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HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH, POSTFACH 630

Versuche und Berechnungen zum dynamischen Verhalten einer
Leichtbetonbrücke und einer analogen Betonbrücke
Von Hugo Bachmann und Rudolf Dieterle. Zürich

Im Jahre 1973 wurde bei Schaffhausen eine dreifeldrige
Rahmenbrücke in teilweise vorgespanntem Leichtbeton1) erstellt.
Vorgängig der Belastungsprobe regte der erstgenannte Verfasser
als Experte an, nebst den üblichen Fahrversuchen auch eine
Erregung der Brücke mittels einer Schwingungsmaschine
vorzunehmen. Diese Belastungsart hat den Vorteil, dass auf das
Bauwerk eine genau definierte Kraft/Zeit-Funktion einwirkt.
Daher konnte anschliessend der Versuch unternommen werden,
die entsprechende erzwungene Schwingung theoretisch
nachzurechnen. Ausserdem wurden einige grundsätzliche Aspekte des
dynamischen Verhaltens von Leichtbetonkonstrüktionen im
Vergleich zu demjenigen analoger Betonkonstruktionen näher
abgeklärt. Über die Ergebnisse der Untersuchungen wird
nachstehend berichtet.

1. Objekt und Belastung
Die Bilder 1 und 2 zeigen Form, und Abmessungen der

untersuchten Brücke. Es handelt sich um eine dreifeldrige
Rahmenkonstruktion mit V-förmigen Zwischenstützen. Der
Überbau bestellt aus teilweise vorgespanntem Leichtbeton.
Für die Zwischenstützen, Fundamente und Widerlager wurde
normaler Beton verwendet. Der Überbau ist im Mittelfeld und
im Bereich der Zwischenstützen als Hohlkasten- und in den
Randfeldern als offener Plattenbalkenquerschnitt ausgebildet.
Im Grundriss verläuft die Brücke teilweise leicht gekrümmt.
Die zu den Füssen der V-Stützen gemessenen Spannweiten
betragen 29,6 m, 55,8 m und 29,6 m, die Trägerhöhe 1,50 m.
Das Bauwerk weist somit eine erhebliche Schlankheit auf.
Eine genauere Beschreibung der Brücke wird in [1] gegeben.

') Leichtbeton mit Zuschlagstoff Leca hade.

DK 624.27:666.973

Die Belastung bei den durch die EMPA durchgeführten
Versuchen wurde mittels einer Schwingungsmaschine mit zwei
synchron und gegenläufig rotierenden Unwuchtmassen
aufgebracht. Die Maschine wirkte nacheinander im Mittelfeld und
in einem Randfeld (Schnitte A-A und B-B in Bild 1). Die
resultierende periodische und vertikale Störkraft

(1) ms r coz sm tat

ist von der Winkelgeschwindigkeit to sowie vom Hebelarm r
und den beiden rotierenden Massen ms/2 abhängig. Die

Mittelfeld Randfeld

3,75
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Bild 3. Charakteristik Kraft / Kreisfrequenz der eingesetzten
Schwingungsmaschine

Charakteristik der Schwingungsmaschine ist in Bild 3

gestellt.

dar-

2. Versuchsergebnisse
Die Durchbiegungen der Brücke wurden in fünf

verschiedenen Messquerschnitten durch insgesamt 10 unter den

beiden Längsträgern angeordnete induktive Weggeber
gemessen und durch einen Mehrkanalschreiber simultan
aufgezeichnet. Die Ergebnisse sind in einem Untersuchungsbericht

der EMPA festgehalten. Es werden hier nur diejenigen
Werte wiedergegeben, die im Zusammenhang mit der
theoretischen Nachrechnung von Interesse sind.

Wichtigstes Ergebnis sind die in Bild 4 dargestellten
Resonanzkurven für Belastung und Amplitude im Mittelfeld
bzw. im Randfeld. Die Kurve des Mittelfeldes weist erwartungs-
gemäss bei der ersten Eigenfrequenz von 2,51 Hz verhältnismässig

grosse Ausschläge auf. Weitere Anregungen erfolgten
bei 2,80 Hz, 10,9 Hz und 12,4 Hz. Die entsprechenden Grössen
des Randfeldes sind 5,35 Hz, 6,4 Hz und 8,5 Hz. Die Dämpfung
konnte aus den Versuchsergebnissen auf zwei verschiedene

Arten ermittelt werden. Nebst den Schwingungsversuchen
wurden auch Fahrversuche mit einem Lastwagen über ein im
Mittelfeld auf der Fahrbahn liegendes, 5 cm hohes Brett
durchgeführt. Das beim Ausschwingen nach dem Stoss aus dem
Verhältnis aufeinanderfolgender Amplituden ermittelte log-
arithmische Dekrement beträgt 8 0,10. Anderseits ergibt sich

aus der Form der Resonanzkurve 8 0,125 (f 2,51 Hz) für
Laststellung im Mittelfeld und 8 0,175 (/= 5,33 Hz) für
Laststellung im Randfeld.

