
Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 93 (1975)

Heft: 21

Artikel: Berechnung der Traglast von Stahlbetonplatten mittels finiter Elemente

Autor: Anderheggen, E. / Knöpfel, H.

DOI: https://doi.org/10.5169/seals-72752

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-72752
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


93. Jahrgang Heft 21 SCHWEIZERISCHE BAUZEITUNG 22. Mai 1975

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE. 8021 ZÜRICH. POSTFACH 630

Berechnung der Traglast von Stahlbetonplatten mittels finiter Elemente
Von Dr. E. Anderheggen, und Dr. H. Knöpfel, Zürich DK 624.04

1. Einleitung
Die numerische Berechnung der statischen Tragfähigkeit

von beliebig geformten, beliebig armierten und beliebig
belasteten Stahlbetonplatten kann heute mit Hilfe der beiden am
Institut für Baustatik und Konstruktion der ETH Zürich
entwickelten Computerprogramme IRIS-L und IRIS-C erfolgen.
Das Ziel dieses Aufsatzes ist, die Bauingenieure aus der Praxis

über Möglichkeiten und Grenzen dieser Programme sowie

über die für die Aufstellung des mathematischen Modells
zugrunde gelegten Annahmen zu orientieren. Auf theoretische

Herleitungen wird so weit wie möglich verzichtet, weil diese in
früheren Publikationen ([4], [6]) .zu finden sind. Wer die

Computerprogramme für praktische Berechnungen verwenden

will, erhält die dazu notwendigen Angaben vom Institut für
Baustatik und Konstruktion der Eidg. Technischen Hochschule

Zürich.
Das verwendete numerische Verfahren stützt sich auf die

Annahmen der Plastizitätstheorie für die Biegung und Drillung
von Platten (starr-plastische Beziehungen zwischen Momenten
und Krümmungen). Die Schubbruchsicherheit wird nicht
untersucht. Für die Approximation des Momenten- und
Verschiebungsverlaufs werden dreieckige finite Elemente
verwendet.

Die Geometrie und die Armierung der Platte ist bei der

Traglastberechnung gegeben. Die senkrecht zur Plattenebene
wirkende Last Xp(x,y) ist bis auf den Traglastfaktor X

bekannt. Es wird derjenige Wert von X berechnet, für welchen
unbeschränktes Fliessen auftritt. Im gleichen Rechengang
wird auch die Form des Bruchmechanismus bestimmt. Man
erhält jedoch keine Informationen über den Gebrauchszustand.

Der Traglastfaktor X kann sowohl aufgrund des statischen

(oder «unteren») wie auch aufgrund des kinematischen (oder
«oberen») Grenzwertsatzes der Plastizitätstheorie ermittelt
werden. Für eine auf Biegung und Drillung beanspruchte
Platte lautet die mathematische Problemstellung wie folgt:

Nach dem statischen Grenzwertsatz:

Es ist ein möglichst grosser Wert des Traglastfaktors X zu
suchen. Die entsprechende Belastung Xp (x,y) muss mit den

Momenten m% (x,y), my (x,y) und mxy (x,y) im Gleichgewicht

sein. Zudem dürfen diese Momente die Plastizitätsbedingung

nirgends verletzen.

Nach dem kinematischen Grenzwertsatz

Es ist ein möglichst kleiner Wert des Traglastfaktors X zu
suchen. Die äussere Leistung L der entsprechenden Belastung

^P (x,y) ist gleich der inneren Dissipationsleistung D. Das

zur Bestimmung von L verwendete Verschiebungsgeschwindig-
keitsfeld und das zur Bestimmung von D verwendete Deh-
nungsgeschwindigkeitsfeld müssen miteinander kinematisch

verträglich sein.

Die Verwendung von parametrischen Näherungsfunktionen

(Methode der finiten Elemente) führt im allgemeinen

dazu, dass sowohl das Gleichgewicht wie die kinematische

Kompatibilität lokal verletzt sind. Es kann daher in der Regel
nicht ein oberer bzw. unterer Grenzwert für X resultieren,
wohl aber ein guter und bei Verfeinerung der Einteilung in
Elemente zum richtigen Wert konvergierender Näherungswert.

