Potentialströmung zu geschlitzten Rohren: Teilergebnis aus den Arbeiten am Forschungsauftrag "Kunststoffrohre in der Bodenentwässerung"

Autor(en): Widmoser, P.

Objekttyp: Article

Zeitschrift: Schweizerische Bauzeitung

Band (Jahr): 84 (1966)

Heft 52

PDF erstellt am: 26.04.2024

Persistenter Link: https://doi.org/10.5169/seals-69049

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

29. Dezember 1966

DK 532.51:626.862.1

MEFAUSBEBEBEN VIN DER VERLABS-AKTIENDESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE. ZÜRICH

Potentialströmung zu geschlitzten Rohren

Von Dr. P. Widmoser, Institut für Kulturtechnik, ETH, Zürich

Teilergebnis aus den Arbeiten am Forschungsauftrag «Kunststoffrahre in der Bodenentwässerung», erteilt vom Eidg. Meliorationsamt im Eidg. Volkswirtschaftsdepartement, 1965

Verwendete Symbole

x, y	Kartesische Koordinaten	[m]
R, π	Polarkoerdinaten	[m]
R_0	Rohrradius	[m]
z	Komplexe Funktion	
Z	Komplexes Potential	
Φ	Potential	$[m^2/s^2]$
Ψ	Stromfunktion	[m ² /s ²]
1	Stromdichte	[m/s]
v	Geschwindigkeit	[m/s]
Q	Strommenge	[m ³ /s]
k	Leitfähigkeit, bzw. Durchlässigkeitsfaktor	[m/s]
W	Widerstand	[s/m ²]
1	Schlitzlänge	[m]
1	Rohrlänge	[m]
æ	Schlitzwinkel	
b	Schlitzbreite	[m]
В	Gesamte Eintrittsbreite in der Ebene senkrecht zur Rohrachse (2-dimensionaler Bereich)	[m]
n	Anzahl der Schlitzreihen	
m	Anzahl der Schlitze pro lfm Rohr und Schlitzreihe	
D	Durchmesser	[m]
S	Index für geschlitzte Rohre	
E	Index für Eintritt	

Index für radial

- R Index für parallel p
- Index für Grenze G
- 0 Index für Rohr, bzw. auch Eintrittsöffnung

Bei verlegten Drainageleitungen strömt nicht-gebundenes Bodenwasser den am Rohrumfang angeordneten Eintrittsöffnungen (Fuger., Löcher, Schlitze) zu. Durch Verwendung neuer Werkstoffe stellt sich unter anderem die Frage nach der günstigsten Ausbildung und Anordnung von Eintrittsschlitzen an der Rohrwandung. Im folgenden wird die radiale Zuströmung zu Schlitzen behandelt, welche gleichmässig auf dem Umfang eines Kreiszylinders verteilt sind. Als Schlitze gelten Öffnungen, bei denen eine Abmessung ein Vielfaches der dazu senkrecht stehenden beträgt. Die Untersuchung gilt, soweit die Bedingungen einer Potentialströmung erfüllt sind, d. h. wenn die Strömung frei von Quellen und Wirbeln ist. Das Strömungsgebiet muss vor allem in Rohrnähe, wie noch gezeigt wird, homogen sein, d. h. gleiche Leitfähigkeit aufweisen. Die Untersuchung wird abgestimmt auf die geometrischen Verhältnisse von Kunststoff-Drainagerohren, wie sie derzeit im Handel sind. Dabei liegen die Schlitzbreiten (in Tangentialrichtung) zwischen 0,4 mm und 4,0 mm, die Schlitzlängen (in Achsrichtung) zwischen 0,5 mm und 40 mm. Die Anzahl der Schlitzreihen schwankt zwischen 2 und 6, die der Schlitze pro Ifm und Schlitzreihe zwischen 10 und 100. Zunächst wird die Zuströrnung in der Radialebene x, y (Bild 1) mit Hilfe der komplexen Abbildung betrachtet.

1. Die konforme Abbildung in der Radialebene

In der komplexen Zahlenebene z_p herrsche über die Breite + in bis — $i\pi$ eine zur reellen Achse parallele Strömung. Die Strömung erfolge von $x = +\infty$ bis x = 0 (Bild 2). Das Strom- und Potentiallinienbild wird dann durch die komplexe Funktion

$z_p = x_p + i y_p ,$

die Strömung selbst durch das komplexe Potential

 $Z_p = \Phi_p + i \Psi_p$

dargestellt. Dabei besteht die Beziehung

 $Z_p = j z_p$,

Bild 4

Bild 5. Rediale Zuströmung, Schlitzb-eite b= 3,2 % von R_o , Schlitzenzahl n= 4

wenn j die Stromdichte bezeichnet. Durch die Abbildungsfunktion

 $z_1 = \sinh z_p$

geht der rechte Halbstreifen der zn-Ebene auf die volle z1-Ebene über. Das erhaltene Strömungsbild ist das einer Zuströmung zu einem Schlitz ED (Bild 3, nur linke Hälfte dargestellt) aus $+\infty$.

