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SCHWEIZERISCHE BAUZEITUNG

12. Juli 1976

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZORICH, POSTFACH 630

Versuche und Berechnungen zum dynamischen Verhalten einer
Leichtbetonbriicke und einer analogen Betonbriicke

Von Hugo Bachmann und Rudolf Dieterle, Ziirich

Im Jahre 1973 wurde bei Schaffhausen eine dreifeldrige
Rahmenbriicke in teilweise vorgespanntem Leichtbeton?) erstellt.
Vorgdingig der Belastungsprobe regte der erstgenannte Verfasser
als Experte an, nebst den iiblichen Fahrversuchen auch eine
Erregung der Briicke mittels einer Schwingungsmaschine vor-
zunehmen. Diese Belastungsart hat den Vorteil, dass auf das
Bauwerk eine genau definierte Kraft|Zeit-Funiktion einwirkt.
Daher konnte anschliessend der Versuch unternommen werden,
die entsprechende erzwungene Schwingung theoretisch nach-
zurechnen. Ausserdem wurden einige grundséitzliche Aspekte des
dynamischen Verhaltens von Leichtbetonkonstriktionen im Ver-
gleich zu demjenigen analoger Betonkonstruktionen néher ab-
geklirt. Uber die Ergebnisse der Untersuchungen wird nach-
stehend berichtet.

1. Objekt und Belastung

Die Bilder 1 und 2 zeigen Form. und Abmessungen der
untersuchten Briicke. Es handelt sich um eine dreifeldrige
Rahmenkonstruktion mit V-férmigen Zwischenstiitzen. Der
Uberbau besteht aus teilweise vorgespanntem Leichtbeton.
Fiir die Zwischenstiitzen, Fundamente und Widerlager wurde
normaler Beton verwendet. Der Uberbau ist im Mittelfeld und
im Bereich der Zwischenstiitzen als Hohlkasten- und in den
Randfeldern als offener Plattenbalkenquerschnitt ausgebildet.
Im Grundriss verlduft die Briicke teilweise leicht gekriimmt.
Die zu den Fiissen der V-Stiitzen gemessenen Spannweiten
betragen 29,6 m, 55,8 m und 29,6 m, die Triagerhche 1,50 m.
Das Bauwerk weist somit eine erhebliche Schlankheit auf.
Eine genauere Beschreibung der Briicke wird in [1] gegeben.

1) Leichtbeton mit Zuschlagstoff Leca hade.

Bild 1.

Grundriss und Lingsschnitt
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Die Belastung bei den durch die EMPA durchgefiihrten
Versuchen wurde mittels einer Schwingungsmaschine mit zwei
synchron und gegenldufig rotierenden Unwuchtmassen auf-
gebracht. Die Maschine wirkte nacheinander im Mittelfeld und
in einem Randfeld (Schnitte A-A und B-B in Bild 1). Die
resultierende periodische und vertikale Storkraft
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Charakteristik der Schwingungsmaschine ist in Bild 3 dar-
gestellt.

2. Versuchsergebnisse

Die Durchbiegungen der Briicke wurden in fiinf ver-
schiedenen Messquerschnitten durch insgesamt 10 unter den
beiden Lingstrigern angeordnete induktive Weggeber ge-
messen und durch einen Mehrkanalschreiber simultan auf-
gezeichnet. Die Ergebnisse sind in einem Untersuchungs-
bericht der EMPA festgehalten. Es werden hier nur diejenigen
Werte wiedergegeben, die im Zusammenhang mit der theo-
retischen Nachrechnung von Interesse sind.

Wichtigstes Ergebnis sind die in Bild 4 dargestellten
Resonanzkurven fiir Belastung und Amplitude im Mittelfeld
bzw. im Randfeld. Die Kurve des Mittelfeldes weist erwartungs-
gemiss bei der ersten Eigenfrequenz von 2,51 Hz verhéltnis-
massig grosse Ausschlige auf. Weitere Anregungen erfolgten
bei 2,80 Hz, 10,9 Hz und 12,4 Hz. Die entsprechenden Grossen
des Randfeldes sind 5,35 Hz, 6,4 Hz und 8,5 Hz. Die Ddmpfung
konnte aus den Versuchsergebnissen auf zwei verschiedene
Arten ermittelt werden. Nebst den Schwingungsversuchen
wurden auch Fahrversuche mit einem Lastwagen iiber ein im
Mittelfeld auf der Fahrbahn liegendes, 5 cm hohes Brett durch-
gefithrt. Das beim Ausschwingen nach dem Stoss aus dem
Verhiltnis aufeinanderfolgender Amplituden ermittelte log-
arithmische Dekrement betrigt 8§ = 0,10. Anderseits ergibt sich
aus der Form der Resonanzkurve 8 = 0,125 (f = 2,51 Hz) fiir
Laststellung im Mittelfeld und 8 = 0,175 (f = 5,33 Hz) fiir
Laststellung im Randfeld.