2. Einfaches Demonstrationsmodell

Die Methode, die für die Traglastberechnung von
Stahlbetonplatten verwendet wurde, soll zuerst an Hand des

bekannten einfachen, symmetrischen Fachwerkmodelles ([1],
S. 1) erläutert werden.

Der statische Grenzwertsatz verlangt, dass die Normalkräfte

5, und »S^ nicht grösser sind als die Fliess-Normalkraft
Sf, und dass SV und S2 im Gleichgewicht mit der Traglast XP

stehen. Die Gleichgewichtsbedingung kann mittels der-virtuellen

Verschiebung W* formuliert werden (siehe Bild 1). Man
erhält damit das in Bild 2a angegebene lineare Programm.

Der kinematische Grenzwertsatz verlangt, dass die äussere

Leistung infolge der Verschiebungsgesdiwindigkeit W gleich
ist wie die innere Dissipationsleistung. Diese berechnet sich

mit Hilfe der verallgemeinerten Dehnungsgeschwindigkeits-

parameter (j, und ß2> welche das Integral der
Dehnungsgeschwindigkeiten £j und s2 über die entsprechenden Stäblängen

darstellen. Zudem muss W mit ß, und ß2 kinematisch verträglich

sein. Normalisiert man den Kollapsmechanismus so, dass

P W 1 ist, erhält man das in Bild 4a angegebene lineare

Programm. Die in den Bildern 2a und 4a dargestellten linearen

Programme sind zueinander «dual» und somit völlig äquivalent.
Sie liefern für X den gleichen Optimalwert. Dasselbe gilt für die

allgemeinen, in Matrixschreibweise angegebenen linearen
Programme der Bilder 2b und 4b. Diese werden in Abschnitt 4
näher erörtert.
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Bild 1. Bedingungen aus dem statischen Grenzwertsatz
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Bild 3. Bedingungen aus dem kinematischen Grehzwertsatz
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Bild 2. Lineares Programm aus dem statischen Grenzwertsatz Bild 4. Lineares Programm aus dem kinematischen Grenzwertsatz

3. Plastizitätsbedingungen für Stahlbetonplatten

Die Fliessbedingung von Johansen hat sich in verschiedenen

Versuchen bestätigt [5]. Sie verlangt, dass das Biegemoment

mn für jede beliebige Richtung n der Plattenebene im
geschlossenen Intervall zwischen den zugehörigen Fliessmomenten

der unteren und oberen Bewehrung (Pn und Nn) liegt:

— Nn <mn <Pu
Daraus ergeben sich nichtlineare Fliessbedingungen, die,

um die lineare Programmierung verwenden zu können, lineari-
siert werden müssen. Es werden die folgenden linearisierten
Fliessbedingungen verwendet ([2], S.67):

[Cq\ — [UQ]{m(mq)} §

Px "f" Pxy

Px — Pxy

Py r Pxy

Py —Pxy
Nx+Nxv
Nx Nxy

Ny + Nxy

Ny—Nxy

1 0 1 0
1 0 —1 0

0 1 1 0
0

¦1

1

0

—1

1

mx

mv > 0

0
¦1 0 —1 mxy

0
0 —1 1 0
0 —1 —1 0

Der Kontrollpunktindex q bezeichnet einen Punkt der
Platte, für den die Plastizitätsbedingungen kontrolliert werden.
[Uq\ wird als Ungleichungsmatrix, {Cq) als Vektor der plastischen

Widerstände im Kontrollpunkt q bezeichnet. Px, Py,
Nx und Ny stellen die plastischen Widerstände (d.h. die
Fliessmomente) für positive und negative Momente in x- und y-
Richtung dar. Die Widerstände Pxy und Nxy treten nur auf,
wenn x und y nicht die Richtungen einer orthogonalen Armierung

sind. Für eine nichtorthogonale Armierung kann eine
äquivalente orthogonale Armierung bestimmt werden ([2],
S.58). Ein Beispiel für die Fliessfigur, die sich aus den
angegebenen linearisierten Fliessbedingungen ergibt, ist in Bild 6
dargestellt.