Dieser Schlitz soll auf Kreisbogenabschnitte projiziert werden. Mit Hilfe der Abbildungsfunktion

(1)
$$z_2 = z_1 + \sqrt{1 + z_1^2}$$

geht die Hälfte des längsgeschlitzten, imaginären Achsenabschnittes + i bis -i in den vollen Einheitskreis der z_3 -Ebene über, Soll der Achsenabschnitt jedoch nur auf einen Kreisbogenausschnitt projiziert werden, so muss die Strecke ED (z1-Ebene) um einen entsprechenden Faktor verkürzt werden. Dieser ergibt sich an Hand von Bild 4, indem Gl. (1) nach z1 aufgelöst wird:

$$z_1 = 1/2 \cdot (z_2 - z_2^{-1}) \qquad \text{und weiter}$$
$$\frac{z_2}{2} = 1/2 \cdot \left(\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2} \right)$$
$$-\frac{1}{2 z_2} = 1/2 \cdot \left(-\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2} \right)$$

 $1/2 \cdot (z_2 - z_2^{-1}) =$ i sin 2

 z_1 -Ebene mit sin $\alpha/2$ multipliziert werden. Die Abbildungsfunktion von der z1-Ebene auf die z1-Ebene lautet dann

nur zu zwei, sondern zu n Schlitzreihen festzulegen. Die Funktion

 $z_S = z_1^{2/n}$

bewirkt für jeden Punkt auf dem Einheitskreis der z2-Ebene mit dem Richtungswinkel φ_2 eine Winkelverschiebung $\varphi_S = 2/n$ in der z_S -Ebene. Der Vollkreis der z2-Ebene geht damit in einen n-tel Kreis der z8-Ebene über. Dabei wird die Schlitzbreite b bei $n \ge 2$ um das 2/n-fache verkleinert, was bei der Winkeleingabe in der z2-Ebene berücksichtigt werden muss. Gleichzeitig vergrössert sich die Dichte j des Strom- und Potentiallinienbildes um das 2/n-fache, was ebenfalls bei der späteren Auswertung zu beachten ist. Die Abbildung gilt nicht für n = 1.

Die bisher schrittweise dargestellte Abbildung lässt sich nun zur folgenden Abbildungsfunktior. zusammenfassen

(2)
$$z_{\mathcal{S}} = \left[\sinh\left(z_{p}\sin\frac{\alpha n}{4}\right) + \left|\sqrt{1 + \left(\sinh\left(z_{p}\sin\frac{\alpha n}{4}\right)\right)^{2}}\right]^{2/n}\right]$$

(2)

Gleichung (2) nach zp aufgelöst, gibt

$$z_p = \frac{\operatorname{arsinh} (z_S^{n/2} - z_S^{-n})}{2\sin\frac{\alpha n}{4}}$$

und mit

(2a)

$$z_S = R e^{i\varphi}$$

Schlitzbreite $b = 3.2 \, \text{% vcn} R_{ov}$ Schlitzanzahl n = 4, Ausschnitt

$$z_{p} = x_{p} + i y_{p} = \operatorname{arsinh} \left[\left(\frac{R^{n/2} - R^{-n/2}}{2 \sin \alpha n/4} \right) \cos \frac{\varphi_{S} n}{2} + i \frac{R^{n/2} - R^{-n/2}}{2 \sin (\alpha n/4)} \sin \frac{\varphi_{S} n}{2} \right]$$

Stellen die Strom- und Potentiallinienbilder in der z_p und z_s -Ebene die Strömung einer bestimmten Strömmenge Q dar, so geht Gleichung (3) über in

$$(4) Z_p = \frac{Q}{n\pi k} z_i$$

(3

Dem Nullpunkt des Koordinatensystems für die Z_p -Ebene werde cabei das Potential und die Stromfunktion Null zugeordnet.

Die Trennung der Real- und Imaginärteile der Gleichungen (1) bis (4) ist analytisch möglich. Die sehr umfangreichen Formeln sind hier nicht angeführt. Die folgenden Rechenwerte und Bilder sind jedoch exakte Auswertungen mit Hilfe einer Datenverarbeitungsrnaschine, die von Gleichung (3) ausgehen.

Zum besseren Verständnis wird die Trennung von Real- und Imaginärteil der komplexen Zahlen in Gleichung (3) für einen vereinfachten Fall gezeigt. Setzt man in Gleichung (3) der polaren Richtungswinkel $\varphi_S = 0$, so erhalten wir die Potentialverteilung entlang der Richtungsstrahlen durch Schlitzmitte. Es gilt

(5)
$$\Phi_{S} = \frac{Q}{n \pi k} \operatorname{arsinh} \left[\frac{R^{n/2} - R^{-n/2}}{2 \sin \alpha n/4} \cos \frac{q_{S} n}{2} \right] = \frac{Q}{n \pi k} \ln \left[\frac{R^{n/2} - R^{-n/2}}{2 \sin \alpha n/4} + \left| \sqrt{\left(\frac{R^{n/2} - R^{-n/2}}{2 \sin \alpha n/4} \right)^{2} + 1} \right]$$

Gleichung (5) führt für $\alpha n = 360^{\circ}$ zu

$$\Phi_R = (Q/2 \pi k) \ln R$$
,

was der Potentialverteilung bei Zuströmung zu einem Vollkreis (diese Bezeichnung gelte zur Unterscheidung von einem geschlitzten Kreis) entspricht. Gleichung (5) zeigt weiters, dass bei zunehmendem Abstand vom Einheitskreis (also bei $R \ge 1$; $R^{-n/2} \rightarrow 0$, die 1 unter der Wurzel ist vernachlässigbar) eine vereinfachte Form der Gleichung (5) zutrifft, nämlich

$$\Phi_{(R+1)} = \frac{Q}{n\pi k} \ln \frac{R^{n/2}}{\sin \alpha n/4} =$$

$$= \frac{Q}{n\pi k} \ln R - \frac{Q}{n\pi k} \ln \left(\sin \frac{\alpha n}{4}\right) = \Phi_R + \Phi_0$$

