Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 96 (1978)

Heft: 40

Vereinsnachrichten

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die neue Norm SIA 191 «Boden- und Felsanker»: eine Grundlage für die Verständigung

Von Renaud Favre, Lausanne*)

Das Gebiet des Bauwesens wird leider immer verwirrender. Man ist gezwungen festzustellen, dass sich der Ingenieur spezialisiert und so den globalen Überblick über seine Probleme verliert. Die Berechnungen werden immer ausgeklügelter und umfangreicher, so dass sie durch Theoretiker durchgeführt werden müssen, welche die Zeit zur Lösung praktischer Aufgaben nicht mehr finden. Und umgekehrt ist der Praktiker mit organisatorischen und ausführungstechnischen Problemen voll beschäftigt, so dass er den neuesten Entwicklungen in der Theorie nicht folgen kann.

Welche Aufgaben soll nun eine Norm erfüllen in Anbetracht dieser fortschreitenden Spezialisierung in theoretische und praktische Fachkenntnisse? Meiner Meinung nach soll sie dazu dienen, den *polyvalenten* Ingenieur zu fördern und eine Denkweise einzuführen, die nicht nur dem Spezialisten geläufig ist. Um dies zu erreichen, muss eine Norm einfache, eindeutige «Spielregeln» für die verschiedenen Beteiligten schaffen,

^{*)} Deutsche Fassung des an der Tagung der Schweiz. Gesellschaft für Boden- und Felsmechanik und der Fachgruppe für Untertagbau des SIA am 21. 4. 1978 gehaltenen Vortrages.

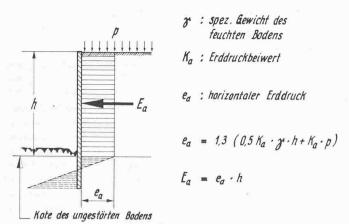


Bild 1. Erddruck für Eigenlast des Bodens und für verteilte Nutzlast (Rechteckverteilung nach Terzaghi/Peck) bei einfach und mehrfach verankerten Wänden

also Spielregeln für den Projektverfasser, die Bauleitung und den Unternehmer. Diese Regeln müssen für alle leicht verständlich sein. Notgedrungen können solche Regeln keine spitzfindigen und aufwendigen Betrachtungsweisen berücksichtigen. Auch können sie Sonderfälle nicht immer erfassen und für neuere Entwicklungen hemmend wirken: ich bin mir all dieser Nachteile bewusst aber zugleich überzeugt, dass sie bei Anwendung des gesunden Menschenverstandes (und des Ausnahmeartikels 03!) ohne weiteres gemeistert werden können. Dass die Norm SIA 191 eine Grundlage für die Verständigung darstellt, soll nachstehend durch einige Beispiele belegt werden:

Erddruckdiagramm

Für den Fall der einfach und mehrfach verankerten Wände im Lockergestein (z.B. Baugrubenwand) sagt die Norm 191 im Artikel 3.21.2 wörtlich (siehe Bild 1): «Für die Berechnung der Gebrauchskraft wird verlangt, dass der Erddruck aus der Eigenlast des Bodens sowie aus einer gleichmässig verteilten Nutzlast p gleichmässig über die Baugrubentiefe h verteilt wird (Rechteckverteilung nach Terzaghi-Peck).»

Selbstverständlich kann in Wirklichkeit die Erddruckverteilung eine andere Form annehmen. Sie kann eher dreieck-, trapezförmig oder ausgerundet sein, doch genügt normalerweise für den Sicherheitsnachweis der Anker die Annahme eines konstanten Erddruckes nach Bild 1.

Hier muss daran erinnert werden, dass sich die Norm 191 für den Nachweis der Anker auf den Bruchzustand stützt, der z.B. auch der Annahme eines aktiven Erddruckes zugrunde liegt. Das Verhalten eines verankerten Bauwerkes im Gebrauchszustand, insbesondere seine Verformungen und Verschiebungen, muss – notfalls – besonders nachgewiesen werden. Hier müssen feinere Betrachtungen einbezogen werden, wie Verformbarkeit des Bauwerkes und des Baugrundes, Ruhedruck, Lastentnahme durch den Aushub usw.

Die sich aus dem Art. 3.21.2 ergebende Resultierende des Erddruckes

$$E_a = h \cdot e_a = 1.3 K_a \cdot h (0.5 \gamma \cdot h + p)$$

ist bis auf den Koeffizienten 1,3 dieselbe, wie jene, die sich aus einer Dreieckverteilung für die Eigenlast des Bodens $\gamma \cdot h$ und

einer Rechteckverteilung für die gleichmässig verteilte Nutzlast *p* ergäbe. Der Koeffizient 1,3 berücksichtigt die Tatsache, dass der Erddruck anders verteilt und vor allem höher sein kann (Ruhedruck), bevor er durch das Auftreten einer Gleitfuge zum aktiven Erddruck abgemindert wird.

Ankerkräfte

Eine andere Spielregel kann der Definition der verschiedenen in einem Anker auftretenden Kräfte V entnommen werden (siehe Art. 1.61). Sie sind im wesentlichen folgende:

 V_0 : auf der Baustelle, zur Zeit t = 0, effektiv aufgebrachte Spannkraft.

Es ist also die Kraft, bei welcher der Ankerkopf nach Ausführung der Spannprobe blockiert wird.

V_P: Prüfkraft bei Ankerversuch und Spannprobe.

Diese Kraft ist die grösste, mit welcher ein Anker auf der Baustelle (provisorisch) gespannt werden kann. Sie und sie allein bezeichnet eindeutig, wozu ein Anker fähig ist dank den im Art. 5.8 gemachten Angaben über die Spannprobe. Deshalb muss diese Kraft der Bezeichnung eines Ankers dienen (siehe Art. 1.5).