Der zulässige Bereich der linearisierten Fliessfigur wird
von der nichtlinearen Fliessfigur umschrieben und liegt folglich

«auf der sicheren Seite». Als Bemessungsregel formuliert
bedeutet es, dass z.B. die untere bzw. die obere Armierung in
Ar-Richtung auf den maximalen bzw. minimalen Wert von
mx ± mxy (Armierungsmoment) bemessen werden soll.

4. Herleitung des linearen Programmes

Um den Verschiebungs- und den Momentenverlauf als
Funktionen diskreter Parameter darstellen zu können, wird
die Platte in dreieckige finite Elemente unterteilt. Als
Verschiebungsparameter werden die Durchbiegungen W* in jedem
Knoten k gewählt. In den angrenzenden Elementen verlaufen
die Durchbiegungen w (x,y) linear (siehe Bild 5). Der
Momentenverlauf wird auf zwei Arten angenähert. Beim Programm
IRIS-L (wobei L für «linear» steht) wird für die Momente
mx (x,y), ms (x,y) und mXy (x,y) der gleiche lineare Verlauf
wie für die Durchbiegungen w (x,y) angenommen. Als
Momentenparameter treten somit drei diskrete Momentenwerte Mit,
Mytc und Mxyk in jedem Knoten k auf. Beim Programm IRIS-C
(wobei C für «constant» steht) werden als Momentenparameter

die entlang jeder Seite i der Elementmasche konstant
verlaufenden Seitennormalmomente MB« gewählt. Die
Momente mx (x,y), my (x,y) und mXy (x,y) sind innerhalb jedes
Elementes konstant und können mittels einfacher
Gleichgewichtsbeziehungen aus den drei entsprechenden Seitennormal-
momenten bestimmt werden.

Der statische Grenzwertsatz der Plastizitätstheorie
verlangt, dass die inneren Plattenmomente mit den äusseren
Lasten im Gleichgewicht stehen. Entsprechende lineare
Gleichungen erhält man durch die Anwendung des Prinzips der
virtuellen Verschiebungen:

£ Gm Mi — X Pk
t

0

(k über alle vertikal verschieblichen Knoten)]

In Matrixschreibweise: [G] {M} — X {P) 0

Dabei stellt ein Koeffizient Gm der Gleichgewichtsmatrix
[G] die Arbeit der Momente infolge des /-ten Momentenparameters

Mt 1 für die inneren Krümmungen infolge des

virtuellen Verschiebungsparameters W* 1 dar. Weil die
Elemente eben bleiben, wird nur entlang der Seiten der
Elementmasche (wo co-Knickwinkel entstehen) Arbeit
geleistet. Es gilt folglich für Gm:

Bei IRIS-L: Gm £ &>> (inf. W% 1) mni (inf. M, 1) L,,
j

wobei der Seitenindex j alle Seiten der Elemente um den Knoten

k umfasst, wo infolge W* 1 o-Winkel entstehen. Das
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Moment mni stellt den Wert des linear verlaufenden
Normalmomentes in der Mitte der/-ten Seite dar. L} ist die Seitenlänge.

Bei IRIS-C: Gm (dj (infolge W% 1) U
Diese Formel ist besonders einfach, weil die entlang jeder Seite
/ konstanten Normalmomente Mni selber als Momentenparameter

auftreten.
Ein Koeffizient Pte des Lastvektors {P} stellt die Arbeit der

äusseren Lasten infolge der virtuellen Verschiebungen für
W* 1 dar. In der bei den IRIS-Programmen getroffenen
Annahme, dass die Platte nur durch konzentrierte Knotenlasten

X Qk und durch gleichmässig verteilte Elementlasten
Xpe belastet ist, gilt für Pk'.

P* ß* + — £>e Fe
g e

wobei der Elementindex e alle Elemente um den Knoten k
umfasst. Fe ist die Elementfläche.

