Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 94 (1976)

Heft: 41

Artikel: Tagesregen von vierzehn Stationen der Schweiz

Autor: Widmoser, P.

DOI: https://doi.org/10.5169/seals-73180

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

1. Daten

Analysen der Häufigkeit, Intensität und Dauer von Regen- oder regenfreien Tagen sind für die Wasserwirtschaft, aber auch für Land- und Forstwirtschaft, das Bauwesen und für den Tourismus von Interesse.

Hier wird eine statistische Untersuchung für Tagesregen von 14 synoptischen bzw. klimatologischen Stationen der Schweiz vorgelegt. Die Daten wurden auf Magnetband von PD Dr. Ginsburg, ETH Zürich, in dankenswerter Weise zur Verfügung gestellt. Die Stationsnamen und die Anzahl der untersuchten Beobachtungsjahre findet man in Tabelle 1. Berücksichtigt wurden für jedes Jahr nur das Sommerhalbjahr, d. h. die Monate April bis September (183 Tage).

Die Ablesung der Werte erfolgte meist um 07.00 h, wodurch durchgehende Regenereignisse auch getrennt werden können. Tage mit Niederschlägen von weniger als 0,2 mm wurden als regenfrei betrachtet. Das Datenmaterial wurde auf grobe Fehler und auf Homogenität hin untersucht.

2. Häufigkeitsverteilung der extremen Tagesregen

Die Höchstwerte (HR) einer Beobachtungsperiode (P) jeden Jahres wurden als unabhängige Zufallsvariable aufgefasst und auf ihre Häufigkeitsverteilung untersucht. Die beobachtete empirische Verteilung wurde mit einer Reihe von theoretischen Verteilungen (Normalverteilung, Gamma-, Weibull-, Gumbel- und Log-Normalverteilung) verglichen.

Bezüglich Regendauer unterscheidet die Untersuchung zwischen zusammenhängenden Regenperioden (Auftreten eines Regens an n aufeinanderfolgenden Tagen, $n=1, 2, \ldots$) und Tagesperioden (n aufeinanderfolgende Tage werden zusammengefasst, unabhängig davon, ob sie auch regenfreie Tage enthalten, n=1, 2, 3, 5, 7, 10, 14, 25, 30, 63 und 100). Die Unterscheidung wird durch Bild 1 verdeutlicht.

Die Tagessummen \overline{R} wurden in beiden Fällen gebildet aus

$$\overline{R}(n) = \frac{1}{n} \sum_{i=1}^{n} R_i$$

(mittlere Regenintensität über n Tage).

Aus allen innerhalb eines Sommerhalbjahres aufgetretenen $\overline{R}(n)$ -Werten wurden für jedes Jahr die Höchstwerte HR(n) und deren empirische Häufigkeitsverteilung ermittelt. Chi²- und Kolmogorofftests (Signifikanzzahl $\alpha=10\%$), [4], zeigen beim Vergleich der empirischen Verteilungen mit theoretischen Häufigkeiten das Ergebnis von Tabelle 2.

Der Chi²-Test unterschied in weitaus den meisten Fällen schärfer als der Kolmogorofftest. Gumbel- und Log-Normalverteilung stellen für gut 70 bis 90% eine annehmbare Verteilungsfunktion dar. Die Normalverteilung bietet sich vor allem für längere Tagesperioden (etwa n>5) an. Die Tabellen 3 und 4 zeigen Parameter der Normal-, Gumbel- und Log-Normalverteilung für Bern.

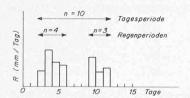


Bild 1. Definition der Begriffe Tagesperiode und Regenperiode

Beispiele:

I. Gesucht ist für Bern (Sommerhalbjahr, April–September) die Regensumme über 7 aufeinanderfolgende Regentage, welche durchschnittlich alle 10 Jahre überschritten wird. Die Gumbelparameter nach Tabelle 3 sind A=8,39 und B=2,65. Damit lässt sich

(1)
$$HR(n, z) = n \cdot [A + K(z) \cdot B]$$
 berechnen,

mit

HR(n,z) Überschreitungshäufigkeit über n Tage und der Jährigkeit z

K(z) Faktor für Gumbelverteilung als Funktion der Jährigkeit z, $K(z) = -\ln(-\ln(1-1/z)$, siehe auch Tabelle 4a.