3. Nachrechnung der erzwungenen Schwingung
3.1 Modelle

«Der Begriff Modell steht fiir die Vorstellung einer
gegeniiber der Wirklichkeit vereinfachten, idealisierten physi-
kalischen Gegebenheit. Das Modell ist ein idealisiertes Abbild
der Wirklichkeit. Es wird entscheidend prazisiert durch die
grundlegenden Annahmen und Voraussetzungen fiir das nach-
folgende methodische Rechenverfahren, den Algorithmus.
Beim Bilden des Modells wird also das wirkliche Tragwerk
gedanklich so vereinfacht, dass es einer Berechnung zugénglich
wird» [2].

Auch fiir die vorliegende Untersuchung musste die
komplexe Wirklichkeit in hohem Masse idealisiert werden.
Bild 5 zeigt vier verschiedene, fiir die dynamische Nach-
rechnung verwendete Modelle. Die wirkliche Briicke mit kon-
tinuierlicher Massenverteilung und co vielen Freiheitsgraden
wurde gedanklich in ein massenloses Stabtragwerk mit
15 Punktmassen verwandelt. Die Modelle unterscheiden sich
beziiglich der Grundrissform und der Anzahl der beriicksich-
tigten Freiheitsgrade. Beim Modell 1 wurde die Grundriss-
kriimmung vernachléssigt und die vertikalen Durchbiegungen
als 15 Verschiebungsfreiheitsgrade eingefiihrt. Beim ge-
kriimmten Modell 2 wurden zusitzlich die Verdrehungen an
denselben Stellen als 15 weitere Verschiebungsfreiheitsgrade
beriicksichtigt. Beim Modell 3 wurden auch noch die Longi-
tudinalverschiebungen der Massenpunkte hinzugenommen,
so dass nun 45 Freiheitsgrade vorhanden waren. Schliesslich
weist das Modell 4 gegeniiber dem Modell 3 beim linken
Widerlager noch eine horizontale Feder auf.

Zur Definition des Berechnungsmodells gehdren zudem
die folgenden Annahmen und Voraussetzungen:

— Stabtragwerk

— Ideal elastisches Verhalten

— Homogener, rissefreier Zustand

— Die als nichttragend gedachten Teile wie Belag, Randsteine
usw. wirken nur mit ihrer Masse

— Uberall gleiche Dichte und gleicher E-Modul des Leicht-
betons

— Vernachlissigung der Masse des Schwingungserregers gegen-
iiber der entsprechenden Punktmasse (Verhiltnis rd. 1:80)

— Viskose, d.h. geschwindigkeitsproportionale Dampfung.

Vor allem die Annahme iiber die geschwindigkeits-
proportionale Dampfung kann mit Vorbehalten versehen
werden. Es handelt sich jedoch um einen fiir Baukonstruk-
tionen hiufig verwendeten Ansatz, der fiir kleine Amplituden
im allgemeinen zweckmissig ist. Er wurde deshalb auch hier
beniitzt.
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Bild 5. Modelle fiir die dynamische g
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3.2 Aligemeine Berechnungsmethode

Fiir die Berechnung der erzwungenen Schwingung ist die
sogenannte modale Berechnungsmethode geeignet (siehe z. B.
[3]). Hierbei werden sowohl die Belastungen wie auch die
Verschiebungen nach den Eigenschwingungsformen ent-
wickelt und die entsprechenden Losungen superponiert. Zum
besseren Verstdndnis der darauffolgenden Abschnitte wird der
Rechengang kurz dargestellt. Dabei werden als Verschie-
bungen entsprechend den Freiheitsgraden von Modell 1 nur
vertikale Durchbiegungen beriicksichtigt.

Eigenschwingung

Fiir die ungedimpfte Eigenschwingung des i-ten Massen-
punktes gilt die folgende Differentialgleichung:

oy d*vi(t)

I - k§1 Caxvi(® =0 (@G=1,...,n

Zum Zeitpunkt ¢ greifen am i-ten Massenpunkt die Tragheits-
kraft und die elastische Kraft des Stabsystems an. Es bedeuten
vi(t) die momentane vertikale Verschiebung des i-ten Massen-
punktes, m; die Masse dieses Massenpunktes (i-tes Diagonal-
element der Massenmatrix) und Cix die Stiitzkraft im Massen-
punkt k (k = 1, ..., n), wenn der Punkt i eine Verschiebung 1
erfahrt (i-te Zeile der Steifigkeitsmatrix). v«(¢) sind die momen-
tanen effektiven Verschiebungen der » Massenpunkte. Die
Verschiebungsfunktion vi(¢) wird i.a. durch den Ansatz

(3)  vi(#) = v% sin wot

in eine nur vom Ort und eine nur von der Zeit abhingige
Funktion aufgespalten. Dieser Ansatz setzt voraus, dass sich
alle Massenpunkte phasengleich (in Phase) bewegen. Durch
Einsetzen von (3) in (2) ergeben sich n Gleichungen der Art

n
4) —miwo*v% + X Cie vV =0
Fay

Eine nichttriviale Losung existiert nur, wenn die Koef-
fizientendeterminante verschwindet. Durch Nullsetzen der
Koeffizientendeterminante des Gleichungssystems (4) erhilt
man # Losungen (Eigenwerte) fiir wo? = w?(;, woraus sich
n positive Wurzeln als Eigenkreisfrequenzen ), o), ...,
(), ..., ©O(n) berechnen lassen.

