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Grundlagen zur Beurteilung von Aussenwänden für den sommerlichen
Wärmeschutz
Von R. Sagelsdorff und U. Stähli, EMPA Dübendorf

1. Zusammenfassung

Die Verfasser erläutern zwei verschiedene instationäre
Kennwerte von Wänden. Es zeigt sich, dass solche Kennwerte

¦»allein keine Aussagen über das Raumklima ermöglichen
können. Sie dienen lediglich dem Vergleich verschiedener
Wandtypen.

Die Unterschiede zwischen den Rechenverfahren nach
Eichler und nach Heindl werden aufgezeigt. Die Dämpfung,
die nach dem Eichler-Verfahren errechnet wird, eignet sich
nicht als Kennwert für die Charakterisierung einer Wand. Das
Heindl-Verfahren hingegen liefert Kennwerte, die für den

Variantenvergleich von Wandkonstruktionen empfohlen werden

können. Die Grenzwerte, die für eine bestimmte Bauweise
und Gebäudeorientierung einzuhalten sind, werden im Verlaufe
unserer weiteren Arbeit vorgeschlagen. Es bestätigt sich aber,
dass Aussenwände mit raumseitigen, massiven Schichten das

Raumklima günstig beeinflussen.

2. Einleitung
Es ist heute modern, über die Trägheit, d.h. die Wärme-

speicherfähigkeit der Gebäudehülle zu sprechen und entsprechende

Kennwerte zu fordern oder anzugeben. Leider ist man
sich dabei meistens nicht bewusst, was solche Begriffe
bedeuten, für welche Zustände sie aussagefähig und für welche
Bedingungen sie überhaupt nicht massgebend sind.

Im folgenden sollen deshalb einige Begriffe erläutert und
zwei heute übliche «Berechnungsverfahren» einander
gegenübergestellt und Vergleiche gezogen werden. Die Formeln sind
im Anhang zusammengestellt, der für die mathematisch
interessierten Leser gedacht ist. Für eine eingehendere Darstellung
verweisen wir auf die Literaturquellen [1 ] und [2].

Von einem «trägen» Verhalten der Gebäudehülle
verspricht man sich allgemein:

- grössere Behaglichkeit
Äussere Klimaschwankungen wirken sich im Raum weniger
aus. Das kann sich beispielsweise darin äussern, dass die
Raumlufttemperatur nur wenig schwankt (also kein
«Barakkenklima») oder dass die innere Oberflächentemperatur sich
nur geringfügig ändert (also kein «Backofen»);

- Heizenergieeinsparungen
Die von der Gebäudehülle im Laufe des Tages aufgenommene

Sonnenenergie trägt nachts zur Heizung bei. Da die
Sonnenstrahlung in einer Zeit auftritt, in der es ohnehin
warm ist, kann sie nur dann genutzt werden, wenn sie bis
in die kühlen Abendstunden gespeichert wird.
Heizenergieeinsparungen sind daher vor allem in Übergangszeiten mit
schon erheblichen Strahlungsintensitäten zu erwarten.

- kleinere Dimensionierung der Kühlanlage
Äussere Belastungsspitzen werden vermindert und verzögert
im Gebäudeinnern wirksam.

Wie träge eine Gebäudehülle nun ist, wird mit Hilfe von
instationären Kennwerten angegeben.

3. Instationäre Kennwerte

Betrachten wir die Verhältnisse bei einer Aussenwand.
Wir wollen dabei periodische Vorgänge voraussetzen, also z. B.

Tagesschwankungen, die alle 24 h wiederkehren. Es entstehen

folgende Schwankungen der Temperatur:

t *D
-—'Ao—"T^-A*

Aussenlu-ft Wando berflache Raumlutr
aussen innen

Index •. a 0 o i

Wovon hängen diese Temperaturamplituden nun ab?