$$HR(7, 10) = 7 \cdot (8,39 + 2,250 \cdot 2,65) = 100,8 \text{ mm}$$

Tabelle 1. Stationen und untersuchte Beobachtungsjahre

Station	ausgewertete Beobachtungs- jahre	Station	ausgewertete Beobachtungs jahre	
Basel	64	Montreux-Clarens	34	
La Chaux-de-Fonds	64	Sion	55	
Zürich, MZA	64	Davos	64	
Bern	64	Bever	64	
Neuchâtel	64	Lugano	64	
Genève-Cointrin	64	Altdorf	64	
Lausanne	34	Ragaz Bad	26	

Tabelle 2. Prozentanteil der zutreffenden Tests bei 14 Stationen für Tages- und Regenperioden verschiedener Dauer ($\alpha=10\%$). In Klammern Anzahl der zutreffenden Tests

	NV	Ga	W	Gu	Log NV
Regenperioden	r.		soon take	ar sudana	4 4
Chi ² -Test	78,6 (99)	66,7 (76)	58,0 (65)	80,2 (101)	81,7 (103)
Kolmogoroff	87,9 (123)	97,8 (134)	96,4 (132)	97,1 (135)	96,3 (129)
Tagesperioden					
Chi ² -Test	79,2 (122)	54,8 (74)	57,8 (78)	70,8 (109)	91,6 (141)
Kolmogoroff	86,4 (133)	97,0 (131)	97,8 (132)	92,2 (142)	98,1 (151)
Ga = G $W = W$		lung lung lung (Extre	malverteilun	g Typ I)	

Tabelle 3. Regenperioden Bern: Parameter der Normal-, Gumbel- und Log-Normalverteilung für Bern

Tage	Normalverteilung		Gumbel	lverteilung	Log-Normalverteilung		
	Α ·	В	A	В	A	В	
1	41,99	10,44	37,16	8,57	3,707	0,248	
2	26,31	5,88	23,58	4,86	3,244	0,231	
3	19,99	4,47	17,93	3,67	2,970	0,227	
4	16,18	4,04	14,31	3,33	2,752	0,258	
5	13,48	3,84	11,69	3,18	2,555	0,331	
6	11,64	3,51	10,01	2,89	2,406	0,326	
7	9,89	3,23	8,39	2,65	2,234	0,354	
8	9,12	3,11	7,67	2,57	2,147	0,376	
9	8,10	2,76	6,80	2,32	2,023	0,403	
10	7,41	2,36	6,29	2,01	2,376	0,345	

Tabelle 4. Tagesperioden Bern: Parameter der Normal-, Gumbel- und Log-Normalverteilung für Bern

Tage	Normal	Normalverteilung		Gumbelverteilung		rmalverteilung
	A	В	A	В	A	В
1	41,99	10,44	37,16	8,57	3,707	0,248
2	26,41	5,93	23,64	4,91	3,247	0,233
3	20,35	4,30	18,35	3,54	2,990	0,216
5	15,00	3,32	13,46	2,73	2,683	0,224
7	12,11	2,55	10,93	2,09	2,472	0,212
10	10,12	2,12	9,13	1,74	2,292	0,211
14	8,72	1,79	7,88	1,50	2,144	0,213
25	6,74	1,31	6,13	1,09	1,889	0,200
30	6,31	1,26	5,72	1,05	1,822	0,206
63	4,90	1,03	4,42	0,86	1,567	0,216
100	4,20	0,91	3,77	0,77	1,410	0,230
Tabel	le 4a.		1			

z 2 5 10 15 20 25 30 35 40 50 K 0,367 1,500 2,250 2,674 2,970 3,199 3,384 3,541 3,676 3,902

2. Gesucht ist für Bern (Sommerhalbjahr) die Regensumme über 7 aufeinanderfolgende Tage (darunter evtl. auch Trockentage), welche durchschnittlich alle 10 Jahre (z=10) überschritten wird. Die Log-Normalparameter nach Tabelle 4 sind A=4,775 und B=0,212.