Nach Einsetzen der o, ergeben sich aus (4) zudem die
n Eigenschwingungsformen (Eigenvektoren) vi) mit k =
1,. .., n, die bis auf einen frei wiahlbaren Faktor (Normierung)
bestimmt sind.

Die allgemeine Losung der Gleichung (2), d.h. die
Schwingung des i-ten Massenpunktes, setzt sich aus # Schwin-
gungen mit den Eigenkreisfrequenzen ) und den ent-
sprechenden j-ten Eigenschwingungsformen zusammen:
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n
B)  vi() = T sin(wmt + D°u)
j=1
®°; ist die Phasenverschiebung der j-ten Eigenschwingung.
Wird zusidtzlich eine geschwindigkeitsproportionale
Dimpfung beriicksichtigt, so geht die Bewegungsgleichung (2)
iiber in

dvi(t e
b V()+

12vi (¢t
P U Gl = 0 G =1 1)
k=1

6
© dr? dt

Darin ist C» der Dampfungskoeffizient, welcher die hem-
mende Kraft bei einer Einheitsgeschwindigkeit ausdriickt. Fiir
Cy kann aus rein formalen Griinden der Ansatz

@) Co = 2 miwy

gemacht werden. wp hat die Dimension der Kreisfrequenz und
wird daher die Kreisfrequenz der Ddmpfung genannt. Die
Beziehung von Cy zu dem fiir die Erfassung der Dampfung oft
gebrauchten logarithmischen Dekrement 8 und dem Ddmp-
fungsfaktor £ lautet (Umrechnung nur giiltig, wenn nur eine
Eigenschwingung beriicksichtigt wird):

2L
Wy 2T — Cr;.

8 8= —E211

0)’(]') 2 m; 0)’(;)

Darin bedeutet «’(; die j-te Eigenkreisfrequenz der j-ten ge-
diampften Eigenschwingung (siehe Gl. (11)). Das logarith-
mische Dekrement ist

An

n+1

©® &=nl

worin Aa/An+1 das Verhiltnis zweier aufeinanderfolgender

Amplituden darstellt. Der Ddmpfungsfaktor £ entspricht dem

Verhiltnis der effektiven Dampfung zur kritischen Ddmpfung.
Die partikulidre Losung der Gleichung (6) ist

vi(t) = v% =@yt sin (0’0 t + Do), wobei

(10)
(11) Lo’o = (0’(]') = sz(j)—(ozb

Gleichung (11) besagt, dass die Eigenkreisfrequenz oy
der freien Schwingung durch die Dadmpfung ws verkleinert
wird. Hingegen ldsst sich zeigen, dass die Dampfung die
Eigenschwingungsformen nicht verdndert. Das Ausmass der
Verkleinerung von ;) durch w, hingt vom Verhiltnis dieser
beiden Grossen ab. Fiir die bei modernen Briicken vorhandene
relativ kleine Dampfung kann o’y = o(;) gesetzt werden.

Die allgemeine Losung der Gleichung (6) lautet in
Analogie zu (5)

n
vi(t) = e7@vt Iy sin (@’ (5t + DOy))
j=1

(12)
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Sie setzt sich wiederum aus den — nun geddmpften — n Eigen-
schwingungen zusammen.

Erzwungene geddampfte Schwingung

Fiir eine erzwungene gedampfte Schwingung gelten die
Bewegungsgleichungen

d?vi(1) dvi(t)
» + 2 m; wp =
(i=1,...,n

13) m 4+ I Civi(t) = Pi(®)
k=1

Fiir den durchgefiihrten Belastungsversuch gilt fiir den
Ort der Schwingungsmaschine Pi(f) = P sin wt. Fiir die
iibrigen Punkte ist Pi(r) = 0.

Die n iiber vz gekoppelten Gleichungen (13) konnen durch
Zerlegen nach den Eigenschwingungsformen entkoppelt und
gelost werden.

Die Belastung wird dargestellt durch die Reihe

; ,
(14) Pi(r) = Z puy (&) miviy
j=1

Jj=

vi(j) bedeutet die Verschiebung im Punkt 7 bei der j-ten Form
der Eigenschwingung (i-te Komponente des j-ten Eigen-
vektors), wobei die Grosse der Verschiebung in einem Punkt
der Eigenschwingungsform beliebig gewéhlt werden darf
(Normierung). p(?) stellt den Anteil der Belastung Pi(z) an
der j-ten Eigenschwingung dar und bestimmt somit das Aus-
mass der Mitwirkung der j-ten Eigenschwingung. Es gilt

n
AE Pi (1) vity)
15 pw( ==

2 mi v )
i=1

Fiir eine harmonische Belastung Pi(f) = Pi sin wt ist

n 1l ISEAS

2 Pivig)
i=

pa ==
Z mivi)
i=1

(16)  pu®) = py) sin wt,

Die Durchbiegung vi(f) wird entwickelt durch die Reihe

a7 v == qum@ v
=

T
g (%) gibt den Anteil der j-ten Eigenschwingung an der Ver-
schiebung des i-ten Massenpunktes.