Aussentemperaturamplituden Aa

Damit ist nicht nur die eigentliche Lufttemperatur
gemeint, sondern es wird oft auch der Einfluss der
Sonnenstrahlung berücksichtigt. Man spricht dann von
einer-«Sonnenlufttemperatur». Diese wird so bestimmt, dass sich mit dem
normalen Wärmeübergangskoeffizienten a« die richtige
Oberflächentemperatur der Wand ergibt. Die Amplitude einer
solchen fiktiven Aussenlufttemperatur Aa ist damit eine Funktion

von:

- Schwankung der reinen Lufttemperatur (A-9*0)

- Farbe und Material der Wandoberfläche (s)

- Intensität der Sonnenstrahlung (G)

- Orientierung der Wand (y)

Itmentemperaturamplituden Ai
Hier wirken sich neben dem Betrieb des Gebäudes die

Wandeigenschaften und vor allem die Sonnenstrahlung aus,
die durch Fenster direkt in den Raum gelangt. Die Amplitude
der Innentemperatur steht also in Abhängigkeit von:

- Heizung (H) oder Kühlung (K)

- Luftwechselzahl (ri)

- Speicherfähigkeit (S) der Innenbauteile sowie des Mobiliars

- Fensterflächenanteil (/) und Sonnenschutz (SF)

- Wandeigenschaften (W) und Wärmeübergangskoeffizient (a •)

Diese Einflüsse sind natürlich auch für die Oberflächen-
temperaturschwankungen Ao bestimmend.

Das Verhältnis der Aussentemperatur- zur Innentempe-
raturamplitude kann durchaus als aussagekräftiger Kennwert
für das instationäre Verhalten angesehen werden. Soll nun im
speziellen Fäll ein Amplitudenverhältnis

Aa fiktive Aussenlufttemperatur-Amplitude
Ao innere Wandoberflächentemperatur-Amplitude

berechnet werden,
hängig, nämlich:

so wird dieses von vielen Faktoren ab-

v /(Aft0) e, G, y, K, n, S,f, SF, W, ut)

Eine derartige Rechnung für einen gegebenen Raum
bedingt den Einsatz eines Grosscomputers,mit entsprechenden
finanziellen Konsequenzen und kommt für die Praxis kaum in
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Frage. Eine Beschränkung auf spezifische Wandeigenschaften
wird notwendig. Als eigentlicher Wandkennwert kommt nur ein

in Betracht. Aber auch in diesem Fall ist es unumgänglich, die
Randbedingungen zu berücksichtigen. Ein kleines Beispiel soll
die Problematik um die Randbedingungen aufzeigen. Denken
wir uns eine Wand mit dahinter liegender Luft als Teil einer
Regelstrecke. Von aussen kommt Energie auf das System zu.
Dies kann in natura z.B. eine höhere Lufttemperatur oder
direkte Sonnenstrahlung sein. Diese ankommende Energie
führt im System zu einem Anstieg der Temperatur. Das Mass
dieser Temperaturerhöhung ist davon abhängig, wieviel
Energie dem System auf der anderen Seite entzogen wird.

t AS*

W E'

Je grösser dieser Wärmeabfluss, desto kleiner sind die
Temperaturschwankungen und umgekehrt. Es liegt somit auf
der Hand, dass die Temperaturschwankungen von der
Randbedingung, d.h. von der Grösse des Wärmeabflusses,
abhängig sind. Temperaturänderungen sind ja immer mit
Wärmeflussänderungen gekoppelt. So stehen heute zwei Grenzfälle im
Vordergrund, die auch zu zwei verschiedenen
Temperaturamplituden-Verhältnissen führen:

FAL L II

q variabel

Aq -Ji-konst.

A, 0

q konstant

2A*=2A0

4. Berechnung der instationären Kenngrössen

Ausgangspunkt der Rechnung bildet die Differentialgleichung

der instationären Wärmeleitung. Sie ist explizit nur
lösbar, wenn man sich auf periodische Lösungen beschränkt.
Das Resultat gilt also exakt nur für den eingeschwungenen
Zustand, was nach einigen Tagen gleicher Wetterlage der Fall
sein dürfte. Abrupte Wetterumstürze können nicht erfasst
werden. Dies ist allerdings nicht so schlimm, dienen doch
«Kennwerte» lediglich dem Vergleich verschiedener Wandtypen,

für die dieselben Bedingungen gelten.

Heute stehen zwei Verfahren zur Berechnung instationärer
Kenngrössen im Vordergrund. Einmal ist das Eichler-Yer-
fahren zu nennen, das auf eine Theorie von Sklover zurückgeht

[1 ]. Die Arbeit von Sklover war uns leider nicht zugänglich.

Wir mussten uns daher mit den etwas undurchsichtigen
Näherungsformeln Eichlers begnügen. Die Eichler-Rechnung
liefert aber nur die Temperaturamplitudendämpfung vb gemäss
Fall I. Nähere Einzelheiten sind aus dem Anhang ersichtlich.