Die standardisierte Zufallsvariable U(F) der Normalverteilung mit der Überschreitungshäufigkeit F=1-1/z=0,9 ergibt sich zu u(0,9)=1,282 (siehe Tabelle für Normalverteilung). Daraus folgt:

(2)
$$HR(n, z) = n \cdot \exp [A + U(F) \cdot B]$$

= $7 \cdot \exp (4,775 + 1,282 \cdot 0,212)$
= $108,9 \text{ mm}$

3. Betrachtung der Regen- und Trockentage als Zeitreihe

Man betrachte die Folge von Regen- und Trockentagen in der beobachteten, zeitlichen Abfolge. Die täglichen Regenhöhen (auch die Regenhöhe Null, wenn $R \le 0.2$ mm/Tag, wird miteinbezogen) erscheinen als mehr oder weniger voneinander unabhängige Zufallsgrössen.

Ein Mass für eine allfällige Erhaltungsneigung bestimmter Regenintensitäten liefert die Autokorrelation der Zeitreihe [5]. Autokorrelationskoeffizienten (ρ_A) für Zeitverschiebungen $dT=1,\,2,\,\ldots$ 18 Tage wurden für vier Stationen (Basel, La Chaux-de-Fonds, Zürich, Bern) gebildet. Als typisches Beispiel ist in Tabelle 5 das Korrelogramm (Autokorrelationskoeffizient als Funktion der Zeitverschiebung) angeführt.

Tabelle 5. Korrelogramm der Tagesregen von Zürich

dT Tage	ΡΛ	dT Tage	РΛ	
1	0,1789	10	-0,0071	
2	0,0192	11	0,0079	
3	-0,0028	12	0,0072	
4	-0,0027	13	0,0058	
5	-0,0047	14	0,0036	
6	-0,0001	15	0,0063	
7	-0,0054	16	0,0057	
8	0,0076	17	0,0081	
9	0,0043	18	0,0072	

Der Vertrauensbereich für die Hypothese $\rho_A=0$ liegt nach Anderson [1] für $\alpha=5\%$ und $N=64\cdot183=11712$ zwischen +0.0181 und -0.0179. Danach ergibt sich für Zürich eine Erhaltungsneigung von Tagesregen über max. 2 Tage. Da diese für 1 Tag wesentlich ausgeprägter ist, scheint der Versuch berechtigt, die Folge von Tagesregen bezüglich ihrer Häufigkeiten durch ein lineares Markoff-Modell 1. Ordnung zu beschreiben.

Für die anderen Stationen zeigte sich ähnliches Verhalten, wie es nach Literaturangaben für Stationen ausserhalb der Schweiz auch zu erwarten war.

4. Folgen von Regen- und/oder Trockentagen

In Abschnitt 3 wurde gezeigt, dass bei Beachtung der zeitlichen Reihenfolge $R_{t-i}, \ldots R_{t-1}, R_t$ eine statistische Abhängigkeit jeweils zwischen zwei unmittelbar aufeinanderfolgenden Ereignissen R_{t-1}, R_t besteht. Hingegen scheint diese zumindest in erster Näherung vernachlässigbar für Ereignisse, die weiter auseinanderliegen $(R_{t-k}, R_t \text{ mit } K \ge 2)$.

Zunächst wurde, ohne die Regenintensitäten genauer zu unterscheiden, nur zwischen den Ereignissen Trockentag (R_0 mit $R \leq 0.2$ mm) und Regentag (R_1) unterschieden.

Es werden für die bedingten Wahrscheinlichkeiten $p(R_t \mid R_{t-1})$ (d. h. Wahrscheinlichkeit des Eintreffens von R_t , wenn am Vortag R_{t-1} gegeben ist), die abgekürzten Bezeichnungen

p(0/0) Wahrscheinlichkeit für: Trockentag folgt Trockentag

p(0/1) Wahrscheinlichkeit für:
Trockentag folgt Regentag eingeführt.

Bei Gültigkeit des Markoff-Modelles, d. h. wenn zur wahrscheinlichkeitsmässigen Beschreibung aller R_t (Zeitabschnitte $t=1,2,\ldots$) die Kenntnis von $p(R_t \mid R_{t-1})$ allein ausreicht, dann lassen sich die Wahrscheinlichkeiten von beliebigen Folgen von Trocken- und Regentagen einfach berechnen.