3. Nachrechnung der erzwungenen Schwingung
3.1 ModeUe

«Der Begriff Modell steht für die Vorstellung einer

gegenüber der Wirklichkeit vereinfachten, idealisierten
physikalischen Gegebenheit. Das Modell ist ein idealisiertes Abbild
der Wirklichkeit. Es wird entscheidend präzisiert durch die

grundlegenden Annahmen und Voraussetzungen für das

nachfolgende methodische Rechenverfahren, den Algorithmus.
Beim Bilden des Modells wird also das wirkliche Tragwerk
gedanklich so vereinfacht, dass es einer Berechnung zugänglich
wird» [2].

Auch für die vorliegende Untersuchung musste die

komplexe Wirklichkeit in hohem Masse idealisiert werden.

Bild 5 zeigt vier verschiedene, für die dynamische
Nachrechnung verwendete Modelle. Die wirkliche Brücke mit
kontinuierlicher Massenverteilung und oo vielen Freiheitsgraden
wurde gedanklich in ein massenloses Stabtragwerk mit
15 Punktmassen verwandelt. Die Modelle unterscheiden sich

bezüglich der Grundrissform und der Anzahl der berücksichtigten

Freiheitsgrade. Beim Modell 1 wurde die
Grundrisskrümmung vernachlässigt und die vertikalen Durchbiegungen
als 15 Verschiebungsfreiheitsgrade eingeführt. Beim
gekrümmten Modell 2 wurden zusätzlich die Verdrehungen an
denselben Stellen als 15 weitere Verschiebungsfreiheitsgrade
berücksichtigt. Beim Modell 3 wurden auch noch die Longi-
tudinalverschiebungen der Massenpunkte hinzugenommen,
so dass nun 45 Freiheitsgrade vorhanden waren. Schliesslich
weist das Modell 4 gegenüber dem Modell 3 beim linken
Widerlager noch eine horizontale Feder auf.

Zur Definition des Berechnungsmodells gehören zudem

die folgenden Annahmen und Voraussetzungen:

- Stabtragwerk
- Ideal elastisches Verhalten

- Homogener, rissefreier Zustand

- Die als nichttragend gedachten Teile wie Belag, Randsteine

usw. wirken nur mit ihrer Masse
-Überall gleiche Dichte und gleicher U-Modul des Leichtbetons

- Vernachlässigung der Masse des Schwingungserregers gegenüber

der entsprechenden Punktmasse (Verhältnis rd. 1:80)

- Viskose, d. h. geschwindigkeitsproportionale Dämpfung.

Vor allem die Annahme über die geschwindigkeitsproportionale

Dämpfung kann mit Vorbehalten versehen

werden. Es handelt sich jedoch um einen für Baukonstruktionen

häufig verwendeten Ansatz, der für kleine Amplituden
im allgemeinen zweckmässig ist. Er wurde deshalb auch hier
benützt.

Imm)

I,=2.49hJ Ll2 2,88Hz

r*"Rechnung

versuch

Z^IHrtURZBOH!
^IWl

Berechnete Eigenfrequenzen fg -11,74 HzJ

Belastung und Amplitude im Mittelfeld

Im Versuch festgestellte Anregungen N 10,9 Hz kl2,4h

W- W/O Hz

14 f(Hz)

V" (mm)

V0-

0,6-

f,=5,15Hz>) I 5,76 Hz f5 8,14Hz cl Berechnete Eigenfrequenzen

0.6
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Rechnung —*¦* V

Versuch fj > \rt
Belastung und Amplitude im Randfeld
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Bild 4. Resonanzkurven aus Versuch
a 14 KrM und Rechnung (Modell 4, 8-0,10)
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Bild 5. Modelle für die dynamische
Berechnung
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3.2 Allgemeine Berechnungsmethode

Für die Berechnung der erzwungenen Schwingung ist die
sogenannte modale Berechnungsmethode geeignet (siehe z. B.
[3]). Hierbei werden sowohl die Belastungen wie auch die
Verschiebungen nach den Eigenschwingungsformen
entwickelt und die entsprechenden Lösungen superponiert. Zum
besseren Verständnis der darauffolgenden Abschnitte wird der
Rechengang kurz dargestellt. Dabei werden als Verschiebungen

entsprechend den Freiheitsgraden von Modell 1 nur
vertikale Durchbiegungen berücksichtigt.

Eigenschwingung

Für die ungedämpfte Eigenschwingung des /-ten Massenpunktes

gilt die folgende Differentialgleichung:

(2)
d2Vi(t)

dt2
S C«v*(0=0 (i l, n)

Zum Zeitpunkt t greifen am /-ten Massenpunkt die Trägheitskraft

und die elastische Kraft des Stabsystems an. Es bedeuten
vt(f) die momentane vertikale Verschiebung des /-ten
Massenpunktes, mt die Masse dieses Massenpunktes (/-tes Diagonalelement

der Massenmatrix) und C« die Stützkraft im Massenpunkt

k (k 1,..., ri), wenn der Punkt feine Verschiebung 1

erfährt (/-te Zeile der Steifigkeitsmatrix). vte(t) sind die momentanen

effektiven Verschiebungen der n Massenpunkte. Die
Verschiebungsfunktion vj(r) wird i.a. durch den Ansatz