Durch Einsetzen von (17) und (14) in (13) und anschlies-
sendem Koeffizientenvergleich ergeben sich n entkoppelte
Differentialgleichungen von der Form

d* qu(2) Hepa dq ) (1)

18
(8 dr? dt

+ w2() gu(t) = p) sin ot

mit der Partikuldrlosung
(19)  gu(®) = qu) sin (ot + D)), worin

P

20) qu» = , und
V@2 — 09 + 40202
2
(21) @ = arctan Sk A8
0 — k()

Die allgemeine Losung der Gleichung (13) erhidlt man wie
tiblich durch Superposition der Losung der homogenen
Gleichung (Gl. 12) und der Partikuldrlosung (Gl. 19)

422

n

22) vi(®) = Z vy g sin (o + @) +

7=
Voi(g) € ot sin (o’ () t + D)

Darin stellt das erste Glied den stationdren Anteil dar.
Das zweite Glied entspricht der Eigenschwingung. Diese wird
jedoch — wie der Term e @t angibt — mit der Zeit «heraus=
geddmpft», so dass nur noch der stationédre Teil iibrig bleibt.
Die 1% und ®°; konnen durch die Anfangsbedingungen
dvi(t =0)

dt

Fiir den Fall der Resonanz w(;) = o, ist aus (20) ersicht-
lich, dass fiir vi(¢) die j-te Eigenschwingung praktisch allein
massgebend ist.

vi(t = 0) und festgelegt werden.

3.3 Elektronische Berechnung

Zur praktischen Berechnung wurde das am Institut fiir
Baustatik und Konstruktion der ETHZ verfiigbare SMIS-
Programm verwendet. SMIS ist ein problemorientiertes Pro-
gramm zur Durchfiihrung von Matrizenoperationen. Fiir die
Berechnung am 1. Modell kann das Gleichungssystem (4) wie
folgt geschrieben werden:

Criins G - Cin v° mi 0 v,
Ci « Cik * -+ Cin Vo p=wo? ni v
_Cnl serste (Gl gim s Cn'n_ von _0 Mn_ | Vo,

oder abgekiirzt:
23)  [K]{v%) = 0% [M] {%]

[K] bedeutet die Steifigkeitsmatrix, [M] die Massenmatrix und
{v°} der Verschiebungsvektor. Die Auflosung dieses Eigen-
wertproblems ergibt die Eigenwerte w? = w2y bzw. die
Eigenkreisfrequenzen «; und die zugehorigen Eigenschwin-
gungsformen als Eigenvektoren. Die Matrix [@®] der Eigen-
vektoren erfihrt im SMIS-Programm eine besondere, fiir die
Integration der Bewegungsdifferentialgleichungen zweck-
miéssige Normierung. Der Unterschied zwischen ;) und o’
kann — wie unter 3.2 dargelegt — vernachldssigt werden.

Wird in (18) anstelle von wp, der Dampfungsfaktor £ =
3/21I eingesetzt und fiir alle Eigenschwingungen als gleich
angenommen, so ergibt sich

@4 {qw} +2Elemnl{qn} +o*{gw} = {pw]sin ot

Die Integration, d.h. die Berechnung von ¢ (?) aus (24),
erfolgt im SMIS-Programm in Zeitintervallen Az. Die Ergeb-
nisse werden fiir die Zeitpunkte ZAt (Z = 1, 2, ..., o0) ge-
speichert und analog (17) durch

(25) (@)} = [@] {gui®)}

auf die urspriinglichen Koordinaten zuriicktransformiert.

Fir die Berechnung am Modell 2 kommen zu den
15 Freiheitsgraden der vertikalen Durchbiegung die 15 Ver-
drehungsfreiheitsgrade hinzu.

Der Verschiebungsvektor muss entsprechend erweitert
werden. [K] vergrossert sich um die Verdrehungsstiitzkrifte,
und die Diagonale von [M] wird durch die Massenrotations-
tragheitsmomente fortgesetzt. Gl. (23) entsprechend werden
jetzt 30 Eigenkreisfrequenzen berechnet. Die 30 x 30 Matrix
[®] der Eigenvektoren ist voll besetzt, wobei jedoch héufig
unterschieden werden kann zwischen Eigenvektoren, bei denen
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die vertikalen Verschiebungen dominieren, und solchen, bei
denen die Verdrehungen iiberwiegen. Die Bedeutung von g
in (24) wird in analoger Weise erweitert.