Für eine Folge z. B. von

- (4) k Trockentagen gilt $p_0^k = [1 p(0/0)] \cdot p(0/0)^{(k-1)}$
- (5) k Regentagen gilt $p_1^k = p(0/1) \cdot [1 p(0/1)^{(k-1)}]$ d.h. die geometrische Verteilung (siehe z. B. [3]).

Die absoluten und bedingten Wahrscheinlichkeiten für 20 Stationen sind in Tabelle 6 zusammengestellt. Die absoluten Wahrscheinlichkeiten zeigen, dass für die Saison April–September die Anzahl der Regentage annähernd jener der Trockentage ist (p 50%). Trockentage sind deutlich häufiger in Genf und Sion, Regentage am Säntis. Die bedingte Wahrscheinlichkeit p(0/0) für das Eintreffen eines Trockentages bei vorangegangenem Trockentag ist in allen Fällen höher als die absolute Wahrscheinlichkeit p_0 für einen Trockentag. Durch diese innere Abhängigkeit (Erhaltungsneigung) kommt statistisch die physikalische Tatsache zum Ausdruck, dass bestimmte Wetterlagen häufig über mehrere Tage hin beständig sind.

Für die Stationen Bern und Davos werden in Bild 2 die berechneten Werte den beobachteten gegenübergestellt. Die Übereinstimmung ist überraschend gút.

Tagesfolgen bei Unterteilung der Regen in vier Intensitäten: Die Regenintensitäten wurden eingeteilt in die Klassen

0	kein Regen			R0	<	0,2 mm/Tag
1	Schwachregen	0,2	\leq	R1	<	0,5 mm/Tag
2	Mittelregen	0,5	\leq	R2	<	4,0 mm/Tag
3	Starkregen	4,0	<	R3		mm/Tag

Tabelle 7a zeigt ein Beispiel der für die Station Davos beobachteten Übergangsmatrizen für die Ordnungen 1 bis 5, d. h. die bedingten Wahrscheinlichkeiten wurden für eine Zeitverschiebung von 1, 2, ... 5 Tagen ermittelt. Bei Gültigkeit des Markoff-Modells lassen sich die Übergangsmatrizen höherer Ordnung aus jener der 1. Ordnung berechnen nach

$$M^{(k)} = (M^{(1)})^k$$

Dies ist für alle Stationen geprüft worden.

Tabelle 7b zeigt die berechneten Matrizen der Ordnung 1 bis 5 für Davos. Die Übereinstimmung ist für alle Stationen befriedigend, für einzelne sehr gut.

5. Extreme Trocken- und Regenperioden

In diesem Abschnitt wird nicht die Regenintensität, sondern die Dauer (*D* in Tagen) von aufeinanderfolgenden Trocken- oder Regentagen als Zufallsvariable behandelt.

Wieder interessieren die Extremwerte mit eher durchschnittlicher Wiederkehrperiode (Jährlichkeit) von mehr als einem Jahr. Allein aus methodischem Interesse wurden die Wahrscheinlichkeiten ihres Auftretens für Trocken- und Regenperioden nach zwei verschiedenen Wegen geschätzt.

Bei den Trockenperioden gilt als Zufallsvariable die Dauer, welche eine gewählte Mindestdauer (rd. 0,5- bis 1,0jähriges Ereignis) überschreitet. Sie wird mit der Exponentialverteilung verglichen.

Bei den Regenperioden hingegen werden, wie in den vorangegangenen Abschnitten, die jährlichen Höchstwerte als Zufallsvariable eingeführt. Deren beobachtete Häufigkeitsverteilung wird mit der Gumbel- und Log-Normalverteilung verglichen.

Zwischen Exponential- und Gumbelverteilung bestehen nach [2] und [6] bestimmte Zusammenhänge.

5.1 Trockenperioden

Tabelle 8 gibt die Parameter A der Exponentialverteilung für 14 Regenstationen nebst Ortskonstanten (f, d) und den Höchstwert HD der Beobachtungsperiode wieder.