Wir müssen hier die Notwendigkeit betonen, die Prüfkraft für die Ankerbezeichnung zu verwenden, auch wenn dies für einige Firmen mit einem Neudruck ihrer Ankerkataloge verbunden sein wird. Es ist dies aber die einzige Möglichkeit, der heutigen Konfusion (was bedeutet die angegebene Ankerkraft?) auszuweichen.

Vu: Tragkraft des Ankers.

Diese rechnerische Kraft dient dem Nachweis der Sicherheit. Sie entspricht dem grössten Wert, den die Ankerkraft auf Grund gewisser Definitionen über Tragfähigkeit und Grenzverformungen annehmen kann (Bruchkraft des Zuggliedes bzw. Grenzkraft des Verankerungskörpers).

V_G: Rechnerische Gebrauchskraft.

Wie der Name angibt, handelt es sich hier um eine rein theoretische Kraft. Sie kommt nur in der Berechnung und üblicherweise nicht auf der Baustelle vor. Sie ergibt sich aus einer Stabilitätsbetrachtung. Beim Spezialfall der verankerten Wand im Lockergestein (siehe Bild 1) ist V_G jene Ankerkraft, die den Erddruck e_a im Gleichgewicht hält.

Diese verschiedenen Kräfte sind durch Ungleichungen miteinander verbunden (siehe Art. 3.41):

V_u	\geq	$S \cdot V_G$	S: Sicherheit des Ankers
V_p	>	$1,15 V_{G}$	temporäre Anker
	\geq	$1,40 V_G$	permanente Anker

 $V_p \leqslant 0.95 \ V_S$ V_S: Nennwert der Streckgrenze im Zugglied

 $V_o \leq 0.75 V_u$ ähnlich wie im Spannbeton

Hat man V_G durch Rechnung ermittelt, so ergibt sich V_u durch Einführung eines angemessenen Sicherheitskoeffizienten $S=1,3\div 2,0$ gemäss Art. 3.41. Je nach Stahlqualität ergibt sich daraus die Prüfkraft V_P . V_o kann zwischen 0 und 0,75 V_u gewählt werden unter Berücksichtigung des Gebrauchszustandes (Deformationen!). Bei einer Ausschreibung müssen die Werte V_P , V_G und V_o und die angenommene Sicherheit angegeben werden.

Pflichten der Beteiligten

Die Norm hat die Aufgabe, eine einheitliche Terminologie und klare Definitionen zu schaffen. Sie regelt insbesondere die Pflichten der an den Ankerarbeiten beteiligten Fachleute. Dies ist gerade bei Spezialarbeiten unerlässlich, damit die Verantwortung klar abgegrenzt ist und jeder seinen Arbeitsbereich genau kennt.

Dies geschieht im wesentlichen in den Artikeln 2.6 für den Projektverfasser, 2.7 für den Unternehmer und 5.62 und 5.92 für die Bauleitung. Diese hat neben den üblichen Qualitätskontrollen den Zeitpunkt zu bestimmen, wo die Spannarbeiten beginnen können, sie hat diese zu überwachen und während der Ausführung der Ankerarbeiten periodisch Kontrollen zur Erfassung von Baugrundverschiebungen durchzuführen. Die Überwachung der Spannarbeiten und der Baugrundverschiebungen muss durch die Bauleitung aufgrund eines vom Projektverfasser aufgestellten Spann- bzw. Kontrollprogrammes (Art. 2.6 und 5.63) erfolgen.

Zu den *Pflichten des Projektverfassers* gehören gemäss den Artikeln:

- 2.61 das Beschaffen der nötigen Unterlagen
- 2.62 die Bestimmung der Ankerklasse und der Sicherheiten
- 2.63 das Erstellen der Berechnungen und daraus die Bestimmung
 - der Ankerkräfte V_G , V_o und V_P
 - der rechnerischen freien Ankerlänge
 - der Ankerneigung und -lage
 - der zulässigen Toleranzen und Verformungen
- 2.64 die Bestimmung der Anzahl Versuchs- und Kontrollanker
- 2.65 das Festlegen des Spannprogrammes
- 2.66 sowie der erforderlichen Kontrollmassnahmen.

Zu den *Pflichten des Unternehmers* gehören gemäss den Artikeln:

- 2.71 das Entwerfen der Detailpläne der Anker inkl. der von ihm zu wählenden Verankerungslänge I_v und der Massnahmen gegen Korrosion
- 2.72 die Haftung für die Ankerkonstruktionsteile und die Qualität der Baustoffe
- 2.73 die Garantie für die Übertragung der Ankerkraft in der Verankerungszone
- 2.74 das Einhalten der vorgeschriebenen freien Ankerlänge
- 2.75 das Abliefern der erwähnten Protokolle.

Zusammenfassung

Mit Hilfe von leicht verständlichen «Spielregeln» soll die neue Norm SIA 191 eine Grundlage für die Verständigung der an Ankerarbeiten beteiligten Fachleute schaffen. Um die Berechnung und Ausführung von Ankern zu vereinheitlichen, insbesondere auch um klarzulegen, was genau für den bezahlten Preis von einer Ankerfirma geleistet werden soll, war es nötig, entsprechende Regeln aufzustellen und als verbindlich zu erklären. Es sollen dadurch nicht neue Schwierigkeiten dieser Bauweise aufgezwungen werden, sondern im Gegenteil eine Vereinfachung des Bauablaufes und ein objektiver Offertenvergleich geschaffen werden. Möge die Zukunft zeigen, dass diese Ziele auch wirklich erreicht wurden!

Adresse des Verfassers: Prof. R. Favre, EPFL, 33 avenue de Cour, 1007 Lausanne.