Fiir die Berechnung an den Modellen 3 und 4 ist fiir die
Beriicksichtigung der 15 Longitudinalfreiheitsgrade eine zu-
sdtzliche Erweiterung sinngemaéss vorzunehmen.

3.4 Numerische Ergebnisse und Vergleich mit Versuchs-

resultaten

Bei einer ersten, unmittelbar vor dem Versuch erfolgten
Berechnung des Eigenwertproblems am Modell 1 wurden die
folgenden, dannzumal am Bauwerk ermittelten Material-

kennwerte eingesetzt:

Ers = 195000 kp/cm?,

yrs = 1,9 t/m? (einschl. Armierungsgewicht).

Hiermit gelang mit fu)

gen beibehalten.

Bild 6a. Eigenschwingungsformen und Eigen-

frequenzen der Modelle 1 und 2

Bild 6b. Eigenschwingungsformen und Eigen-

frequenzen der Modelle 3 und 4

Schweizerische Bauzeitung + 94, Jahrgang Heft 28/29 -

wm/2 © = 2,51 Hz eine sehr
gute Vorhersage der am Bauwerk festgestellten ersten Eigen-
frequenz. Der anndhernd gleiche Wert wurde auch bei den
Berechnungen an den anderen Modellen erhalten. Die obigen
Materialkennwerte wurden deshalb fiir sémtliche Berechnun-

a) Eigenfrequenzen und Eigenschwingungsformen
Die Losung des Eigenwertproblems, d.h. die Bestimmung

der Eigenkreisfrequenzen und der Eigenschwingungsformen

dargestellt.

wurde an den in Bild 5 dargestellten und einer Reihe weiterer
Modelle durchgefiihrt. In Bild 6 sind jeweils die ersten 8 Eigen-
schwingungsformen mit den entsprechenden Eigenfrequenzen

Bei der Berechnung am Modell 2 zeigte sich, dass durch

die zusitzliche Beriicksichtigung der Grundrisskriimmung und

der Verdrehungsfreiheitsgrade die Eigenfrequenzen und die
Eigenschwingungsformen von Modell 1 bis zu verhéltnis-
massig hohen Frequenzen praktisch nicht verdndert wurden.

Erst bei etwa 15 Hz wurde ein neuer zusdtzlicher Eigenwert
mit der dazugehorigen Eigenschwingungsform festgestellt.

Dies war auf Grund einer ebenfalls durchgefiihrten Berech-
nung der reinen Torsionsschwingung auch zu erwarten, da die
erste reine Torsionseigenfrequenz bei 14,6 Hz liegt. Ent-
sprechend zeigen auch die Eigenschwingungsformen erst ab
der 7. Form wesentliche Unterschiede zu denjenigen von
Modell 1. Beim Vergleich der berechneten Eigenfrequenzen
mit den im Versuch festgestellten Anregungen féllt auf, dass

die zweite Eigenfrequenz sowohl beim Modell 1 als auch beim
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Modell 2 erst bei 3,36 Hz folgt, wo hingegen bei der wirk-
lichen Briicke die zweite Resonanzstelle unmittelbar oberhalb
der ersten lag.

Weit grossere Unterschiede zum Modell 1 — und auch
bessere Ubereinstimmung mit den Versuchsergebnissen -
brachte der Ubergang von Modell 2 zu Modell 3 durch die
zusitzliche Beriicksichtigung der Longitudinalverschiebungen.
Insbesondere die antimetrischen Eigenschwingungsformen
weisen an den oberen Stiitzenenden erhebliche vertikale
Knotenverschiebungen auf. Infolge der durch die V-Stiitzen
mit dem Briickentriger gebildeten, recht starren Dreiecks-
scheiben sind diese Formen nur moglich, wenn sich die Knoten
gleichzeitig auch horizontal verschieben konnen. Daher ist
offensichtlich, dass auch Longitudinalverschiebungen wesent-
lich sein konnen. Bei der Berechnung der reinen Longitudinal-
schwingung ergab sich ein 1. Eigenwert bei 3,4 Hz, also im
Bereich der 1. reinen Biegeeigenfrequenz, wihrend der zweite
wesentlich hoher lag, nimlich bei 14,3 Hz. Daher hatte der
Einbezug der Longitudinalverschieblichkeit vor allem einen
grossen Einfluss auf die ersten beiden Eigenschwingungs-
formen und auf die 2. Eigenfrequenz. Diese fiel nun fast mit
der 1. Eigenfrequenz zusammen, was den Versuchsergebnissen
bereits wesentlich besser entspricht.