Tabelle 6. Folge von Trocken-/Regentagen. Absolute und bedingte Wahrscheinlichkeiten

Station	<i>p</i> o	<i>p</i> 1	P(0/0)	P(0/1)
Basel	0,5260	0,4740	0,688	0,346
La Chaux-de-Fonds	0,4748	0,5252	0,658	0,309
Zürich, MZA	0,4612	0,5388	0,661	0,290
Bern	0,5151	0,4849	0,681	0,340
Neuchâtel	0,5389	0,4611	0,693	0,359
Genève-Cointrin	0,6011	0,3989	0,726	0,413
Lausanne	0,5596	0,4404	0,707	0,372
Montreux-Clarens	0,5526	0,4474	0,696	0,376
Sion	0,6389	0,3611	0,727	0,483
Davos	0,4765	0,5235	0,622	0,343
Bever	0,5566	0,4433	0,673	0,410
Rigi-Kulm	0,4613	0,5387	0,639	0,309
Säntis	0,4275	0,5725	0,622	0,282
Lugano	0,5909	0,4091	0,733	0,386
St. Gotthard	0,4619	0,5381	0,638	0,311
Altdorf	0,4817	0,5183	0,650	0,325
Marsens	0,5529	0,4471	0,692	0,380
Château-d'Œx	0,5294	0,4706	0,673	0,368
Leysin -	0,5313	0,4687	0,670	0,374
Ragaz Bad	0,5293	0,4707	0,675	0,365

po = absolute Wahrscheinlichkeit für Eintreffen eines Trockentages
 p1 = absolute Wahrscheinlichkeit für Eintreffen eines Regentages

 $p_{(0/0)}$ = bedingte Wahrscheinlichkeit

für Eintreffen Trockentag nach Trockentag

 $p_{(0/1)}$ = bedingte Wahrscheinlichkeit

für Eintreffen Trockentag nach Regentag

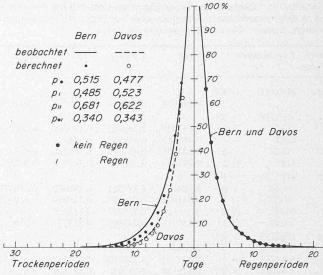


Bild 2. Berechnete und beobachtete Werte der Folge von Regen- und Trockentagen für die Stationen Bern und Davos

Beispiele:

1. Gesucht ist die Schätzung der zweijährlichen Trockenperiode D (z=2) im Sommerhalbjahr für Basel. Mit:

(6)
$$D(z) = d + \ln(z/f) / A$$
 folgt $D(2) = 13 + \ln(2/0,471) / 0,242 = 19,0$ Tage

2. Gesucht ist die Häufigkeit einer 14tägigen Trockenperiode im Sommerhalbjahr in Basel. Mit:

(7)
$$z(D) = f \cdot \exp \left[A \cdot (D - d)\right]$$
 folgt $z(30) = 0,471 \cdot \exp \left[0,242 \left(14 - 13\right)\right]$ = 0,6 Jahre (also durchschnittlich 5mal in 3 Jahren)

Tabelle 7a. Beobachtete Tagesfolgen bei Unterteilung der Regen in vier Intensitätsklassen. Absolute und bedingte Wahrscheinlichkeiten. Station: Davos; Messperiode 64 Jahre

Ord- nung	Regenklasse	en	kein 0	schwach 1	mittel 2	stark 3
0	HEUTE	= KL	0 0,558084	1 0,209154	2 0,220703	3 0,012058
1	HEUTE GST GST GST GST	= KL = 0 = 1 = 2 = 3	0 0,663725 0,487617 0,372836 0,281690	1 0,160682 0,249289 0,287033 0,330986	2 0,170268 0,248071 0,315506 0,345070	3 0,006086 0,014210 0,023471 0,042254
2	HEUTE VGST VGST VGST VGST	= KL = 0 = 1 = 2 = 3	0 0,578515 0,540804 0,526741 0,485915	1 0,193396 0,232237 0,224317 0,260563	2 0,218959 0,215591 0,228934 0,239437	3 0,010651 0,010962 0,016160 0,021127
3	HEUTE VVGST VVGST VVGST VVGST	= KL = 0 = 1 = 2 = 3	0 0,568777 0,547706 0,542516 0,528169	0,206482 0,218433 0,207772 0,197183	2 0,215460 0,218433 0,233936 0,260563	3 0,012021 0,012992 0,010773 0,021123
4	HEUTE VVVGST VVVGST VVVGST VVVGST	= KL = 0 = 1 = 2 = 3	0 0,562082 0,558668 0,544825 0,605634	1 0,211503 0,205847 0,208542 0,169014	2 0,217133 0,220463 0,230473 0,211268	3 0,012323 0,012992 0,010389 0,014083
5	HEUTE VVVVGST VVVVGST VVVVGST VVVVGST	= 1 = 2	0 0,563755 0,555420 0,543671 0,605634	1 0,207547 0,215997 0,211235 0,126761	2 0,219720 0,216809 0,225087 0,253521	3 0,011564 0,011774 0,013467 0,014083