Das Potential Φ_S lässt sich demnach in einiger Entfernung vom Einheitskreis sehr gut angenähert in ein Potential Φ_B (Potentialverteilung um einen Vollkreis) und ein Potential Φ_0 aufspalten, welches zur Überwindung eines zusätzlichen Widerstandes durch die Schlitzanordnung nötig ist.

Bilder 5 und 6 zeigen die Potential- und Stromlinienverteilung zu vier Schlitzen mit einer Schlitzbreite b = 0,032 mm (R = 1 cm). Als singuläre Punkte ergeben sich jene an der Rohrwand, und zwar einerseits an den Schlitzrändern sowie anderseits in der Mitte zwischen zwei Schlitzen (Sattelpunkt).

Werden die Äquipotentiallinien als Höhenschichtenlinien aufgefasst, so ergibt ein radialer Querschnitt durch die Schlitzmitte und durch den Sattelpunkt die Potentialverteilung, die in Bild 7 dargestellt ist. Folgende Punkte sind dabei beachtenswert:

- der stelle Potentialanstieg in unmittelbarer Schlitznähe (Kurve b)

- die Beträge der Potentiale auf dem Radialstrahl durch die Schlitzmitte (Kurve b) und jene auf dem Radialstrahl durch den Sattelpunkt (Kurve c) n\u00e4hern sich asymptotisch. Das bedeutet, dass sich die \u00e4quipotentialinien mit zunehmendem Abstand von der Rohrwand wieder wie bei Zustr\u00f6mung zum Vollrohr der Kreisform ann\u00e4hern; Kurve a stellt die Potentialverteilung zu einem Vollrohr dar.
- das durch die Schlitzung zusätzlich hervorgerufene Potential Φ₀ kann in einiger Entfernung von der Rohrwand als konstant angesehen werden.

2. Die Widerstände

Bezüglich der Potentialdifferenz 4Φ zwischen zwei Punkten im Abstand R_1 und R_0 einer radialen Potentialströmung zu einem Vollkreis und dem Widerstand zwischen diesen zwei Punkten besteht folgender Zusammenhang

$$\Delta \Phi/Q = W_{0,1} = \frac{1}{2 \pi k} \ln \frac{R_1}{R_0}$$

Wird die Leitfähigkeit oder der Durchlässigkeitsfaktor k gleich 1 gesetzt und der Bezugspunkt R_0 in den Schlitz verlegt ($R_0 = 1$), so folgt

$$\Phi_1/Q = W_1 = \frac{1}{2\pi} \ln R_1$$

Analog zur Gleichung (6) kann der Widerstand W_R und W_0 abgeleitet werden. Bei einem Betrag von $\alpha n \leq 1,4$ kann der Betrag des Sinus' gleich dem des Arcus' gesetzt werden, wobei der Fehler < 1 %bleibt. Für $b n/R_0 < 1,4$ gilt dann

$$-\ln\sin\frac{\alpha n}{4} = +\ln\frac{4R_0}{b n}$$

Gleichung (7) entspricht somit

$$W_0 = \frac{1}{n \pi} \ln \frac{4 R_0}{b n}$$

(8)

W₀ ist dimensionslos und kann als hydraulischer Kennwert für eine bestimmte Schlitzkombination gelten.

Gleichung (8) kann mittels Fourierscher Reihe direkt aus der Laplace-Gleichung entwickelt werden [3]. Aus ihr wurden für Vergleichszwecke die Eintrittwiderstände für verschiedene Schlitzkombinationen berechnet. Die Werte sind in den Bildern 8 und 9 dargestellt. Bild 9 zeigt auch die Abhängigkeit des Widerstandes von verschiedenen Schlitzkombinationen, bei denen die Gesamteintrittsbreite B = n bkonstant bleibt. In diesem Falle ändert sich der Widerstand nach der Gleichung

$$W_0 = \text{konst}/n = b \text{ (konst}/B)$$

c. h., dass bei gewählter Gesarnteintrittsbreite *B* sich der Schlitzwiderstand W_0 umgekehrt proportional zur Schlitzreihenanzahl *n*, bzw. cirekt proportional zur Schlitzbreite *b* ändert. Diese Gesetzmässigkeit wird in Bild 9 curch die Geraden dargestellt.

3. Übergang zu kreisförmigen Potentiallinien

Die radiale Potentialströmung zu einem Vollkreis aus dem Unendlichen erfolgt nach Bild 10. Die Potentiallirien sind zentrische Kreise um den angeströmten Kreis. Durch die Zuströmung zu Schlitzen entsteht eine Störung dieses Bildes, welche theoretisch erst im Unendlichen, praktisch aber sehr gut angenähert in einem relativ nahen Bereich, der durch den Radius R_G abgegrenzt ist, aufgehoben wird. Die Abstände R_G wurden für Abweichungen von der Kreisform von 1% und 5%von R_0 (Kriterium: Strahl durch Spaltmitte und Strahl durch Sattelpunkt) berechnet. R_G wird für verschiedene Schlitzreihenanzahlen in Bild 11 dargestellt.