(3) v,(f) 9 v°i sin <oof

in eine nur vom Ort und eine nur von der Zeit abhängige
Funktion aufgespalten. Dieser Ansatz setzt voraus, dass sich
alle Massenpunkte phasengleich (in Phase) bewegen. Durch
Einsetzen von (3) in (2) ergeben sich n Gleichungen der Art

(4) ¦mi(ao1v°i +
fc=i

0

Eine nichttriviale Lösung existiert nur, wenn die
Koeffizientendeterminante verschwindet. Durch Nullsetzen der
Koeffizientendeterminante des Gleichungssystems (4) erhält
man n Lösungen (Eigenwerte) für eoo2 co2y), woraus sich
n positive Wurzeln als Eigenkreisfrequenzen com, "(2). • •

co») co(n> berechnen lassen.

Nach Einsetzen der coyj ergeben sich aus (4) zudem die
n Eigenschwingungsformen (Eigenvektoren) v*y> mit k
1 n, die bis auf einen frei wählbaren Faktor (Normierung)
bestimmt sind.

Die allgemeine Lösung der Gleichung (2), d. h. die
Schwingung des /-ten Massenpunktes, setzt sich aus n Schwingungen

mit den Eigenkreisfrequenzen u>u) und den
entsprechenden /-ten Eigenschwingungsformen zusammen:

(5) v,(t) 2 sin (cowr + *°(«)

C&°(j) ist die Phasenverschiebung der /-ten Eigenschwingung.
Wird zusätzlich eine geschwindigkeitsproportionale

Dämpfung berücksichtigt, so geht die Bewegungsgleichung (2)
über in

(6)
cPvt(t)

'
dt2

Ci
dvt(t)

dt
S CJtv*(/)

fc=i
0 (/=!,...,/*)

Darin ist Cb der Dämpfungskoeffizient, welcher die
hemmende Kraft bei einer Einheitsgeschwindigkeit ausdrückt. Für
Cb kann aus rein formalen Gründen der Ansatz

(7) Cb =1 »»co &

gemacht werden, co» hat die Dimension der Kreisfrequenz und
wird daher die Kreisfrequenz der Dämpfung genannt. Die
Beziehung von C» zu dem für die Erfassung der Dämpfung oft
gebrauchten logarithmischen Dekrement 8 und dem
Dämpfungsfaktor 5 lautet (Umrechnung nur gültig, wenn nur eine
Eigenschwingung .berücksichtigt wird):

(8) 8
CO y)

211
Cb 211

2 mt co'y) un
Darin bedeutet co'yj die/-te Eigenkreisfrequenz der/-ten
gedämpften Eigenschwingung (siehe Gl. (11)). Das logarithmische

Dekrement ist

(9) nl-
An

An + i

worin An/An+i das Verhältnis zweier aufeinanderfolgender
Amplituden darstellt. Der Dämpfungsfaktor \ entspricht dem
Verhältnis der effektiven Dämpfung zur kritischen Dämpfung.

Die partikuläre Lösung der Gleichung (6) ist

(10) vt(0 v°< e-°V sin (co'o t + ®o), wobei

OD CO y) -yCO'y) CO'o

Gleichung (11) besagt, dass die Eigenkreisfrequenz coy)
der freien Schwingung durch die Dämpfung co& verkleinert
wird. Hingegen lässt sich zeigen, dass die Dämpfung die
Eigenschwingungsformen nicht verändert. Das Ausmass der
Verkleinerung von coy> durch co» hängt vom Verhältnis dieser
beiden Grössen ab. Für die bei modernen Brücken vorhandene
relativ kleine Dämpfung kann co'yj coy> gesetzt werden.

Die allgemeine Lösung der Gleichung (6) lautet in
Analogie zu (5)

(12) vt(t) e-o" S v°«W) sin (co'y,? + <D»y,)

l-\
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Sie setzt sich wiederum aus den - nun gedämpften - n
Eigenschwingungen zusammen.

Erzwungene gedämpfte Schwingung

Für eine erzwungene gedämpfte Schwingung gelten die
Bewegungsgleichungen

(13) mi^Q + 2mf<*b^P-+ 2 Cacv^i) Pi(t)
dt2 dt fc=i

0 1,...,")

Für den durchgeführten Belastungsversuch gilt für den

Ort der Schwingungsmaschine Pi(i) Psincof. Für die

übrigen Punkte ist Pt(f) 0.
Die n über v* gekoppelten Gleichungen (13) können durch

Zerlegen nach den Eigenschwingungsformen entkoppelt und
gelöst werden.