Mathematisch sauber, mit exakt definierten Randbedingungen

bietet sich das Verfahren nach Heindl als zweite
Möglichkeit an. Heindls Verfahren ist allgemein gehalten. Er
bezieht im Gegensatz zu Eichler auch den Wärmefluss in seine

Rechnung ein und erhält neben Verhältnissen von Temperaturamplituden

auch Beziehungen zwischen Wärmeflussamplituden.

Heindl fasst die Wandkennwerte in einer sogenannten
Wandmatrix zusammen, was bei der Berechnung
mehrschichtiger Wände von Vorteil ist. Genauere Angaben müssen
dem Anhang oder der Originalarbeit Heindls entnommen
werden [2].

Beiden Verfahren eigen ist der relativ grosse
Rechenaufwand, der vor allem bei mehrschichtigem Aufbau
betrieben werden muss. Die notwendigen Matrizenmultiplikationen

sind zeitaufwendig. An der EMPA wurde deshalb ein
kleines Rechenprogramm zur Ermittlung instationärer Kennwerte

entwickelt. Die Möglichkeit zur Benützung des EMPA-
Programms steht allen interessierten Kreisen offen.

_A|D

'Ao

Die beiden Fälle entstehen durch verschiedene
Randbedingungen. Im Fall I macht sich die Wärmebelastung von
aussen nur in einer Änderung des Wärmeflusses g innen
bemerkbar. Die Innentemperatur wird als konstant vorausgesetzt

(also z.B. klimatisierte Räume). Die Amplitude der
Innentemperatur ist somit gleich Null und das Amplitudenverhältnis

aussen—innen geht gegen unendlich. Um
realistische Werte zu erhalten, muss man das Verhältnis, oder wie
man auch sagen kann, die Dämpfung der Amplitude äussere—
innere Oberfläche bilden. Im Fall II führt die äussere Energiezufuhr

lediglich zu einer Temperaturänderung. Die
Wärmeflussamplitude innen ist Null, d.h. es wird mit konstanter
Leistung geheizt oder gekühlt. Die genaue Herleitung der
beiden Temperaturamplituden-Verhältnisse oder Dämpfungen
ist im Anhang aufgeführt.

Die Praxis liegt meistens zwischen diesen beiden
mathematischen Grenzfällen. Der Fall I mit einer konstanten Temperatur

im Raum entspricht, wie erwähnt, am ehesten einem
klimatisierten Gebäude, wo ja der anfallende Wärmefluss von
der Klimaanlage «geschluckt» wird. Auch für Wohnungen mit
massiven Innenbauteilen und schwerem Mobiliar, das den
Wärmefluss auch «aufsaugt», dürfte Fall I noch zutreffen.
Fall II, ohne Änderung des Wärmeflusses, hingegen gilt am
ehesten für ein modernes Verwaltungsgebäude ohne grosse
Möblierung und leichten Trennwänden. Wie man sieht, spielt
somit der Raum hinter der Wand mit eine entscheidende Rolle.

5. Gegenüberstellung

Bei der Beurteilung der beiden Verfahren muss man sich
bewusst sein, welche Randbedingungen der Rechnung
zugrunde liegen. Das Eichler-Verfahren gilt nur für
Randbedingungen gemäss Fall I. Das allgemeinere Verfahren von
Heindl liefert Dämpfungen bei Randbedingungen gemäss
Fall II, obwohl man, wie im Anhang gezeigt, auch mit den
Eichlerschen Randbedingungen rechnen kann. Welches
Verfahren im speziellen Fall relevantere Ergebnisse liefert, hängt
daher weitgehend vom vorhandenen Raum und seiner
Ausstattung ab. Dem Eichler-Verfahren sind jedoch einige
Besonderheiten eigen, die noch der Erläuterung bedürfen.

Eichler setzt eine konstante Raumlufttemperatur voraus.
Offensichtlich sind die Schwankungen der inneren
Oberflächentemperatur somit sehr stark vom Wärmedurchgangswiderstand,

mithin vom fc-Wert der Wand abhängig. Je besser
der fc-Wert, desto kleiner werden di'e möglichen
Temperaturschwankungen auf der inneren Oberfläche. Besonders deutlich
wird dies bei extrem leichten Wandaufbauten, die in der Regel
eine vorzügliche Wärmeisolation besitzen. Die Dämpfungen v«,
die sich * für derartige Leichtbauten errechnen lassen, sind
wenig sinnvoll für eine allgemeine Beurteilung. Des weiteren
errechnet Eichler die Oberflächentemperatur aus dem Wärmefluss

mit Hilfe des Wärmeübergangskoeffizienten ou. Es spielt
deshalb (siehe Bild 1) eine grosse Rolle, wie gross man den
Koeffizienten a- annehmen will.