Kinematische Auflagerbedingungen für die Durchbiegungen

w sowie statische Randbedingungen für die
Normalmomente mn werden berücksichtigt, indem die
Gleichgewichtsgleichungen, welche unverschieblichen Knoten
entsprechen, bzw. die Momentenparameter, welche
Normalmomenten entlang frei drehbaren Rändern entsprechen,
weggelassen werden.

Der statische Grenzwertsatz der Plastizitätstheorie
verlangt ausserdem, dass die Plastizitätsbedingungen nirgends
verletzt werden. Diese sind beim IRIS-L-Modell in allen
Knoten, beim IRIS-C-Modell in allen Elementen zu kontrollieren.

Man erhält somit folgendes allgemeine lineare Programm
für die Unbekannten X und \M) (siehe Bild 2b):

X S Maximum

0=-{P}X+[G]{M}
0<{C)-[U]{M}iw

C) aus denDabei setzt sich der Widerstandsvektor
{Cä}-Vektoren aller Kontrollpunkte zusammen (vgl.
Abschnitt 3). Der Kontrollpunktindex q läuft beim IRIS-L-
Modell über alle Knoten und beim IRIS-C-Modell über alle
Elemente. Die Ungleichungsnoatrix [U] ist beim IRIS-L-
Modell eine aus gleichen [Uq] -Untermatrizen zusammengesetzte

diagonale Hypermatrix. Eine etwas komplizierte Struktur
weist die [U] -Matrix beim IRIS-C-Modell auf, weil die zu
kontrollierenden Elementmomente mx, my und mXy aus den
Seitennormalmomenten Mnt hergeleitet werden müssen.

Aus einem gegebenen Momentenverlauf können
«Gleichgewichtlasten», d.h. äussere Lasten, welche mit den inneren
Momenten exakt im Gleichgewicht sind, hergeleitet werden.
Diese sind beim IRIS-L-Modell konstante Linienlasten
entlang der Elementseiten sowie - aufgrund der klassischen

Kirchhoffschen Plattentheorie - konzentrierte Einzellasten in
den Randeckknoten. Beim IRIS-C-Modell sind die
Gleichgewichtlasten konzentrierte Einzellasten in den Knoten. Ist
die Platte nur durch konzentrierte Knotenlasten belastet, wird
das Gleichgewicht exakt erfüllt. Weil damit alle Bedingungen
des «unteren» Grenzwertsatzes erfüllt sind, erhält man für X aus
dem IRIS-C-Programm einen unteren Grenzwert der
wirklichen Traglast.

Jedes lineare Programm hat sein duales Programm. Wie
in Abschnitt 2 für das einfache Fachwerkmodell, könnte das
duale Programm aufgrund des kinematischen Grenzwertsatzes
der Plastizitätstheorie auch für Platten hergeleitet werden.
Hier soll nur das Endresultat angegeben werden (siehe Bild 4b):

X I \C}T {ß} M Minimum

0 1 — {P)t {W}
0 [G]t {W} — [trpjß}

Die zwei linearen Programme der Bilder 2b und 4b sind
völlig äquivalent und liefern für den Traglastfaktor X den
gleichen Optimalwert. Wird eines gelöst, erhält man gleichzeitig

die Lösung des anderen Programmes. Es ergeben sich
somit nicht nur die Werte der Momentenparameter {M} (diese
beschreiben eine mögliche, sonst aber kaum sinnvolle
Momentenverteilung), sondern auch die Werte der Verschiebungsge-
schwindigkeitsparameter {W], welche die Form des
Kollapsmechanismus angeben, sowie die Werte von verallgemeinerten
Krümmungsgeschwindigkeitsparametern {ß}. Ist ßi3 ungleich
null, weiss man, dass die /-te linearisierte Fliessbedingung am
Kontrollpunkt q für die Traglast massgebend ist. ¦

5. Computerprogramme
Die Ausgangsdaten für die Computerberechnung sind:

die Geometrie der Platte mit der Einteilung in finite Elemente,
die Lastverteilung in Form von Einzellasten in den Knoten
und verteilten Lasten über die Elemente, die plastischen
Momente in den Kontrollpunkten, d.h. in den Knoten bei
IRIS-L bzw. in den Elementen bei IRIS-C, sowie statische und
kinematische Randbedingungen. Die Berechnung des benötigten

Speicherplatzes und die Schätzung der voraussichtlichen
Kosten sind in den Benützungsanleitungen zu den Programmen
angegeben. Die Einteilung in finite Elemente sollte im
allgemeinen nicht mehr als etwa 80 Knoten umfassen.