Bemerkenswert ist, dass die Werte stark von der Schlitzreihenanzahl (Bild 11), aber kaum von der Schlitzbreite abhängen (Bild 12, stark ausgezogene Kurven). Sie wurder, für Schlitzbreiten von 0,016 bis 0,160 bei Radius 1, entsprechend 0,4 mm bis 4,0 mm bei Radius 2,5 cm

Bild B (links): Eintrittswiderstände W_a bei verschiedener - Schlitzbreiten b und Schlitzreihenanzahl n

Bild 9 (rechts), Eintrittswiderstände W_a bei verschiedenen Schlitzbreiten b, Schlitzreihenanzahlen nund Gesamteintrittsängen B

$$v_S = \frac{Q}{4 \pi k \sin z n/4} \frac{1}{R e^{i\varphi}}$$

$$\times \frac{2\cos\varphi n/2 \cdot \cosh\ln R^{n/2} + i2\sin\varphi n/2 \cdot \sinh\ln R^{n/2}}{\sqrt{1 + \left(\frac{\cos\varphi n/2 \cdot \sinh\ln R^{n/2} + i\sin\varphi n/2 \cdot \cosh\ln R^{n/2}}{\sin\alpha n/4}\right)^2}}$$

berechnet. Dies ist einzusehen, wenn man sich vergegenwärtigt, dass die Äquipotentiallinien in unmittelbarer Kreisnähe geometrisch ähnlich sind und eine Änderung der Schlitzbreite wohl den Betrag des Potentials, aber nur unwesentlich die geometrische Verteilung der Potentiallinien beeinflusst. Es ist noch darauf hinzuweisen, dass der Abstand R_{σ} unabhängig von der Leitfähigkeit eines allerdings homogenen Strömungsbereiches und unabhängig von der Strömungsmenge (1 Q ist.

4. Die Strömungsgeschwindigkeit

Die erste Ableitung der Gleichungen (2a) und (4) gibt den an der reellen Achsrichtung gespiegelten Geschwindigkeitsvektor der Strömung wieder. Sie lautet

 $\frac{Q}{4 Z \pi k \sin \alpha n/4} \frac{Z^{n/2} + Z^{-n/2}}{\left| \sqrt{1 + \left(\frac{Z^{n/2} - Z^{-n/2}}{\sin \alpha n/4}\right)^2} \right.}$

Daraus folgt mit

 $Z = R e^{i\varphi}$

Bild 10. Radialströmung zu volldurchässigem Rohr

Bild 11. Abstand R_G bei verschiedener Schlitzreihenenzahl (gültig für Schlitzbreiten von 0,4 bis 5,0 mm bei $R_{\phi} = 2,5$ cm)

Die Trennung von Real- und Imaginärteil ist einfach, wenn R = 1, also für die Geschwindigkeitsvektoren entlang des Einheitskreises

(11)
$$v_{\delta + (n-1)} = \frac{Q}{2 \pi k \sin \alpha n/4} \frac{\cos \varphi n/2}{\left| \sqrt{1 - \left(\frac{\sin \varphi n/2}{\sin \alpha n/4}\right)^2} \right|^2} e^{-\frac{1}{2}}$$

und

(10)

(12)
$$|v_S|_{(R=1)} = \frac{Q}{2 \pi k \sin \alpha n/4} \frac{\cos \varphi n/2}{\sqrt{1 - \left(\frac{\sin \varphi n/2}{\sin \alpha n/4}\right)}}$$

Für $\psi_S = 0$, also für die Schlitzmitte, ergibt sich die Geschwindigkeit

$$|v_S|_{\text{MILLE}} = \left(\frac{Q}{2\pi k}\right) \frac{1}{\sin \alpha n/4}$$

oder, da für kleine Werte von sin α n/4 auch b n/4 gesetzt werden kann,

$$|v_S|_{\text{MILLE}} = \frac{2 Q}{\pi k} \frac{1}{b n}$$

Rt.

Bild 2. Uebergeng zu kreisförmigen Potentialen sowie Potentialverteilung entlang Radialstrahl durch Spaltmitte bei verschieder en Schlitzkombinationen

Eild 15. Verteilung der Filtergeschwindigkeit entlang eines Spaltquerschnittes

Die Filtergeschwindigkeit in Spaltmitte beträgt dem nach das 4/b n ache, der Geschwindigkeit bei Zuströmung zu einem Vollkreis. Für $q_{\infty} = \alpha/2$, also für den Schlitzrand, würde die Geschwindigkeit unendlich. Es besteht ein singulärer Punkt, und die konforme Abbildung ist nicht gültig.

5. Ausschlämmung

Dem oben Gesagten ist zu entnehmen, dass die Verhältnisse in Kreisnähe von entscheidendem Einfluss auf die Zuströmung sind. Auf Grund der gesteigerten Zuströmungsgeschwindigkeit kann bei Grundwasserströmungen in bestimm ten Bodenarten eine Bodenausschlämmung in Rohrnähe erwartet werden, welche auch in der Tat beobachtet wurde.