In Tabelle 1 sind verschiedene Wandkonstruktionen nach
Eichler (v;.- für Fall I) sowie nach Heindl (v i, für Fall II)
durchgerechnet. Die Werte nach Eichler wurden mit seiner Nähe-
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50

eichte Wand

chwere Wand

OC

Beton

Mtnera
wolle ,<Q
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,iO
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Tabelle 1. Beispiele

Wandkonstruktion
Masse

(kg/m*)
Amplitudendämpfung k- Wert

•"e 1» (kcal/mZhK) (W/mEK)

AUSSEN

/AWAWirW mrm PS-Hni-t«-.1-hmir*n
INNEN

3 22,7 1,1 0,28 0,33

0,1cm Stahl
18 18,7 1,3 0,34 0,40..WWVWXW 6cm PS-Hortschaum

0,1cm Stahl

2cm Holzwolleplatte
W%fflffi$+f!t 8cm PS-Hartschoum 18 23,1 3,7 0,30 0,35

2cm Holzwolleplatte
1 cm Putz

78 58,1 19,0 0,32 0,37WRTOW 10r:m Hnl7wolleDlatte
2cm Gibs

146 24,1 7,2 0,62 0,72-ti.-v :"* V. ' 20cm Gasbeton

270 60,6 5,6 0,42 0,4920cm Backstein

270 68,7 44,0 0,42 0,49
fWWqtfMM 5cm ps-Hartschaum

l ' '
| T 20cm Bockstein

300 53,5 20,4 0,69 0,80" 30cm Leccabeton

362 60,7 4,8 0,41 0,47[T 20cm Kalksondstein

362 72,0 59,0 0,41 0,47?|^lWf,lfMtV 6cm PS-Harlschoum
b.iltiiilli;!; 20cm Kalksandstein

^Jt$pr'X 20cm Beton 490 7,5 5,3 2,6 3,0

492 75,5 5,4 0,42 0,49¦7 20cm Beton

„¦.....„......,,.
492 93P 77,0 0,42 0,49¦JW--;.-fe"; 20cm Beton

Wmin«*a>iiniw 5cm Be,on
615 157,6 103,0 0,41 0,48.- • 6cm PS-Hartschaum

¦¦:,*..¦'.'-*-¦*'- 20cm Beton

Bild 1. Dämpfung vg in Funktion von aj; Querschnitt links: leichte
Wand; Querschnitt rechts", schwere Wand

rungsmethode, die ja viel angewendet wird, berechnet. Um die
beiden Werte miteinander vergleichen zu können, wurden die
Heindl-Werte in den Beispielen als Dämpfung Aa/Ao unter
Berücksichtigung.von a.a bestimmt. Wie erwartet, liegen die
Dämpfungen vj*** nach Eichler bedeutend über den
Amplitudenverhältnissen v h nach Heindl. Gewaltige Differenzen stellen sich
bei den extrem leichten, gut isolierenden Konstruktionen ein.
Versuche, die gegenwärtig im Rahmen einer Forschungsarbeit
im Auftrag der Stiftung für wissenschaftliche und systematische

Forschung der Zementindustrie an der EMPA
durchgeführt werden, zeigen aber, dass derart leichte Bauelemente
keine eigentliche Dämpfung bringen.

Die Rechenbeispiele demonstrieren sehr deutlich die
Abhängigkeit der Dämpfung von der Wandmasse. Wie Bild 2

zeigt, existiert praktisch ein linearer Zusammenhang bei
aussenliegender Wärmedämmung und bei annähernd gleichem
Ar-Wert.

Tabelle 2. Rechenwerte der Materialien in Tabelle 1

Für diesen Fall gilt:

-0,16G
k ~ 0,4 kcal/m2 h K
Wärmedämmung aussen

wobei G die Masse der Wand in kg/m2 bezeichnet. Um den
Einfluss der Schichtanordnung zu verdeutlichen, wurden einige
Wände auch mit innenliegender Dämmschicht durchgerechnet.
Die Dämpfung vh nach Heindl sinkt nun auf einen unbedeutenden

Wert, während die Eichler-Werte nur in bescheidenem
Umfang abnehmen. Hier ist die grosse Abhängigkeit der
Eichler-Rechnung vom Ar-Wert spürbar.