Eine beziiglich der Lage der 2. Eigenfrequenz sehr gute
Ubereinstimmung von Versuch und Rechnung konnte mit dem
Modell 4 erzielt werden. Wie erst wihrend der Berechnungen
bekannt wurde, leistete zur Zeit des Versuches infolge ver-
schiedener unbeabsichtigter Umstidnde ein Lager am einen
Briickenende einen erheblichen, jedoch schwer quantifizier-
baren Reibungswiderstand. Um diesen Widerstand nidherungs-
weise zu erfassen, wurde das Modell 3 durch eine horizontale
Feder ergiinzt. Deren Steifigkeit wurde variiert und schliesslich
so angenommen, dass die 2. Eigenfrequenz mit der ent-
sprechenden im Versuch festgestellten Anregung etwa iiber-
einstimmte. Dabei glichen sich die ersten beiden Eigen-
schwingungsformen wieder denjenigen von Modell 1 und 2 an.
Die hoheren Eigenfrequenzen und Eigenschwingungsformen
blieben praktisch dieselben wie bei Modell 3. Insgesamt ent-
sprechen die rechnerisch ermittelten Eigenfrequenzen mit den
zugehorigen Eigenschwingungsformen den im Versuch bei
Belastung im Mittel- und Randfeld festgestellten Anregungen.

b) Amplituden

In Bild 4 sind die rechnerisch am Modell 4 ermittelten
Amplituden, d.h. die Resonanzkurven fiir Belastung im
Mittel- und im Randfeld gestrichelt eingetragen. Es zeigt sich
auch hier in Anbetracht der schwierig zu erfassenden wirk-
lichen Verhiltnisse eine befriedigende Ubereinstimmung mit
den Versuchsergebnissen.
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Bild 7. Nach Modell 4 berechnete, maximale Amplituden in
Abhiingigkeit von der angenommenen Didmpfung
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Die Amplituden der dargestellten Resonanzkurven wurden
mit der im Ausschwingversuch festgestellten Dampfung
3 = 0,10 berechnet. Bei Belastung im Mittelfeld wird mit der
rechnerischen maximalen Amplitude von 0,66 mm der im
Versuch gemessene Wert von 0,54 mm um 26 %; iiberschédtzt.
Im Randfeld hingegen wird der gerechnete Wert von 0,59 mm
mit dem gemessenen Wert von 0,62 mm um rund 57, unter-
schitzt. In Bild 7 sind die nach Modell 4 berechneten maxi-
malen Amplituden in Abhingigkeit von der angenommenen
Dimpfung dargestellt. Die gemessenen Amplituden sind eben-
falls eingetragen. Es zeigt sich, dass sich mit 8 = 0,10 eine
befriedigende Ubereinstimmung der gerechneten und ge-
messenen Amplituden ergibt.

4. Vergleiche zwischen analogen Tragwerken aus
Leichtbeton und Beton

Im folgenden werden dynamische Kenngrossen analoger
Leichtbeton- und Betontragwerke miteinander verglichen.
«Analog» bedeutet hier, dass sich die beiden Tragwerke nur in
der Dichte der Eigenmasse und in der Grosse der Biegesteifig-
keit unterscheiden konnen. Hingegen sollen insbesondere das
statische System, die Spannweiten und die Verteilung von
Eigenmasse und Biegesteifigkeit gleich sein. Der Vergleich
dynamischer Kenngrossen zweier derart korrelierter Kon-
struktionen ist zwar nicht unproblematisch. Denn ein optimal
projektiertes Leichtbetontragwerk kann sich sehr wohl auch
bei den als unverinderlich angenommenen Parametern von
einem dem gleichen Zweck dienenden Betontragwerk unter-
scheiden. Zudem wird die Masse irgendwelcher Nutzlasten
nicht beriicksichtigt. Trotz dieser Einschrinkungen ergeben
sich einige interessante Hinweise.

Die Diampfungseigenschaften von Leichtbetontragwerken
sind noch wenig erforscht. Immerhin weiss man, dass bei der
Materialdimpfung keine grundlegenden Unterschiede zum
Beton bestehen. Und weil der Anteil der Systemddmpfung an
der Gesamtddmpfung wesentlich ist und die Systemddmpfung
bei analogen Konstruktionen praktisch dieselbe sein diirfte,
wird niherungsweise angenommen, dass der Wert 3 fiir beide
Tragwerkarten der gleiche sei.

4.1 Eigenfrequenzen

Geht man von einem gegebenen Tragwerk aus, so be-
deutet eine in jedem Schnitt proportional gleiche Anderung der
Biegesteifigkeit EI die Multiplikation der Steifigkeitsmatrix in
Gleichung (23) mit einem konstanten Faktor c¢i. Wird zudem
in jedem Massenpunkt die Dichte y der Punktmasse auf gleiche
Weise verindert, so muss auch die Massenmatrix mit einem
Faktor ¢, multipliziert werden. Die Werte ©? dndern sich
daher um den Faktor ci/c;. Somit gilt fiir analoge Leicht-
beton- und Betontragwerke

o
(26) orp=|/— ws = ¢; ©p, mit

1)
(ENvLg mrLs
27 = d =
@7 icx EDs un C2 o

Sofern keine stindigen Nutzlasten wie Belag, Gehwege,
Gelinder usw. vorhanden sind, bzw. vernachlissigt werden, so
kann fiir ¢; auch das Verhiltnis der Baustoffdichten yrs/ys
gesetzt werden. Die Beziehung (26) gilt fiir alle Eigenkreis-
frequenzen eines Systems mit n Freiheitsgraden. Sie ist in
Bild 8 fiir die praktisch vorkommenden Bereiche von c¢: und c,
graphisch dargestellt.