Es wurden hier für zwei Arten von Ausschlämmungen der Einfluss auf den Eintrittswiderstand theoretisch untersucht. Für den Fall kreisförmiger Ausschlämmung mit einem Ausschlämmradius b/2 gleich der halben Schlitzbreite (Bild 14 links) lässt sich mit Hilfe komplexer Abbildung einfach zeigen, dass der Eintrittswiderstand um den konstanten Betrag von $\ln 2/n \pi k$ abnimmt.

Die durch kreisförmige Ausschlämmung verringerten Eintrittswiderstände sind in Bild 15 durch die dünn gestrichelten Geraden festgehalten. Auf Grund der Geschwindigkeitsverteilung ist jedoch eine höhere Ausschlämmung an den Schlitzrändern zu erwarten. Mit Hilfe der Gleichung (5) wurde nun die Herabsetzung des Potentials bei elliptischer Ausschlämmung nach (Bild 14 rechts) berechnet. Bei einer Schlitzbreite von 0,032 mm (b = 0.8 mm, c = 0.16 mm, wenn $R_0 = 2.5$ cm) und einer Schlitzreihenanzahl 4 ergibt sich eine Herabsetzung des Potentials um 11% (siehe Kurve d in Bild 7). In Bild 15 sind die durch elliptische Ausschlämmung reduzierten Eintrittswiderstände stark gestrichelt wiedergegeben. Für n = 10 zeigt das Bild rechts unten, dass der Eintrittswiderstand negativ wird, das heisst unter dem des voll-durchlässigen Kreises liegt. Dasselbe kann natürlich auch bei weniger Schlitzreihen auftreten, wenn die Ausschlämmung entsprechend weiter als bis zum Halbmesser vom Betrag der Schlitzbreite b/2 reicht. Solch stark reduzierte Widerstände wurden bereits beobachtet [2].

6. Der dreidimensionale Bereich

Die mathematische Lösung der Potentialströmung zu geschlitzten Rohren stösst für den dre dimensionalen Bereich auf grosse Schwierigkeiten. Selbst die numerische Annäherung bedarf bei den extremen geometrischen Verhältnissen (z. B. Rohrumfang/Schlitzbreite etwa 160/1) eines grossen Aufwandes.

Bisher sind mathematische Lösungen in praktisch ausreichender Annäherung nur für zwei Sonderfälle, nämlich für periodische, ringförmig am Zylindermantel angeordnete Fugen (herkömmliche Ton-Drainagerohre [5]) und für periodisch auf einem Zylindermantel angeordnete Lochreihen [3], [5] bekannt. Die bisherigen Kenntnisse der Strömung zu geschlitzten Rohren beziehen sich auf Versuche an Modellen, welche vorwiegend die hydraulischen Vorgänge in Sandkörpern nachbildeten [4], [7].

Hier folgt nun ein Beitrag durch Messungen an einem elektrischen Modell. Zunächst seien die Folgerungen aus der Behandlung des zweid mensionalen Falles noch zusammengefasst. Der Eintrittswiderstand wurde in der Radialebene durch die Parameter 6 (SchlitzBild 15. Eintrittswiderstände bei verschiedenen Schlitzkombinationen; ohne Ausschlämmung (durchgehende Linie) mit elliptischer (stark strichliert) und halbkreisförmiger Ausschlämmung (schwach strichliert)

breite) unc n (Schlitzreihenanzahl) bestimmt. Bei kleinerer Schlitzbreite hatte die Schlitzreihenanzahl grösseren Einfluss auf den Eintrittswiderstand als bei grossen Schlitzbreiten. Dagegen hatte bei kleine: Schlitzreihenanzahl die Schlitzbreite grösseren Einfluss auf den Eintrittswiderstand. Zur Erreichung eines bestimmten Eintrittswiderstandes konnte die Gesamteintrittslänge über den Kreisumfang umso kleiner gehalten werden, je grösser die Schlitzreihenanzahl war. Die Höhe der Schlitzreihenanzahl wird durch die Rohrfestigkeit festgelegt. Sie wird aber auch durch die praktisch noch erforderliche Herabsetzung des Widerstandes, welche mit steigender Schlitzreihenanzahl progressiv abnimmt, bestimmt.

Bei Betrachtung des dreidimensionalen Bereiches treten die Parameter Schlitzlänge / und Schlitzanzahl pro Laufmeter und Schlitzreihe *m* hinzu. Auch hier kann der Gesamteintrittswiderstand zerlegt werden in einen Radialwiderstand

$$V_R = \frac{\ln R}{2 \pi k t}$$

welcher bei voller Durchlässigkeit der Rohrwand auftritt, und einen durch die Schlitzung zusätzlich hervorgerufenen Eintrittswiderstand W_0 .

Um funktionelle Zusammenhänge zwischen Eintrittswiderstand und einigen Parameter-Kombinationen zu erhalten, wurden elektrische Modeile von geschlitzten Rohren (Schlitzleitende Elektroden, Rohrwand – Nichtleiter) gebaut und die auftretenden Widerstände mit Hilfe einer Wheatstoneschen Brücke gemessen, Bild 16.