Immerhin, es muss beeindrucken, wie wichtig die Anordnung

der Dämmschicht auf der Aussenseite für ein behagliches
Wohnklima im Sommer ist. Nur die «isolierte Masse» bringt

spez.
Material Rohdichte Wärmeleitfähigkeit Wärmeka pazität c

kg/m3 W/m K kcal/hm K k J/kg K kcal/kg k

PS-Hartschaum 30 0,035 0,03 1,47 0,35
Stahl 7850 58 50 0,42 0,1

Holzwolleplatte 400 0,1 0,09 2,10 0,5
Putz 1800 1,05 0,9 1,05 0,25
Gips 900 0,23 0,2 0,84 0,2
Gasbeton 550 0,19 0,16 1,05 0,25
Backstein 1350 0,52 0,45 0,92 0,22
Kalksandstein 1800 1,05 0,9 0,92 0,22
Lecabeton 1000 0,29 0,25 1,05 0,25
Beton 2450 1,63 1.4 1,05 0,25

100

90

80

_70
x

— 60

|50
CL

£40
:oo

30

20

10

„it# 5

.riff
Ur1

,1#^
—^mrrfßm
#^¦rf^ yp

rltfUf IffF ¦ Aussenis
* Inneniso1

* homogen

11J^ tion
i Wändemx~

A • m •
0 300 300 400

Flachenmosse (kg/m*)

3ild 2. Dämpfung vH in Funktion der Wandmasse
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einen Zuwachs an Dämpfung. Diese Tatsache geht auch aus
Bild 2 hervor, vh-Werte für Bauteile, die sowohl isolieren wie
auch Masse besitzen, liegen unter dem schraffierten Bereich.
Die «isolierte Masse» beträgt bei Backsteinmauerwerken und
Gasbetonwänden nur einen Teil der Gesamtmasse. Anders die
aussen isolierten Betonwände; hier steht die ganze Masse
hinter der Wärmedämmschicht. Die Dämpfung kommt damit
in den schraffierten Bereich zu liegen. Wird vor die Isolation
noch eine massive Sichtbetonfassade gehängt, so bringt diese
unisolierte Masse keinen wesentlichen Gewinn an Dämpfung
mehr.

6. Schlussfolgerungen

Das Raumklima hängt nur zu einem Teil von der Aussen-
wandkonstruktion ab. Andere Einflüsse, wie Sonnenschutz und
Fensterfläche beeinflussen das Innenklima mindestens ebensosehr.

Instationäre Kennwerte können aber nicht zum Ziele
haben, das Raumklima vorauszusagen, sondern sie dienen
müdem Vergleich verschiedener Wandkonstruktionen.

Welches Verfahren angewendet werden soll, hängt
grundsätzlich von den Randbedingungen ab, die im konkreten Fall
vorherrschen. Wir möchten aber davon abraten, mit der
Näherungsformel von Eichler zu rechnen. Zum einen ist sie
ziemlich ungenau und täuscht zu grosse Dämpfungen vor. Zum
anderen wird das Resultat stark beeinflussbar durch den
Übergangskoeffizienten au Die hohen Dämpfungswerte nach
Eichler (vb Aa\Aa für Fall I) ergeben sich nicht aufgrund
einer Wandeigenschaft, sondern sind eine Folge der «günstigen»
Randbedingungen. Solche Kennwerte sind aber für eine
Beurteilung kaum geeignet.

Will man das instationäre Verbalten einer Wand durch
einen einzigen Kennwert charakterisieren, so steht dafür das
AmpHtudenverhältnis nach Heindl (v.**** Asa/Ao ~ Aa/Ao für
Fall II) im Vordergrund. Es gibt das eigentliche
Wärmespeichervermögen der Wand besser wieder und lässt sich
mathematisch auch sauberer berechnen.'