Aufgrund der Eingabedaten stellen die Computerprogramme

die oben dargestellten linearen Programme auf. Die
Berechnung des Optimums der linearen Programme erfolgt
mittels eines vom revidierten Simplex-Verfahren ausgehenden
Verfahrens, bei dem die Koeffizienten der Ungleichungsmatrix
nicht gespeichert werden müssen.

Als Ergebnisse der Computerberechnung erhält man den
Traglastfaktor X, einen zulässigen Momentenzustand und den

| x>

s

k_

Bild 5. Durchbiegung infolge Wk Bild 6. Fliessfigur aus linearisierten Fliessbedingungen
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Mechanismus. Der resultierende Momentenzustand entspricht
nicht dem effektiven Momentenzustand beim Kollaps, sondern
unterscheidet sich davon durch Eigenspannungszustände. Er
soll deshalb nicht für eine Bemessung verwendet werden. Der
Mechanismus zeigt ein anschauliches Bild der effektiv zu
erwartenden Form der Verschiebungen.

Die numerischen Berechnungen haben gezeigt, dass das

IRIS-C-Modell (elementweise konstante Momente) aufwesentlich

zu tiefe Werte für die Traglast führen kann, wenn die

untere oder obere Armierung oder die Armierung in einer der
beiden Hauptrichtungen gering ist. Das IRIS-L-Modell dürfte
sich für praktische Berechnungen im allgemeinen besser eignen,
weil es mit dem gleichen Rechenaufwand bessere Werte für X

liefert. Die Kosten für die Rechenzeit lagen z.B. bei einer

Masche mit 50 Knoten unter 100 Fr. je Lastfall.

6. Schiassbemerkungen

Die IRIS-Programme stellen eine wertvolle Ergänzung zu
den heute zahlreich vorhandenen Computerprogrammen dar,
welche Platten aufgrund linear-elastischer Annahmen
berechnen, und die somit im allgemeinen keine Auskünfte über
Bruchsicherheit liefern können. Sie dürften deswegen in erster
Linie bei solchen Plattentragwerken Anwendung finden, bei

denen die Bruchsicherheit gegen einmalige ausserordentliche
Lasten nachgewiesen werden muss (z.B. bei Schutzbauten)
sowie auch dann, wenn bei elastisch vordimensionierten
Tragwerken eine zusätzliche, auf ganz verschiedenen Annahmen
basierende Kontrollrechnung gerechtfertigt erscheint. Dies
dürfte öfters der Fall sein, nicht zuletzt, weil die IRIS-Programme,

solange Klarheit über die getroffenen Annahmen und über
die Bedeutung der am Finite-Element-Modell erhaltenen
Ergebnisse herrscht, leicht zu verwenden sind und massige
Rechenkosten verursachen.

Zur Zeit werden am Institut für Baustatik und Konstruktion

der ETHZ ähnliche Programme entwickelt, die, je nach den

zugrunde gelegten Plastizitätsbedingungen, für eine Reihe zwei¬

dimensionaler Probleme, von der Traglastberechnung von
Stahlbetonscheiben bis zur Bestimmung der Tragfähigkeit von
Streifenfundamenten eingesetzt werden können. Eine
langjährige, auf die Forderung plastischer Berechnungsmethoden
ausgerichtete Tradition wird damit fortgesetzt. Was die
Zukunft anbetrifft, könnte man sich fragen, ob Programme für
die automatische optimale Bemessung der Armierung bei starr-
plastischen Stahlbetonplatten entwickelt werden sollen. Dies ist

möglich, wenn auch recht aufwendig. Allerdings taucht hier
die Frage auf, ob für die Praxis vollkommen automatische

optimale Bemessungsmethoden geeigneter sind als nur
«computerunterstützte» Bemessungsmethoden. Bei den letzteren
bleibt für die Festlegung der Bemessungsparameter der