Die Belastung wird dargestellt durch die Reihe

n

(14) Pi(t) 2 pu) (i)mi viu)
J=t

vtu) bedeutet die Verschiebung im Punkt / bei der/-ten Form
der Eigenschwingung (/-te Komponente des /-ten
Eigenvektors), wobei die Grösse der Verschiebung in einem Punkt
der Eigenschwingungsform beliebig gewählt werden darf
(Normierung). pu)(t) stellt den Anteil der Belastung Pi(t) an.
der /-ten Eigenschwingung dar und bestimmt somit das

Ausmass der Mitwirkung der /-ten Eigenschwingung. Es gut

EPt(f)v«y>
(15) P U) (t) f=l

n
2 mi v2 m)

Für eine harmonische Belastung Pt(t) Pi sin co* ist

(16) pw(t) pu) sin at, Pti)

2 Pi viu)

2wj<v2iy)
(-1

Die Durchbiegung vt(t) wird entwickelt durch die Reihe

n
(17) Vi(f)= 2 f[j|(t)n(oO
<7w)(0 gibt den Anteil der /-ten Eigenschwingung an der
Verschiebung des /-ten Massenpunktes.

Durch Einsetzen von (17) und (14) in (13) und anschliessendem

Koeffizientenvergleich ergeben sich n entkoppelte
Differentialgleichungen von der Form

,,-. d2qu)(t) dqmV) WwfmM •
I

(18) — 1- 2 cot — h co2y) 0y)(r) P(j) Sm ut
dt2 dt

mit der Partikulärlösung

(19) qu)(t) qu) sin (a>t + *y>), worin

Pw
(20) qm und

(21) O y> are tan

l/(o>2y> — co2)2 +4co2co02

2 co co»

to —** 0)

Die allgemeine Lösung der Gleichung (13) erhält man wie
üblich durch Superposition der Lösung der homogenen
Gleichung (Gl. 12) und der Partikulärlösung (Gl. 19)

(22) vt(f) 2 vhd qu) sin (cor + ®W)) +
y=i

v°*y) <?-<V sin (co'y, t + *»(,))

Darin stellt das erste Glied den stationären Anteil dar.
Das zweite Glied entspricht der Eigenschwingung. Diese wird
jedoch - wie der Term e_<V angibt - mit der Zeit «heraus-

gedämpft», so dass nur noch der stationäre Teil übrig bleibt.
Die v0«« und <I>0y) können durch die Anfangsbedingungen

vt(t 0) und 1 festgelegt werden.
dt

Für den Fall der Resonanz foy> co, ist aus (20) ersichtlich,

dass für vi(t) die /-te Eigenschwingung praktisch allein
massgebend ist.

3.3 Elektronische Berechnung

Zur praktischen Berechnung wurde das am Institut für
Baustatik und Konstruktion der ETHZ verfügbare SMIS-
Programm verwendet. SMIS ist ein problemorientiertes
Programm zur Durchführung von Matrizenoperationen. Für die

Berechnung am 1. Modell kann das Gleichungssystem (4) wie
folgt geschrieben werden:

Cu

Cn

Cnl

ds

Cfft

Onft

Ci»

Oin

Cfln

Vul

V"k

m\ 0

mn

v,

Vk

oder abgekürzt:

(23) [K] {v°*} co2o [M] {v°*}

[K] bedeutet die Steifigkeitsmatrix, [M] die Massenmatrix und
{v0} der Verschiebungsvektor. Die Auflösung dieses
Eigenwertproblems ergibt die Eigenwerte co2o co2y> bzw. die
Eigenkreisfrequenzen to(» und die zugehörigen Eigenschwingungsformen

als Eigenvektoren. Die Matrix [<£>] der
Eigenvektoren erfährt im SMIS-Programm eine besondere, für die
Integration der Bewegungsdifferentialgleichimgen
zweckmässige Normierung. Der Unterschied zwischen toyj und co'y)
kann - wie unter 3.2 dargelegt - vernachlässigt werden.

Wird in (18) anstelle von co» der Dämpfungsfaktor \
8/2II eingesetzt und für alle Eigenschwingungen als gleich
angenommen, so ergibt sich

(24) [QW 25[«<. [«(» i?«>} i/>y)}sincof

Die Integration, d.h. die Berechnung von qm(t) aus (24),
erfolgt im SMIS-Programm in Zeitintervallen At. Die Ergebnisse

werden für die Zeitpunkte Ztst (Z 1, 2, oo)
gespeichert und analog (17) durch

(25) {v(/)} [O] {q(j)[(t)}

auf die ursprünglichen Koordinaten zurücktransformiert.
Für die Berechnung am Modell 2 kommen zu den

15 Freiheitsgraden der vertikalen Durchbiegung die 15 Ver-
drehungsfreiheitsgrade hinzu.

Der Verschiebungsvektor muss entsprechend erweitert
werden. [K] vergrössert sich um die Verdrehungsstützkräfte,
und die Diagonale von [M] wird durch die
Massenrotationsträgheitsmomente fortgesetzt. Gl. (23) entsprechend werden
jetzt 30 Eigenkreisfrequenzen berechnet. Die 30x30 Matrix
[fl>] der Eigenvektoren ist voll besetzt, wobei jedoch häufig
unterschieden werden kann zwischen Eigenvektoren, bei denen

422 Schweizerische Bauzeitung • 94. Jahrgang Heft 28/29 • 12. Juli 1976



die vertikalen Verschiebungen dominieren, und solchen, bei
denen die Verdrehungen überwiegen. Die Bedeutung von qu)
in (24) wird in analoger Weise erweitert.