Tabelle 7b. Beobachtete Tagesfolgen bei Unterteilung der Regen in 4 Intensitätsklassen. Absolute und bedingte Wahrscheinlichkeiten. Station: Davos; Messperiode 64 Jahre

				V_1 X		
Ord- nung	Regenklasse	n	klein 0	schwach	mittel 2	stark 3
0	HEUTE	= KL	0 0,558084	1 0,209154	2 0,220703	3 0,012058
I	GST GST	= KL = 0 = 1 = 2 = 3	0 0,663725 0,487617 0,372836 0,281690	1 0,160682 0,249289 0,287033 0,330986	2 0,170268 0,248071 0,315506 0,345070	3 0,006086 0,014210 0,023471 0,042254
2	HEUTE VGST VGST VGST VGST	= KL = 0 = 1 = 2 = 3	0 0,584078 0,541694 0,511666 0,488916	1 0,197592 0,216405 0,229791 0,240806	2 0,208692 0,228039 0,242330 0,253523	3 0,010577 0,012933 0,014745 0,016302
3	HEUTE VVGST VVGST VVGST VVGST	= KL = 0 = 1 = 2 = 3	0 0,564804 0,553722 0,546158 0,541041	1 0,206511 0,210723 0,213937 0,216756	2 0,217960 0,222327 0,225669 0,228597	3 0,011708 0,012271 0,012690 0,013037
4	HEUTE VVVGST VVVGST VVVGST	= KL = 0 = 1 = 2 = 3	0 0,560133 0,556619 0,554530 0,553698	1 0,208671 0,209381 0,210065 0,210900	2 0,220205 0,220935 0,221644 0,222515	3 0,011983 0,01210 0,012193 0,012289
5	HEUTE VVVVGST VVVVGST VVVVGST	= 2	0 0,559002 0,557321 0,556559 0,556765	1 0,209195 0,209056 0,209126 0,209481	2 0,220749 0,220598 0,220669 0,221041	3 0,012049 0,012060 0,012078 0,012109

5.2 Regenperioden

In Tabelle 9 sind die geschätzten Parameter der Gumbelund Log-Normalverteilung für 14 Regenstationen, sowie Extremwertmittel *HD* und beobachteter Höchstwert *HD* angeführt.

Beispiele:

Wie gross ist die Jährlichkeit z einer 14tägigen Regenperiode (Sommerhalbjahr) in Basel?

a) nach Gumbel:

(8)
$$z(D) = 1 / \left[1 - \exp\left(-\exp\left(\frac{A - D}{B}\right)\right) \right] =$$

$$z(14) = 1 / \left[1 - \exp\left(-\exp\left(\frac{8,35 - 14}{2,92}\right)\right) \right] =$$

$$= 7,4 \text{ Jahre}$$

(also viel seltener als eine gleich lange Trockenperiode, siehe Beispiel 2 in Abschnitt 5.1)

b) nach Log-Normalverteilung:

(9)
$$z(D) = 1 / [F(u)]$$
mit
$$u = \frac{A - \ln(D)}{B} \text{ und}$$

F(u) = Verteilungsfunktion der Normalverteilung für die standardisierte Zufallsvariable <math>U (aus Tabellen für Normalverteilung)

$$u = \frac{2,244 - \ln{(14)}}{0.340} = -1,162$$

$$F(-1,162) = 1,0 - F(1,162) = 1,0 - 0,877 = 0,123$$

 $z(D) = 1/0,123 = 8,1$ Jahre

Tabelle 8. Trockenperioden in Tagen für 14 Regenstationen. Parameter A für Exponentialverteilung, Ergebnis Chi²-Test (α = 10%). Ortskonstante f und d, sowie Höchstwert der Beobachtungsperiode HD

Station	A	Chi ² -Test	f	d Tage	HD Tage
Basel	0,242	+	0,471	13	32
Chaux-de-Fonds	0,341	+	0,454	11	32
Zürich	0,291		0,485	11	33
Bern	0,316		0,395	12	33
Neuchâtel	0,315	+1.10	0,390	13	29
Genève	0,366	+	0,438	15	32
Lausanne	0,719	+	0,493	13	21
Montreux	0,528	+ 950	0,354	12	21
Sion	0,433	+	0,433	15	32
Davos	0,444		0,444	-11	21
Bever	0,427	+	0,427	11	23
Lugano	0,467	+	0,467	16	32
Altdorf	0,416	+	0,416	10	27
Bad Ragaz	0,464	BU+ Wasser	0,464	12	22

Tabelle 9. Regenperioden in Tagen für 14 Regenstationen. Parameter A und B für Gumbel- und Log.-Normalverteilung, Ergebnis Chi²-Test (α = 10%), Extremwertmittel \overline{HD} und beobachteter Höchstwert \overline{HD}

C:	C	pelverte	:1a.a	LN-	lverteilu	nα	\overline{HD}	HD
Station	A	B	Chi ²		B	Chi ²	Tage	Tage
Basel	8,35	2,92	+	2,244	0,340	+	10,0	21
Chaux- de-Fonds	10,09	2,90	-	2,416	0,299	+	11,7	22
Zürich	9,88	3,64	+	2,418	0,359	+	12,0	31
Bern	8,75	2,54	+	2,278	0,306	+	10,2	33
Neuchâtel	8,15	2,50	+	2,215	0,299	+	9,6	23
Genève	7,01	2,18	+	2,058	0,332	+	8,3	17
Lausanne	7,71	2,63	+	2,159	0,349	+	9,2	17
Montreux	7,48	2,64	+	2,131	0,369	+	9,0	18
Sion	5,74	1,49	_	1,848	0,271		6,6	12
Davos	8,81	2,47	+	2,285	0,270	+	10,2	21
Bever	6,50	2,42	+	2,007	0,321	+	7,9	21
Lugano	7,21	2,20	+	2,086	0,314	+ .	8,5	18
Altdorf	8,81	2,80	+	2,300	0,279	+	10,4	27
Bad Ragaz	7,74	2,23		2,157	0,268		9,0	16

Literaturverzeichnis

- [1] R.L. Anderson: Distribution of the Serial Correlation Coefficient. «Ann. of Math. Statistics» 13, 1942.
- [2] R. Draschoff: Häufigkeitsanalyse langfristiger Niederschlagsbeobachtungen als Grundlage der Abfluss-Statistik kleiner Vorfluter. Diss. Hannover, 1972.
- [3] K. R. Gabriel und J. Neumann: A Markov-Chain model for daily rainfall occurence at Tel Aviv. "Quart. Journal of the Royal Metcor. Society" 88; 90-95, 1962.
- [4] E. Kreyszig: Statistische Methoden und ihre Anwendung. Vandenhoeck und Eprecht, Göttingen, 1968.
- [5] P. Widmoser: Math. Methoden in der Hydrologie mit besonderer Berücksichtigung von Abflüssen aus kleinen Einzugsgebieten. Habil. Schrift ETH-Zürich, 1973.
- [6] P. Widmoser: Extremabflüsse aus 40 kleinen Einzugsgebieten der Schweiz. «Schweiz. Bauzeitung» 1974, H. 32, S. 757–765.

Adresse des Verfassers: PD Dr. P. Widmoser, Institut für Kulturtechnik der ETH Zürich, derzeit Assoc. Prof. am Civil Engineering Dept., Universität Dar es Salaam, P. O. Box 35131, Tanzania.