Als Beispiel sollen die Eigenfrequenzen der Leichtbeton-
briicke Schaffhausen mit derjenigen einer fiktiven analogen
Briicke aus normalem Beton mit gleichen Abmessungen und
gleicher Druckfestigkeit verglichen werden. Gemiss den in der
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Norm SIA 162 bzw. in den zugehorigen Leichtbetonricht-
linien Nr. 33 angegebenen Beziehungen zwischen E-Modul und
Wiirfeldruckfestigkeit sowie mit den Dichten (einschliesslich
Armierungen) von yzz = 1,9 t/m?® und yz = 2,5 t/m?® und
unter Beriicksichtigung der Masse der stindigen Nutzlasten
ergeben sich:

10000
=" _ 053 & — 0,785
©TT e

Damit wird

0,53 —
wLB :l/0:785 wg =V0,68 cop = 0,82 wp

Demnach wire z.B. die erste Eigenfrequenz einer analogen
Betonbriicke mit gleichen Abmessungen f1)s = 3,07 Hz ent-
sprechend fi1zs = 2,51 Hz. Das Beispiel ist in Bild 8 ein-
getragen.

4.2 Amplituden bei Resonanz

Es sollen die Amplituden analoger Leichtbeton- und
Betontragwerke fiir den Fall der Resonanz bei den durch
Gleichung (26) einander zugeordneten Eigenfrequenzen ver-
glichen werden. Dieser Vergleich hat somit nur Aussagekraft
fir Tragwerke, die durch eine Erregerkraft mit variabler
Frequenz gemdss (1) beansprucht werden. Fiir eine Storkraft
mit einer ganz bestimmten, stets gleich bleibenden Frequenz
ist hingegen der Abstand dieser Frequenz von der «nichst-
liegenden» Eigenfrequenz von Bedeutung. Fiir diesen Fall
lassen sich keine allgemein giiltigen Vergleichsergebnisse
formulieren.

Bei Resonanz kann man sich auf diejenige Eigenfrequenz
und Eigenschwingungsform beschrianken, fiir die gilt

28) = oy

Da zudem die der Lésung der homogenen Differential-
gleichung entsprechende Schwingung infolge der Ddmpfung
nach einiger Zeit verschwunden ist, bleibt von Gleichung (22)
ncch

29)  vi(t) = vipy - qu sin (ot + Dp)
Die Amplitude bei Resonanz wird damit

P

wy
2w <—>
()

Vimaz (© = @) = vig) -

Aus (1) folgt

wLB

wp

2
(30) Pirs = ( ) Pig = c* Pis

Mit (14) und wegen (ﬂ) 2 11 = 3.3 = 8p wird die Bezie-
© (5)
hung der Amplituden zu

1
(31) Vimaz LB = —— Vimaz B
C2

Fiir eine in beiden Fillen gleich grosse, d.h. frequenz-
unabhingige Erregerkraft ist Pirs = Pip. Damit wird

1
(32) Vimaz LB — — Vimaz B
C1

Die Gleichungen (31) und (32) sind in Bild 9 dargestellt.

Als Beispiel sollen die Amplituden der im vorigen
Abschnitt definierten beiden Briicken miteinander verglichen
werden. Nach Gleichung (31) ergibt sich vimazrz = 1,27
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Bild 8. Verhiltnis der Eigenfrequenzen analoger Leicht-
beton- und Betontragwerke

vimaz . KONnte man also an der analogen Betonbriicke mit der
gleichen Schwingungsmaschine einen Versuch durchfiihren, so
wiirde man — immer unter den getroffenen Voraussetzungen —
entsprechend der an der Leichtbetonbriicke beif(1)zs = 2,51 Hz
festgestellten maximalen Amplitude von 0,54 mm an der
Betonbriicke bei f(1)s = 3,07 Hz eine maximale Amplitude von
0,42 mm messen. Fiir die im Versuch bei f(1)zs = 2,51 Hz auf-
gebrachte Erregerkraft ergidbe sich nach Gleichung (32) hin-
gegen bei f1)s = 3,07 Hz eine Amplitude von nur 0,29 mm.
Beide Beispiele sind in Bild 9 eingetragen.