Für die Berechnung an den Modellen 3 und 4 ist für die
Berücksichtigung der 15 Longitudinalfreiheitsgrade eine
zusätzliche Erweiterung sinngemäss vorzunehmen.

3.4 Numerische Ergebnisse und Vergleich mit Versuchs¬

resultaten

Bei einer ersten, unmittelbar vor dem Versuch erfolgten
Berechnung des Eigenwertproblems am Modell 1 wurden die
folgenden, dannzumal am Bauwerk ermittelten
Materialkennwerte eingesetzt:

Elb 195000 kp/cm2,

Ylb 1,9 t/m3 (einschl. Armierungsgewicht).

Hiermit gelang mit /<d to(u/2 n 2,51 Hz eine sehr

gute Vorhersage der am Bauwerk festgestellten ersten
Eigenfrequenz. Der annähernd gleiche Wert wurde auch bei den

Berechnungen an den anderen Modellen erhalten. Die obigen
Materialkennwerte wurden deshalb für sämtliche Berechnungen

beibehalten.

a) Eigenfrequenzen und Eigenschwingungsformen

Die Lösung des Eigenwertproblems, d. h. die Bestimmimg
der Eigenkreisfrequenzen und der Eigenschwingungsformen
wurde an den in Bild 5 dargestellten und einer Reihe weiterer
Modelle durchgeführt. In Bild 6 sind jeweils die ersten 8

Eigenschwingungsformen mit den entsprechenden Eigenfrequenzen
dargestellt.

Bei der Berechnung am Modell 2 zeigte sich, dass durch
die zusätzliche Berücksichtigung der Grundrisskrümmung und
der Verdrehungsfreiheitsgrade die Eigenfrequenzen und die
Eigenschwingungsformen von Modell 1 bis zu verhältnismässig

hohen Frequenzen praktisch nicht verändert wurden.
Erst bei etwa 15 Hz wurde ein neuer zusätzlicher Eigenwert
mit der dazugehörigen Eigenschwingungsform festgestellt.
Dies war auf Grund einer ebenfalls durchgeführten Berechnung

der reinen Torsionsschwingung auch zu erwarten, da die
erste reine Torsionseigenfrequenz bei 14,6 Hz liegt.
Entsprechend zeigen auch die Eigenschwingungsformen erst ab
der 7. Form wesentliche Unterschiede zu denjenigen von
Modell 1. Beim Vergleich der berechneten Eigenfrequenzen
mit den im Versuch festgestellten Anregungen fällt auf, dass
die zweite Eigenfrequenz sowohl beim Modell 1 als auch beim

Bild 6a. Eigenschwingungsformen und
Eigenfrequenzen der Modelle 1 und 2

Modell Modell 2

Jtt-
f,= 3,76Hz

f5 5,20Hz

U ' 602Hz

f6 =1305Hz

fr= 14,90Hz

f, 17,90Hz

-k.

V"~ ~Y --*

Jr

js—r \_jatt.

Y"
FY~

-j—&*.

3,41 Hz

3'504Hz

4= 6,08 Hz

B= 11,50Hz

'12,10Hz

1300Hz

Modell 3

Bild 6b. Eigenschwingungsformen lind
Eigenfrequenzen der Modelle 3 und 4
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Modell 2 erst bei 3,36 Hz folgt, wo hingegen bei der
wirklichen Brücke die zweite Resonanzstelle unmittelbar oberhalb

der ersten lag.
Weit grössere Unterschiede zum Modell 1 - und auch

bessere Übereinstimmung mit den Versuchsergebnissen -
brachte der Übergang von Modell 2 zu Modell 3 durch die

zusätzliche Berücksichtigung der Longitudinalverschiebungen.
Insbesondere die antimetrischen Eigenschwingungsformen
weisen an den oberen Stützenenden erhebliche vertikale
Knotenverschiebungen auf. Infolge der durch die V-Stützen

mit dem Brückenträger gebildeten, recht starren Dreiecksscheiben

sind diese Formen nur möglich, wenn sich die Knoten
gleichzeitig auch horizontal verschieben können. Daher ist

offensichtlich, dass auch Longitudinalverschiebungen wesentlich

sein können. Bei der Berechnung der reinen Longitudinal-
schwingung ergab sich ein 1. Eigenwert bei 3,4 Hz, also im
Bereich der 1. reinen Biegeeigenfrequenz, während der zweite

wesentlich höher lag, nämlich bei 14,3 Hz. Daher hatte der

Einbezug der Longitudinalverschieblichkeit vor allem einen

grossen Einfluss auf die ersten beiden Eigenschwingungsformen

und auf die 2. Eigenfrequenz. Diese fiel nun fast mit
der 1. Eigenfrequenz zusammen, was den Versuchsergebnissen

bereits wesentlich besser entspricht.
Eine bezüglich der Lage der 2. Eigenfrequenz sehr gute

Übereinstimmung von Versuch und Rechnung konnte mit dem

Modell 4 erzielt werden. Wie erst während der Berechnungen
bekannt wurde, leistete zur Zeit des Versuches infolge
verschiedener unbeabsichtigter Umstände ein Lager am einen