Der Rohrradius des Modelles betrug durchwegs $R_0 = 2.5$ cm, der Radius der zentrisch dazu liegenden Aussenelektrode, welche aus einer kreiszylinderförmigen Kapferelektrode (Höhe 40 cm) bestand, betrug $R_0 = 10 R_0 = 25$ cm. Auf Grund der Ergebnisse von Kapitel 3 sind bei diesem Aussenradius bei Schlitzreihenanzahlen von $n \ge 3$ praktisch kreisförmige Potentiallinien erreicht. Um Wirbelströme an den feinen Mocellelektroden auszuschalten, wurden diese galvanisch mit einer cünnen Goldschicht überzogen. Als leitendes Medium hat man zwischen Aussen- und Innenelektrode entlüftetes Wasser verwendet, dessen Leitfähigkeit bei jeder Messung bekannt war. Die Beziehungen zwischen hydraulischen und elektrischen Widerständen ergeben sich, wenn für beide die Potentialtheorie zutrifft (Gültigkeit der Lapaœschen Gleichung), was hier vorausgesetzt wurde. Es gilt:

Bild 16. Elektrischer Messtank zur Widerstandsbestimmung an Rohrmodellen

Widerstand:	Whydr.	[s/cm]	entspricht	Ω	elektrisch
Strommenge:	Qhydr.	[cm3/s]	entspricht	÷J	elektrisch
Leitfähigkeit:	Khydr.	[cm/s]	entspricht	σ	elektrisch
Rohrlänge:	t	[cm]			
Abstand yon	Rohrmitte R	fcml			

Mit hydraulischen Symbolen ergeben sich folgende Beziehungen:

$$\Phi = \Phi_R + \Phi_0 ,$$

$$\Phi_R = \frac{Q}{2\pi k t} \ln \frac{R}{R_0} ,$$

$$W_R = \frac{\Phi_R}{Q} = \frac{1}{2\pi k t} \ln \frac{R}{R}$$

Bezogen auf den Widerstand, bei einer Strommenge Q = 1, einer Leitfähigkeit K = 1, einem Rohrradius $R_0 - 1$ und einer Rohrlänge von t = 1 gilt

Bild 17. Eintrittswiderstand gemessen als Funktion der Schlitzanzahl pro lim und Schlitzreihe für verschiedene Schlitzkombinationen

 $W_{1,R} = \frac{\ln R}{2 \pi}$

(in unserem Falle $W_{1,R} = 0,36655$).

Die gemessenen Widerstände wurden alle auf die Einheitswiderstände W, [dimensionslos] bezogen und die Eintrittswiderstände durch Abzug des reinen Radialwiderstandes erhalten. Die Messgenauigkeit lag bei rund \pm 4%. Bild 17 zeigt, wie erwartet, die starke Abhängigkeit des Eintrittswiderstandes von der Schlitzanzahl pro Ifm und Schlitzreihe bei konstanten Schlitzlängen. Bild 18 zeigt die Abnahme des Eintrittswiderstandes bei zunehmender Schlitzlänge, wobei die Schlitzanzahl konstant gehalten wird. Für beide Fälle gilt regressive Abnahme des Widerstandes bei höherem Parameter.

Für die Praxis interessanter ist der Fall, bei dem das Produkt ml = konstant bleibt (das bedeutet bei gleichbleibenden übrigen Parametern konstar te Gesamteintrittsfläche, m = Anzahl Schlitze pro Ifm Rohr und Schlitzreihe, l = Schlitzlänge). Dieser Fall wird in Bild 19 dargestellt. Man erkennt, dass die Aufteilung der Schlitze in der Längsrichtung erst bei kleineren Gesamteintrittsflächen den Widerstand wirksam herabsetzt.

7. Zusammenfassung

Aus den theoretischen Überlegungen und den Messergebnissen folgt:

- der Einfluss der Schlitze auf die Zuströmung ist vorwiegend abhängig von der Schlitzreihenanzahl n und bleibt auf einen relativ engen Bereich (RG) um das Rohr beschränkt (Bild 11). Darüber hinaus erfolgt die Zuströmung zu den Schlitzen wie die Zuströmung zu einem volldurchlässigen Rohr.
- Der Gesamtwiderstand bei Zuströmung zu einem geschlitzten Rohr lässt sich zerlegen in einen Radialwiderstand (bei volldurchlässigem Rohr) und einen zusätzlich durch die Schlitzung hervorgerufenen Eintrittswiderstand. Dieser bleibt in einem Bereich ausserhalb von R_G praktisch konstant. Wird dieser Eintrittswiderstand auf eine Zuströmmenge Q = 1, auf eine Länge t = 1und eine Leitfähigkeit K = 1 bezogen, so kann dieser als hydraulischer Kennwert für einen Rohrtyp gelten.
- Die Gesamteintrittsfläche pro Ifm Rohr ist allein kein Kriterium für die Eintrittsleistung eines Rohres. Bei gleicher Gesamteintrittsfläche pro lim können je nach Schlitzanordnung und Schlitzunterteilung die Eintrittswiderstände verschieden sein.
- Der Einfluss der Schlitzbreite auf den Eintrittswiderstand ist bei den handelsüblichen Rohren gering und kommt erst bei kleinen Gesamteintrittsöffnungen oder bei geringer Schlitz- bzw. Schlitzreihen-Zahl zur Geltung.
- Je grösser die Unterteilung der Gesamteintrittsfläche, umso kleiner der Eintrittswiderstand. Eine Unterteilung in mehrere Schlitzreihen

Bild 19. Eintrittswiderstände gemesser als Funktion der Gesamteintrittsöffnung für verschiedene Schlitzkombinationen

m

12 84

10 100

12 84

16 625

12 84

mm

hat bei handelsüblichen Abmessungen von Längsschlitzen eine grössere Wirkung als eine Unterteilung in der Axialrichtung.