Ingenieur verantwortlich, wobei ihm der Computer nur zeigt, in
welcher Richtung er sein Optimum zu suchen hat. Dafür helfen
aber auch die aus den IRIS-Programmen erhaltenen Ergebnisse.
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Luftspeicher-Kraftwerke zur Spitzendeckung
Von B. Lendorff, dipl. Masch.-Ing., Kilchberg ZH1) DK 620.9:621.311.16

Die Elektrizitätswerke stehen vor der Aufgabe, nicht nur
eine bestimmte Energiemenge an die Verbraucher abzugeben,
sondern die Energieerzeugung auch den Bedarfsschwankungen
anzupassen. Der übliche Verlauf der Netzbelastung während
eines Tages kann Bedarfsschwankungen zwischen 40% Nachtlast

und 100% Tagesspitze aufweisen. Geeignete
Zusatzeinrichtungen zur Spitzendeckung werden um so notwendiger,
wenn zur Energieerzeugung Kernkraftwerke grosser Leistung
beitragen, die möglichst konstant belastet werden müssen, da
sie nicht geeignet sind, den täglichen Änderungen der
Netzbelastung zu folgen.

Eine derartige Zusatzvorrichtung zur Deckung von Tages-
Belastungsspitzen besteht in der Speicherung von Druckluft
und deren Benützung in einer Gasturbine. Dieses Verfahren
ist im Prinzip seit langem bekannt. Es ist auch heirüber
vielfach berichtet worden [1]. Eine erste praktische Verwirklichung

ist aber erst vor kurzem mit einer Abgabeleistung von
rund 300 MW in Deutschland durch die Nordwestdeutschen
Kraftwerke AG, Hamburg, in Angriff genommen \yorden.

Bevor die Möglichkeiten der Pressluftspeicherung mit
Gasturbinen näher untersucht werden, seien die bisher allge-

J) Die Veröffentlichung basiert auf einer Studie, die der Verfasser
als Consulent der Elektro-Watt Ingenieur Unternehmung bearbeitet
hat.

mein verwendeten Verfahren erwähnt, die zur Ergänzung von
Grundlastkraftwerken zwecks Bewältigung der täglichen
Belastungsschwankungen dienen.

1. Hydraulische Speicherung

Die alpinen Kraftwerke mit Saison-Speichern können

zwar den täglichen Belastungsschwankungen folgen. Sie werden

aber vorteilhaft durch Speicherpumpen ergänzt, welche

über Nacht oder Wochenende verfügbare Überschussenergie

verwenden, um Wasser von einem Zwischenbecken in den
höher gelegenen Stausee zurückzupumpen. Dieses wird nachher
für die Deckung der täglichen Belastungsspitzen im Turbinenbetrieb

wieder ausgenützt. Damit lässt sich der Speicherung

von Winterenergie ein Pendelbetrieb überlagern, der den

Nachtenergieanfall und den Spitzenbedarf ausgleicht. Solche

Kraftwerksausrüstungen mit kombinierten Pumpen und
Turbinen sind in der Schweiz in grosser Zahl ausgeführt worden,
weitere stehen im Bau [2].

Derartige Kombinationen von Saison-Speichern und
überlagertem Pendelbetrieb sind nicht unbeschränkt verfügbar.
Mit der Zunahme des Energiebedarfs und bei dem
notwendigerweise sich vergrössernden Anteil der Kernkraftwerke an
der Energieerzeugung werden zusätzlich Vorrichtungen
notwendig. Als hydraulische Lösung sind in der Schweiz reine
Pumpspeicheranlagen geplant, wobei vorzugsweise aus beste-
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