Brückenende einen erheblichen, jedoch schwer quantifizierbaren

Reibungswiderstand. Um diesen Widerstand näherungsweise

zu erfassen, wurde das Modell 3 durch eine horizontale
Feder ergänzt. Deren Steifigkeit wurde variiert und schliesslich

so angenommen, dass die 2. Eigenfrequenz mit der
entsprechenden im Versuch festgestellten Anregung etwa
übereinstimmte. Dabei glichen sich die ersten beiden
Eigenschwingungsformen wieder denjenigen von Modell 1 und 2 an.
Die höheren Eigenfrequenzen und Eigenschwingungsformen
blieben praktisch dieselben wie bei Modell 3. Insgesamt
entsprechen die rechnerisch ermittelten Eigenfrequenzen mit den

zugehörigen Eigenschwingungsformen den im Versuch bei

Belastung im Mittel- und Randfeld festgestellten Anregungen.

b) Amplituden

In Bild 4 sind die rechnerisch am Modell 4 ermittelten

Amplituden, d. h. die Resonanzkurven für Belastung im
Mittel- und im Randfeld gestrichelt eingetragen. Es zeigt sich

auch hier in Anbetracht der schwierig zu erfassenden
wirklichen Verhältnisse eine befriedigende Übereinstimmung mit
den Versuchsergebnissen.

Amplitude und Balaarung Im

• Mittelfeld

Randfeld

.5-

Mll 8-0,10 berech- IQ
nete Werte wio Re-i
sonanzkurve Bild 4 l

0.62 semeaaafie
0.54mm

0.59mm

0.150.05 0.10

H %.,

Die Amplituden der dargestellten Resonanzkurvenwurden

mit der im Ausschwingversuch festgestellten Dämpfung
8 0,10 berechnet. Bei Belastung im Mittelfeld wird mit der

rechnerischen maximalen Amplitude von 0,66 mm der im
Versuch gemessene Wert von 0,54 mm um 26% überschätzt.

Im Randfeld hingegen wird der gerechnete Wert von 0,59 mm
mit dem gemessenen Wert von 0,62 mm um rund 5 %
unterschätzt. In Bild 7 sind die nach Modell 4 berechneten
maximalen Amplituden in Abhängigkeit von der angenommenen
Dämpfung dargestellt. Die gemessenen Amplituden sind ebenfalls

eingetragen. Es zeigt sich, dass sich mit 8 =0,10 eine

befriedigende Übereinstimmung der gerechneten und
gemessenen Amplituden ergibt.

4. Vergleiche zwischen analogen Tragwerken aus
Leichtbeton und Beton
Im folgenden werden dynamische Kenngrössen analoger

Leichtbeton- und Betontragwerke miteinander verglichen.

«Analog» bedeutet hier, dass sich die beiden Tragwerke nur in
der Dichte der Eigenmasse und in der Grösse der Biegesteifig-

keit unterscheiden können. Hingegen sollen insbesondere das

statische System, die Spannweiten und die Verteilung von
Eigenmasse und Biegesteifigkeit gleich sein. Der Vergleich
dynamischer Kenngrössen zweier derart korrelierter
Konstruktionen ist zwar nicht unproblematisch. Denn ein optimal
projektiertes Leichtbetontragwerk kann sich sehr wohl auch

bei den als unveränderlich angenommenen Parametern von
einem dem gleichen Zweck dienenden Betontragwerk
unterscheiden. Zudem wird die Masse irgendwelcher Nutzlasten
nicht berücksichtigt. Trotz dieser Einschränkungen ergeben

sich einige interessante Hinweise.
Die Dämpfungseigenschaften von Leichtbetontragwerken

sind noch wenig erforscht. Immerhin weiss man, dass bei der

Materialdämpfung keine grundlegenden Unterschiede zum
Beton bestehen. Und weil der Anteil der Systemdämpfung an
der Gesamtdämpfung wesentlich ist und die Systemdämpfung
bei analogen Konstruktionen praktisch dieselbe sein dürfte,
wird näherungsweise angenommen, dass der Wert 8 für beide

Tragwerkarten der gleiche sei.

4.1 Eigenfrequenzen

Geht man von einem gegebenen Tragwerk aus, so

bedeutet eine in jedem Schnitt proportional gleiche Änderung der

Biegesteifigkeit EI die Multiplikation der Steifigkeitsmatrix in
Gleichung (23) mit einem konstanten Faktor ci. Wird zudem

in jedem Massenpunkt die Dichte y der Punktmasse auf gleiche
Weise verändert, so muss auch die Massenmatrix mit einem

Faktor cz multipliziert werden. Die Werte co2o ändern sich

daher um den Faktor c\/c%. Somit gilt für analoge Leichtbeton-

und Betontragwerke

(26) cotB ¥ Cl
¦ cob c3 • cob, mit

o» mm - Ci

0P29

Bild 7. Nach Modell 4 berechnete, maximale Amplituden in
Abhängigkeit von der angenommenen Dämpfung