Für den Planenden ergibt sich nun das Problem, wie gross
denn die Dämpfung sein soll, um ein angenehmes Sommerklima

zu gewährleisten. Die heute in der Literatur angegebenen
Grenzwerte basieren meist auf der Randbedingung gemäss
Fall I, beziehen sich also auf v#. Zulässige bzw. empfohlene
Werte für vh nach Heindl müssen erst noch festgelegt werden.
Beim jetzigen Stand unserer Kenntnisse ist es aber verfrüht,
irgendwelche Dämpfungswerte zu empfehlen. Dies wird Ziel
unserer künftigen Arbeit sein. Wir schlagen dazu vor, dass für
eine bestimmte Gebäudeart (Bauweise) und Orientierung der
Wand, die erforderliche Dämpfung in Funktion der Fenster-
flache und des Sonnenschutzes angegeben wird:

v„f=f(SF,f)

7. Anhang

Die Rechnung wird hier nur soweit wiedergegeben, wie es

bedarf um den Unterschied der beiden Rechenverfahren
aufzuzeigen. Einfachheitshalber wird auch nur eine einschichtige
Wand betrachtet. Genauere Angaben müssen aus den Literaturquellen

[1] und [2] entnommen werden, wo die einzelnen
Verfahren sehr viel besser dargestellt sind.

7.1 Heindl-Methode

Den Ausgangspunkt der Heindl-Rechnung bildet die
Differentialgleichung der instationären Wärmeleitung. Diese
Differentialgleichung ist explizit lösbar, wenn man sich auf zeitlich

periodische Lösungen beschränkt. Das Resultat präsentiert
sich sehr einfach, falls nur Schwankungsgrössen (Amplituden)
von Interesse sind:

(1) Ad Ao [cosh w] + Ao' [1/G sinh w]

Dabei bedeuten:

A — Temperaturamplitude
A' Wärmeflussamplitude
D Index für äussere Wandoberfläche
0 Index für innere Wandoberfläche
G w-X/d
X Wärmeleitfähigkeit
d Schichtdicke
w komplexer Faktor (von Materialeigenschaften abhängig)

Diese Gleichung stellt eine Beziehung zwischen der
Temperatur- und der Wärmestromamplitude beidseits der Wand
dar. Eine Temperaturschwankung auf der Aussenseite führt
innen sowohl zu einer Temperatur- wie auch zu einer
Wärmeflussänderung (siehe 3. Abschnitt). Wie gross diese Schwankungen

innen nun sind, wird durch die Faktoren in den
rechteckigen Klammern bestimmt. Für eine einschichtige Wand
können diese Faktoren folgendermassen bestimmt werden:

(2) w (1 -

Realteil:

0 p ¦ c ¦ d2

21-

• p • c • d1

2/-X
und H x

d_
X

wobei: p Rohdichte
c spezifische Wärmekapazität
2 / Periodendauer (24 h)

Für die Rechnung mit einem Taschenrechner, der die
hyperbolischen Funktionen nicht enthält, verwendet man folgende
Beziehung:

(3) cosh x

(4) sinh x

1/2 (ex

1/2 (e*

+ e-*)

— e~x)

Jetzt können wir zur Gleichung (1) zurückkehren. Wir suchen
ja das Verhältnis der Aussen- zur Innentemperaturamplitude.
Dies ist aber nur möglich, falls wir Randbedingungen
einführen. Die Randbedingung gemäss Fall JH besagt, dass der
Wärmefluss an der inneren Oberfläche konstant ist, die
Wärmeflussamplitude mithin verschwindet. Damit geht Gleichung (1)
für die Randbedingung II über in

(5) Ad Ao [cosh w] + O

Das Temperaturamplituden-Verhältnis wird somit:

Ad
(6)

Ao
cosh w

Diese Dämpfung ist komplexer Natur; sie beinhaltet neben
dem Betrag der Dämpfung auch noch Informationen über die
zeitliche Verzögerung. Wenn wir uns hier nur für die Grösse
der Dämpfung interessieren, können wir schreiben:

(7)
Ad
Ao

cosh w

Der absolute Betrag einer komplexen Zahl ist wieder eine
reelle Zahl. Gleichung (7) wird reell zu:

(8)
Ad
Ao

Für grosse x (reelle Zahl), z.B. x

cosh1 x • cos2 x + sinh2 x • sin2 x

gilt näherungsweise
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(9) cosh x sinh x i

so dass Gleichung (8) durch die einfache Formel

(10)
Ad
Ao

1

ersetzt werden kann. Das ist nun die Temperaturamplitudendämpfung

nach Heindl für eine einschichtige Wand unter
Randbedingung IL

7.2 Eichler-Methode

Eichler gibt in seinem Buch (S. 76) nur die Formel für die

Temperaturamplitudendämpfung an:

(11) 0,9 • ex
(S + oc;) (S + a»)

2 S aa

wobei S ]/2 H entspricht.