 Der tatsächlich auftretende Eintrittswiderstand wird von den hydraulischen Verhältnissen (Leitfähigkeit, äussere Randbedingung) in Schlitznähe stark beeinflusst (Wirksamkeit von Filtern). Eine geringe Ausschlämmung am Schlitz verringert den Eintrittswiderstand beträchtlich (Bild 15).

Literaturverzeichnis

- [1] Betz, A.; Konforme Abbildung, 1964, Springer-Verlag.
- [2] Boumans, J. H.: Over de instroming en aanstroming bij drainbuizen zonder en met afdekking, «Cultuurtechnisch Tijdschrift» 2, 6, 1963.
- [2] Engelund, F., On the laminar and turbulent flows of groundwater through homogeneous sand, «Transactions of the Danish Academy of Science A.T.S.» 1953, No. 3.
- [4] de Jager, A. W.: Diameter en perforatie van plastic drainbuizen, «De Ingenieur» 72, 1960.
- [5] Kirkham, Don: Petential flow into circumferential openings in drain tubes, «Journal of Applied Physics», 21, 1950.
- [6] Kirkham, Dor. and Schwab, G. O. . The effect of circular perforations on flow into subsurface drain tubes, «Agric. Eng» 1951.
- [7] Wesseling, J. and Homa, F.: Entrance resistance of plastic drain tubes, «Instituut voor Cultuurtechniek en Waterhuishouding», 1965 (privat).

Testfall des Kunstbetriebes

Zu einer Schrift von Prof. Peter Meyer, Zürich 1) DK 7.072.3

«Seit Jahren, vielleicht Jahrzehnten, hat keine Angelegenheit der öffentlichen Kunstpflege in der Schweiz so viel Staub aufgewirbelt wie die Diskussion um das geplante (Alberto-Giacometti-Zentrum) im Kunsthaus Zürich²). In weiten Kreisen wurde verstanden, dass es hier um Prinzipielles ging und nicht um private Vorlieben oder Abneigungen gegenüber einem Künstler oder einer bestimmten Kunstrichtung. Der Schreibende hätte die Diskussion gern Jüngeren überlassen, aber der Aufwand und der Ton der Propaganda zeigten, dass sich jeder seine Karriere verdorben hätte, der es wagen sollte, dem etablierten Avantgardekonformismus zu widersprechen, und so wurde Opposition zur Bürgerpflicht für einen, der es sich leisten kann, eine nonkonformistische Ansicht zu äussern.» (Peter Meyer, S. 5.)

Die Zürcher Giacometti-Diskussion schlug vergangenes Jahr hohe Wellen, bis am 10. November 1965 das Kreditbegehren von 250 000 Fr. (ursprünglich 750 000 Fr.) zugunsten der künftigen «Alberto-Giacometti-Stiftung» vom Zürcher Gemeinderat mit 52:50 Stimmen abgelehnt worden war und damit auch die von Bund und Kanton in je gleicher Höhe zu leistenden Belträge entfielen.

Soweit der Anlass dieser Schrift. Peter Meyer geht dann über zu grundsätzlichen Betrachtungen zur heutigen «Kunstpflege». Freilich geschieht dies nicht sine ira et studio, denn vieles hat der Verfasser damals für seine Überzeugung an persönlichen Anfeindungen, die mit der Sache nichts zu tun hatten, über sich ergehen lassen müssen, nicht ohne seinerseits in freilich besserer Manier zurückzuzahlen. Darunter verstehen wir die geistvoll-kultivierte Art, auf welche P. M. schon immer den Dingen klaren sprachlichen Ausdruck gegeben hat.

Der Verfasser hat den im Herbst 1965 gestorbenen Bildhauer und Maler Alberto Giacometti in dessen künstlerischer Bedeutung nicht angezweifelt. Dies zu bemerken scheint uns notwendig, weil

¹) Testfall des Kunstbetriebes. Von Peter Meyer, orschienen als Heft 27 der «Schriften zur Zeit» im Artemis-Verlag, Zürich, Herbst 1966. 53 Textseiten, 8 Seiten Anmerkungen und ein Artikelverzeichnis. Preis Fr. 3.80.

²) Eine Kollektion von Arbeiten des Schweizer Künstlers Alberto Giacometti, stammend aus dem Besitz des Amerikaners G. Dav.d Thompson in Pittsburgh, war im Jahre 1964 über einen Basler Kunsthändler für drei Millionen Franken ir. die Hände eines Konsortiums von Zürcher Interessenten übergeganger. Besbichtigt war, die Sammlung geschlossen im Kunsthaus Zurich aufzustellen und diesem ein «Giacometti-Zentrum» als Forschungs- und Dokumentationsstelle anzugliedern. Von der Kaufsume hätten der Nationalrat und die Parlamente des Kantons und der Stadt Zürich (ursprünglich) je ein Viertel, also je 750 000 Fr. als Leistung an die zu gründende «Alberto-Giacometti-Stiflung» übernehmen sollen. Das letzte Viertel hatten die Initiarten von privater Seite in Aussicht gestell. Die Sammlung Thompson umfasst 61 Skulpturen bis herab ins Miniaturformat, dazu 20 Zeichnungen und 10 Ölbilder.