Sofern keine ständigen Nutzlasten wie Belag, Gehwege,
Geländer usw. vorhanden sind, bzw. vernachlässigt werden, so

kann für c2 auch das Verhältnis der Baustoffdichten ylb/yb
gesetzt werden. Die Beziehung (26) gilt für alle Eigenkreis-
frequenzen eines Systems mit n Freiheitsgraden. Sie ist in
Bild 8 für die praktisch vorkommenden Bereiche von a und c2

graphisch dargestellt.
Als Beispiel sollen die Eigenfrequenzen der Leichtbetonbrücke

Schaffhausen mit derjenigen einer fiktiven analogen
Brücke aus normalem Beton mit gleichen Abmessungen und
gleicher Druckfestigkeit verglichen werden. Gemäss den in der
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Norm SIA 162 bzw. in den zugehörigen Leichtbetonrichtlinien

Nr. 33 angegebenen Beziehungen zwischen .E-Modul und
Würfeldruckfestigkeit sowie mit den Dichten (einschliesslich
Armierungen) von -{lb 1,9 t/m3 und yb 2,5 t/m3 und
.unter Berücksichtigung der Masse der ständigen Nutzlasten
ergeben sich:

10000

19000
0,53; cz =0,785

Damit wird

/0,53

0,785
tos ^0,68 • cos 0,82 toi

Demnach wäre z.B. die erste Eigenfrequenz einer analogen
Betonbrücke mit gleichen Abmessungen fn)B 3,07 Hz
entsprechend fwLB 2,51 Hz. Das Beispiel ist in Bild 8

eingetragen.

4.2 Amplituden bei Resonanz

Es sollen die Amplituden analoger Leichtbeton- und
Betontragwerke für den Fall der Resonanz bei den durch
Gleichung (26) einander zugeordneten Eigenfrequenzen
verglichen werden. Dieser Vergleich hat somit nur Aussagekraft
für Tragwerke, die durch eine Erregerkraft mit variabler
Frequenz gemäss (1) beansprucht werden. Für eine Störkraft
mit einer ganz bestimmten, stets gleich bleibenden Frequenz
ist hingegen der Abstand dieser Frequenz von der
«nächstliegenden» Eigenfrequenz von Bedeutung. Für diesen Fall
lassen sich keine allgemein gültigen Vergleichsergebnisse
formulieren.

Bei Resonanz kann man sich auf diejenige Eigenfrequenz
und Eigenschwingungsform beschränken, für die gilt

(28) COy)

Da zudem die der Lösung der homogenen Differentialgleichung

entsprechende Schwingung infolge der Dämpfung
nach einiger Zeit verschwunden ist, bleibt von Gleichung (22)
noch

(29) Vi(f) viu) • qu) sin (cor + <J>y>)

Die Amplitude bei Resonanz wird damit

Vi max (co co y>) Vjy)
PW

2t02y)
co y>

Aus (1) folgt

(30) PiLB PiB C23 Pil

Mit (14) und wegen 2 II
coyi

hung der Amplituden zu

8is 8b wird die Bezie-

(31) VimaxLB
1

Vi max B

Für eine in beiden Fällen gleich grosse, d.h.
frequenzunabhängige Erregerkraft ist Pilb PiB. Damit wird

(32) Vi max LB — Vi max B
Cl

Die Gleichungen (31) und (32) sind in Bild 9 dargestellt.
Als Beispiel sollen die Amplituden der im vorigen

Abschnitt definierten beiden Brücken miteinander verglichen
werden. Nach Gleichung (31) ergibt sich VimaxLB 1,27

Co»0.70

c, 0.80

:, 0,90

Beispiel Brücke
Schoffnausen

EI

EI065M5 0.50 055 06C

Bild 8. Verhältnis der Eigenfrequenzen analoger Leichtbeton-

und Betontragwerke

vimax b. Könnte man also an der analogen Betonbrücke mit der
gleichen Schwingungsmaschine einen Versuch durchführen, so
würde man - immer unter den getroffenen Voraussetzungen -
entsprechend der an der Leichtbetonbrücke bei/ajiB 2,51 Hz
festgestellten maximalen Amplitude von 0,54 mm an der
Betonbrücke bei/<i)B 3,07 Hz eine maximale Amplitude von
0,42 mm messen. Für die im Versuch bei/(uz,B 2,51 Hz auf-
gebrachte Erregerkraft ergäbe sich nach Gleichung (32)
hingegen bei /(db 3,07 Hz eine Amplitude von nur 0,29 mm.
Beide Beispiele sind in Bild 9 eingetragen.

Schliesslich sei noch der Einfluss einer Rissebildung kurz
diskutiert, obwohl die hergeleiteten Beziehungen streng
genommen nur für einen ideal elastischen und damit auch
rissefreien Zustand gelten. Durch die Rissebildung nimmt die
Biegesteifigkeit bekanntlich ab, bei Leichtbetonquerschnitten
allerdings in geringerem Masse als bei analogen Betonquerschnitten.

Im vollständig gerissenen Zustand ist die
Biegesteifigkeit nahezu gleich. Dies bedeutet, dass Ci gegen 1 geht
und C3 sogar grösser als 1 werden kann. Daraus ist zu schliessen,

dass mit fortschreitender Rissebildung die Eigenfrequenzen

analoger Leichtbeton- und Betonkonstruktionen sich nicht
nur ändern, sondern auch mehr und mehr angleichen.
Dasselbe dürfte - bei gleicher Dämpfung - für die Amplituden
zutreffen.

