene Effekte,
die in derartigen Situationen oft zu

beobachten sind, durch das Modell tat-
sdchlich verniinftig wiedergegeben wer-
den. Wie ernst er das allerdings nehmen
will, mag der Leser selbst entscheiden.

Adresse des Verfassers: Dr. Ch. Blatter, Professor
fiir Mathematik an der ETHZ, ETH-Zentrum,
8092 Ziirich

Luftschalldimmung von zweischaligen

Bauteilen
Von Jiirgen Blaich, Ziirich

Mit zweischaligen Bauteilen lassen sich
zum Teil erheblich bessere Ddmmlei-
stungen erzielen als dies mit gleich-
schweren einschaligen Konstruktionen
der Fall ist. Theoretische Betrachtungen
fiihren zu der Schlussfolgerung, dass es,
dhnlich wie fiir einschalige Bauteile,
auch fiir zweischalige Bauteile eine Art
«Massengesetz» geben muss, also eine
Beziehung zwischen dem Gewicht des
Bauteils und dem erreichbaren Luft-
schallisolationsindex. In Bild I wurde
aufgrund der theoretischen Gesetzmaés-
sigkeiten, auf die hier nicht ndher einge-
gangen werden kann, der Rakhmen fiir
ein derartiges «Massengesetz» abgelei-
tet. Auf der Abszisse wurde das Fla-
chengewicht des Bauteils in Form der
flichenbezogenen Masse, auf der Ordi-
nate wurde der Luftschallisolationsin-
dex aufgetragen. Das Diagramm zeigt
als sogenannte «Massengerade» die
Dammwerte, die sich aus dem theoreti-
schen, Bergerschen Massengesetz erge-
ben. Darunter befindet sich die praxis-
bezogene Kurve von Gdsele fiir einscha-
lige Bauteile.

Parallel zur Massengeraden, jedoch ins-

gesamt giinstiger, verlduft der abgeleite-
te Bereich fur zweischalige, schalltech-
nisch richtig aufgebaute Bauteile. Auf
der rechten Bildhélfte sind Messergeb-
nisse zur Uberpriifung der beiden Kur-
vendste eingetragen: helle Kreise: Mes-
sungen von einschaligen, dunkle Krei-
se: Messungen von zweischaligen Bau-
teilen.

Die, mit 10 dB, relativ grosse Bandbrei-
te des zweischaligen Bereichs erkléri
sich aus den gewéhlten Randbedingun-
gen. Im vorliegenden Fall tolerieren die
Randbedingungen zweischalige Bautei-
le mit Resonanzfrequenzen f zwischen
71 Hz und 125 Hz. Toleriert werden
ausserdern Schallbriicken zwischen den
Schalen, sofern die Grenzfrequenz f,
mindestens einer der beiden Schalen
iiber 2000 Hz liegt. Beriicksichtigt man,
dass, nach der Theorie, die Erhdhung
der Resonanzfrequenz eines zweischali-
gen Bauteils von 71 Hz auf 125 Hz eine
Reduktion des Isolationsindexes um
6dB zur Folge hat, so wird deutlich,
dass der hier abgesteckte Bereich, durch
Einengurig der Randbedingungen, in
weitere Unterbereiche mit entsprechend
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geringer Bandbreite unterteilt werden
kann.

Es muss betont werden, dass die Schall-
dimmung zweischaliger Bauteile kei-
neswegs automatisch in dem abgesteck-
ten Rahmen zu liegen kommt. Voraus-
setzung ist, neben einer ausreichenden
Dimmung von Schallnebenwegen, ein
schalltechnisch richtiger Aufbau des
zweischaligen Bauteils nach bestimm-
ten Regeln. Ziel der folgenden Ausfiih-
rungen ist es, diese Regeln aufzuzeigen,
in der Absicht, dem Mann in der Praxis
Richtlinien dariiber zur Verfiigung zu
stellen, was er bei der Konstruktion
zweischaliger Bauteile tun muss, bzw.
nicht tun darf, um die Ddmmleistung
des in Bild 1 aufgezeigten Bereiches zu
erreichen.

Einfluss der Resonanzfrequenz

Die Resonanzfrequenz des zweischali-
gen Bauteils muss richtig gewdhlt wer-
den. Bild 2 zeigt die Dammleistung von
zwei zweischaligen Bauteilen, die sich
nur durch die Lage der Resonanzfre-
quenz unterscheiden. Konstruktion
Nr. I mit einer Resonanzfrequenz von
120 Hz hat einen sehr giinstigen Ddmm-
kurvenverlauf, ebenfalls einen guten
Luftschallisolationsindex, der um 8§ dB
iiber dem Massengesetz liegt. Kon-
struktion Nr.2, mit einer sehr steifen
Zwischenschicht und einer Resonanz-
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