Meyers Kampf von solchen, die diesen nur am Rande verfolgten, leicht missverstanden wurde. Es ging nicht um die Qualifikation der Werke Giacomettis, sondern um das Vorgehen der «Stiftung». Für diese durften nach seiner Überzeugung nun einmal keine öffentlichen Gelder beansprucht werden.

Einige grundsätzliche Gedankengänge aus dem «Testfall» seien nachstehend angeführt. Sie können die Lektüre der Schrift allerdings nicht ersetzen.

«Ein aktives Interesse an Kunst kann bei der in einer Demokratie rechtens entscheidenden Mehrheit nicht vorausgesetzt werden. Kunstpflege und bewusste Kennerschaft waren von jeher das Privileg einer Minderheit. Diese war aber früher identisch mit der auf allen Gebieten als massgebend anerkannten Oberschicht, und diese wurde nicht durch ihr Kunstverständnis und ihre Kunstpflege konstituiert, das war vielmehr nur eine der Facetten ihrer sozialen Funktionen neben wichtigeren und brauchte eben deshalb nicht besonders betont zu werden. Die heutige Kunstelite ist aber für ihr Gebiet allein und für kein anderes zuständig wie andere Spezialeliten für sportliche, kommerzielle, wissenschaftliche Spezialgebiete...».

«Weder im alten Athen noch im Mittelalter noch im Florenz der Renaissance wäre irgend jemand auf den Gedanken gekommen, die Kunst als solche du pflegen und irgendeinen Gegenstand primär und ausschliesslich als «Kunstwerk» zu betrachten. Die Bauten und die praktischen wie die repräsentativen Gegenstände des privaten, staatlichen, kirchlichen Bedarfs wurden so schön wie möglich hergestellt, und der Handwerker, der das am besten konnte, als Künstler geschätzt – als Handwerker oder Beamter blieb er aber der Gesellschaft eingeordnet...».

«Durch die Bindung jedes Kunstwerkes an eine bestimmte ausserkünstlerische Aufgabe blieb die Kunst» in enger Verbindung mit allen übrigen Lebensbereichen und fand die Teilnahme auch der nicht speziell ästhetisch interessierten Kreise. Und da sich niemand etwas anderes vorstellen konnte, wurde diese Bindung nicht als Beschränkung der künstlerischen Freiheit empfunden; was nach der einen Seite beengen mochte, war nach der andern Nahrung und Stütze. Der Willkür des Künstlers stand im jeweils gegebenen Rahmen Spielraum genug zur Verfügung, aber niemand, zuletzt der Künstler selbst, hätte seine (Selbstverwirklichung) zum obersten oder gar einzigen Programmpunkt gemacht – diese ergab sich nebenher von selbst...».

Wenn «die Kunst» heute zu einem summum bonum erklärt wird, (das mit Geld überhaupt nicht aufzuwägen ist), so beweist das nicht eine grössere Nähe zum Künstlerischen, sondern die denkbar grösste Beziehungs osigkeit. Die durchaus wahnwitzige Massenproduktion an (Kunstwerken), nach denen kein Mensch ein Bedürfnis und für die niemand Verwendung hat, ist nicht die Frucht einer alle früheren Jahrhunderte übertreffenden Kunstblüte, sondern eine kulturpathologische Erscheinung. So auch die unheimliche Vermehrung der Künstler. Mangels irdischer Verwendbarkeit wird der Arrivierte in den Olymp des Weltruhms abgeschoben, während alle, denen dieser Weltraketenstart nicht gelingt, in eine Bohème absinken, deren Unterstützung aus öffentlichen Mitteln nur charitativ gerechtfertigt werden kann...».

«In der ständisch geschichteten Gesellschaft gehörte wirkliches oder auch nur vorgetäuschtes Kunstinteresse zum Sozialprestige der Oberschicht. Heute hat kein sonst noch so Hochgebildeter oder sozial Hochgestel ter die geringste Hemmung, eine lästige Unterhaltung abzuschneiden mit dem Eingeständris, er verstehe eben nichts von moderner Kunst. Das degradiert so wenig, wie wenn man sagt, man verstehe nichts von der Marsrakete oder einem Computer. Kunstverständnis ist heute nicht mehr ein Bildungsrecuisit, sondern eine eher abseitige Spezialität wie irgendeine andere – daran kann aller Kunst-Snobismus nichts ändern. Noch ist ein gewisser genereller guter Wille bereit, Steuergelder für «Kunst» aufzuwenden, die Kunstkreise hätten also alle Ursache, den «Banausen» dankbar zu sein und diesen guten Willen nicht zu überanstrengen...».

Für uns ist vor allem wichtig, dass Peter Meyer den Fall «Alberto-Giacometti-Zentrum» zum Testfail der freien Kritik in Sachen des kulturell-künstlerischen Lebens genommen hat. Wir sind ihm zu Dank verpflichtet, dass er damit die Gefahr beleuchtet, die dem heutigen Kunstleben selbst von professioneller Seite droht. Dies verdeutlichen etwa folgende Fragen: «Wer konstituiert heute eigentlich das, was man summarisch die «Kunstwelt» nennen kann? Woher rekrutieren sich ihre Mitglieder nach Herkommen, Bildungsstand,