Vl"""u
^maa0

\
Z- h '0^53^1 3etsplel 3rücke Sc laffhaus n

1^9 ^4T̂^
JDfQr fre lusniunabl angige Em gerVroM

W

tirjige Em

tc ¦Ca,785

J) fllrfn quunicbh isrkraft

// °*10 Q to 0,60 0 "0 Q JO ci für Kurve©

0, 50 0 70 030 qK> 1 0 CgfQr Kurve (f)

Bild 9. Verhältnis der maximalen Amplituden bei frequenzabhän-
- giger und frequenzunabhängiger Erregerkraft bei analogen Leichtbeton-

und Betonfragwerken im Falle der Resonanz
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5. Folgerungen
Im Falle dieser Leichtbetonbrücke gelang es recht gut,

verschiedene bei den dynamischen Versuchen gemessene
Grössen auf theoretischem Wege nachzurechnen. Dabei kam
der Wahl des Berechnungsmodells entscheidende Bedeutung
zu. Die zum Vergleich durchgeführten Abklärungen zeigen,
dass Leichtbetonkonstruktionen kein wesentlich anderes
dynamisches Verhalten aufweisen als analoge Betonkonstruktionen.
Wohl besteht bei Leichtbetonkonstruktionen im Vergleich zu
analogen Betonkonstruktionen die Tendenz zu etwas grösseren
Amplituden. Indessen ist bei beiden Bauwerkarten der
Einfluss anderer Konstruktionsmerkmale wie Schlankheit,
statisches System, Rissebildung usw., auf das dynamische
Verhalten meist grösser als die Baustoffwahl. Bei
Leichtbetonkonstruktionen ist daher, wie bei Betonkonstruktionen, stets
eine Beurteilung aufgrund der konkreten Gegebenheiten
erforderlich.

Beim Leichtbeton, aber auch beim Beton, bestehen
wesentliche Wissenslücken über wichtige Grössen, wie z. B.

Dämpfung, Einfluss von Rissebildung und Vorspanngrad
sowie Verhalten bei dynamischer Beanspruchung im plastischen

Bereich. Zur besseren Klärung dieser Fragen werden
deshalb im Rahmen eines Forschungsprogrammes am Institut
für Baustatik und Konstruktion der ETHZ vergleichende
Versuche und entsprechende theoretische Studien durchgeführt.
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Die Leichtbetonbrücke Schaffhausen
Belastungs- und Schwingungsversuche
Von S. Baläs, Dübendorf DK 624.27.4:666.973

In den letzten 18 Jahren führte die EMPA an ungefähr
250 neuen Brücken Belastungsversuche durch. Die Versuche,
erbrachten Informationen sowohl für das Tragverhalten der
Brücke, als auch für deren Qualität. Gleichzeitig wurde in den
meisten Fällen auch das dynamische Verhalten der Brücke untersucht

und festgestellt, wie die Brücke auf Erschütterungen,
Stösse und Schwingungen, welche durch den Verkehr entstehen,
reagiert. Die Versuche gewinnen dadurch an Bedeutung, wenn
die ermittelten Ergebnisse direkt mit theoretischen Werten
verglichen werden können. Hierbei erhält der Projektverfasser wertvolle

Angaben darüber, wie gut seine Annahmen dem tatsächlichen

Verhalten der Brücke entsprachen.
Es ist immer interessant, das Verhalten einer Brücke von

nicht alltäglicher Konstruktion - wie die vorliegende - unter
statischer und dynamischer Beanspruchung zu prüfen. Die
dreifeldrige Rahmenbrücke in Schaffhausen hat eine maximale

Spannweite von 55,80 m und stellt ein sogenanntes

Sprengwerk dar. Sie ist symmetrisch bezüglich der Brücken-
rhitte, räumlich leicht gekrümmt und hat einen teilweise
vorgespannten Leichtbetonüberbau. Die genaue Beschreibung der
Brücke ist in [1 ] gegeben.

Die Versuche wurden im Auftrag des Tiefbauamtes des

Kantons Schaffhausen von der EMPA in Zusammenarbeit
mit dem Ingenieurbüro Wehrli & Weimer, dem Projektverfasser,

durchgeführt. Die statischen- und die Fahrversuche wurden

auf Anregung von Prof. Dr. H. Bachmann mit weiteren
Schwingversuchen ergänzt. So konnten die berechneten
theoretischen Werte überprüft werden [2].

Statische Versuche

Bei den statischen Versuchen handelte es sich um einen
zentrischen und einen exzentrischen Lastfall, wobei der
Einfluss von zwei wandernden Lasten mittels 10 induktiven
Weggebern an 5 verschiedenen Messquerschnitten ermittelt wurde
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Bild 1. Abmessungen, Instrumentenanordnung und Laststellungen

426 Schwelzerleche Bauzeitung • 94. Jahrgang Heft 28/29 • 12. Juli 1976


	Versuche und Berechnungen zum dynamischen Verhalten einer Leichtbetonbrücke und einer analogen Betonbrücke