Es wird weder die Randbedingung erwähnt, die zu diesem
Ergebnis führt, noch wird der Rechengang dargelegt. Man
erfährt bloss, dass diese Formel eine starke Vereinfachung
darstelle und einige Eigenheiten habe.

Im Bericht haben wir erklärt, die Dämpfung v# nach
Eichler gelte nur für die Randbedingung einer konstanten
Innentemperatur (Fall I). Diese Behauptung wollen wir nun
beweisen. Wir führen die Rechnung mit der Heindl-Methode
auch für den Fall I durch. Gehen wir wieder zu Gleichung (1)
zurück. In diesem Fall einer konstanten Innentemperatur
werden die Innentemperaturschwankungen natürKch zu Null
und von Gleichung (1) verbleibt noch:

(12) Ad ¦*¦**¦* Ao'
1

¦sinh w

Eine Temperaturamplitudendämpfung lässt sich jetzt nicht
mehr errechnen, wohl aber das Verhältnis der Temperaturamplitude

aussen zur Wärmestromamplitude innen:

(13)
1

Ao'
•sinh w

Dieses Verhältnis zeigt, wie sich der Wärmestrom (Leistung
der Klimaanlage) ändert, wenn an der Aussenseite die Temperatur

erhöht wird.
Ein kleiner Kunstgriff ermöglicht es aber auch, die Tempe-

raturamplitudendämpfung aus (12) zu ermitteln. Man benützt
dazu die Definition des Wärmeübergangskoeffizienten ou, die
besagt:

Dies ist das Ergebnis der Heindl-Rechnung für den Fall einer
konstanten Innentemperatur (mit Einbezug der
Wärmeübergangskoeffizienten). Wie im 1. Beispiel lässt .sich die

Rechnung vereinfachen, wenn man sich nur für den Betrag
dieser komplexen Grösse interessiert.

Für grosse x gilt nämlich näherungsweise:

(17) cosh* m — l*

(18) ^sinh.^-i-**
(19) H sinh a: ~ 1/2iy- — ex

Einsetzen in (16) und Bildung des Absolutbetrages liefert nach

einiger Umformung die Dämpfung:

(20) VB
Aa

~Äo~

at au

flH+ ~^
I2H

Dabei wurde allerdings ein negatives Glied vernachlässigt.
Eichler verwendet anstelle von H den sogenannten
Wärmespeicherkennwert S, der aber mit ]/2 ¦ H identisch ist.
Gleichung (20) geht damit über in:

(21) vE — e*
at ai S
— + 1 + —+ —
o a„ aa

Der Ausdruck auf der rechten Seite muss nun noch umgeformt
werden, soll man ihn mit der Eichler-Formel vergleichen
können. Wir ziehen den Faktor aa ¦ S vor die Klammer und
erhalten:

(22) vB e* [aa at + aa S + at S + S1]
2aa S

Die Summe in der Klammer ist identisch mit dem Produkt

1

(23) v, ex-
2 aa S

[(S + oc,) (S + aa)]

was durch Nachrechnen leicht verifiziert werden kann.

Bei der Bildung des Betrags von (16) haben wir in (20) ein
Glied weggelassen. Zur Kompensation stellen wir einen

Korrekturfaktor 0,9 in Rechnung, womit die Dämpfung
schliesslich zu

(14) Ao ¦Ao' (24) vB 0,9 e>
1

2aaS
[(S + a,) (S + aa)]

Einsetzen von (14) in (13) liefert:

(15)
Ap
Ao

1

¦sinh w

Wenn wir das Resultat dieser Rechnung mit der Heindl-
Methode mit dem Ergebnis der Eichler-Rechnung vergleichen
wollen, müssen wir aber auch den Einfluss der Übergangs-
koeffizienlen a„ und a* in Rechnung stellen. Die
Berücksichtigung mittels Matrizenrechnung ergibt:

(16)
Ao

at a„

1 1 1

— sinh w-f—cosh w -f —cosh w -f
G at a„

sinh iv

wird, also genau der Näherungsformel von Eichler (11)
entspricht. Damit ist nachgewiesen, dass Eichler bei seiner Rechnung

Randbedingungen gemäss Fall I vorausgesetzt hat.
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