Schliesslich sei noch der Einfluss einer Rissebildung kurz
diskutiert, obwohl die hergeleiteten Beziechungen streng
genommen nur fiir einen ideal elastischen und damit auch
rissefreien Zustand gelten. Durch die Rissebildung nimmt die
Biegesteifigkeit bekanntlich ab, bei Leichtbetonquerschnitten
allerdings in geringerem Masse als bei analogen Betonquer-
schnitten. Im vollstindig gerissenen Zustand ist die Biege-
steifigkeit nahezu gleich. Dies bedeutet, dass c¢1 gegen 1 geht
und c; sogar grosser als 1 werden kann. Daraus ist zu schlies-
sen, dass mit fortschreitender Rissebildung die Eigenfrequen-
zen analoger Leichtbeton- und Betonkonstruktionen sich nicht
nur dndern, sondern auch mehr und mehr angleichen. Das-
selbe diirfte — bei gleicher Dampfung — fiir die Amplituden
zutreffen.
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Bild 9. Verhiiltnis der maximalen Amplituden bei frequenzabhiin-
giger und frequenzunabhiingiger Erregerkraft bei analogen Leicht-
beton- und Betonfragwerken im Falle der Resonanz
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5. Folgerungen

Im Falle dieser Leichtbetonbriicke gelang es recht gut,
verschiedene bei den dynamischen Versuchen gemessene
Grossen auf theoretischem Wege nachzurechnen. Dabei kam
der Wahl des Berechnungsmodells entscheidende Bedeutung
zu. Die zum Vergleich durchgefiihrten Abklarungen zeigen,
dass Leichtbetonkonstruktionen kein wesentlich anderes dyna-
misches Verhalten aufweisen als analoge Betonkonstruktionen.
Wohl besteht bei Leichtbetonkonstruktionen im Vergleich zu
analogen Betonkonstruktionen die Tendenz zu etwas grosseren
Amplituden. Indessen ist bei beiden Bauwerkarten der Ein-
fluss anderer Konstruktionsmerkmale wie Schlankheit, sta-
tisches System, Rissebildung usw., auf das dynamische Ver-
halten meist grosser als die Baustoffwahl. Bei Leichtbeton-
konstruktionen ist daher, wie bei Betonkonstruktionen, stets
eine Beurteilung aufgrund der konkreten Gegebenheiten er-
forderlich.

Beim Leichtbeton, aber auch beim Beton, bestehen
wesentliche Wissensliicken iiber wichtige Grossen, wie z. B.

Die Leichtbetonbriicke Schaffhausen

Belastungs- und Schwingungsversuche
Von S. Balas, Diibendorf

In den letzten 18 Jahren fiihrte die EMPA an ungefihr
250 neuen Briicken Belastungsversuche durch. Die Versuche
erbrachten Informationen sowohl fiir das Tragverhalten der
Briicke, als auch fiir deren Qualitit. Gleichzeitig wurde in den
meisten Fdllen auch das dynamische Verhalten der Briicke unter-
sucht und festgestellt, wie die Briicke auf Erschiitterungen,
Stosse und Schwingungen, welche durch den Verkehr entstehen,
reagiert. Die Versuche gewinnen dadurch an Bedeutung, wenn
die ermittelten Ergebnisse direkt mit theoretischen Werten ver-
glichen werden konnen. Hierbei erhdlt der Projektverfasser wert-
volle Angaben dariiber, wie gut seine Annahmen dem tatsdch-
lichen Verhalten der Briicke entsprachen.

Es ist immer interessant, das Verhalten einer Briicke von
nicht alltdglicher Konstruktion — wie die vorliegende — unter
statischer und dynamischer Beanspruchung zu priifen. Die
dreifeldrige Rahmenbriicke in Schaffhausen hat eine maxi-
male Spannweite von 55,80 m und stellt ein sogenanntes

Ldngsschnitt

Dampfung, Einfluss von Rissebildung und Vorspanngrad
sowie Verhalten bei dynamischer Beanspruchung im plasti-
schen Bereich. Zur besseren Kliarung dieser Fragen werden
deshalb im Rahmen eines Forschungsprogrammes am Institut
fiir Baustatik und Konstruktion der ETHZ vergleichende Ver-
suche und entsprechende theoretische Studien durchgefiihrt.
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Sprengwerk dar. Sie ist symmetrisch beziiglich der Briicken-
mitte, rdumlich leicht gekriimmt und hat einen teilweise vor-
gespannten Leichtbetoniiberbau. Die genaue Beschreibung der
Briicke ist in [1] gegeben.

Die Versuche wurden im Auftrag des Tiefbauamtes des
Kantons Schaffhausen von der EMPA in Zusammenarbeit
mit dem Ingenieurbiiro Wehrli & Weimer, dem Projektverfas-
ser, durchgefiihrt. Die statischen- und die Fahrversuche wur-
den auf Anregung von Prof. Dr. H. Bachmann mit weiteren
Schwingversuchen ergidnzt. So konnten die berechneten theo-
retischen Werte iiberpriift werden [2].

Statische Versuche

Bei den statischen Versuchen handelte es sich um einen
zentrischen und einen exzentrischen Lastfall, wobei der Ein-
fluss von zwei wandernden Lasten mittels 10 induktiven Weg-
gebern an 5 verschiedenen Messquerschnitten ermittelt wurde
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Bild 1. Abmessungen, Instrumentenanordnung und Laststellungen
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" Beispiel Pos.8__
( Anordnung zentrisch)
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