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Berechnung der Traglast von Stahlbetonplatten mittels finiter Elemente

Von Dr. E. Anderheggen, und Dr. H. Knépfel, Zirich

1. Einleitung

Die numerische Berechnung der statischen Tragféhigkeit
von beliebig geformten, beliebig armierten und beliebig be-
lasteten Stahlbetonplatten kann heute mit Hilfe der beiden am
Institut fiir Baustatik und Konstruktion der ETH Ziirich ent-
wickelten Computerprogramme IRIS-L und IRIS-C erfolgen.
Das Ziel dieses Aufsatzes ist, die Bauingenieure aus der Praxis
iiber Moglichkeiten und Grenzen dieser Programme sowie
iiber die fiir die Aufstellung des mathematischen Modells zu-
grunde gelegten Annahmen zu orientieren. Auf theoretische
Herleitungen wird so weit wie moglich verzichtet, weil diese in
fritheren Publikationen ([4], [6]) zu finden sind. Wer die
Computerprogramme fiir praktische Berechnungen verwenden
will, erhélt die dazu notwendigen Angaben vom Institut fiir
Baustatik und Konstruktion der Eidg. Technischen Hoch-
schule Ziirich.

Das verwendete numerische Verfahren stiitzt sich auf die
Annahmen der Plastizititstheorie fiir die Biegung und Drillung
von Platten (starr-plastische Beziehungen zwischen Momenten
und Kriimmungen). Die Schubbruchsicherheit wird nicht
untersucht. Fiir die Approximation des Momenten- und Ver-
schiebungsverlaufs werden dreieckige finite Elemente ver-
wendet.

Die Geometrie und die Armierung der Platte ist bei der
Traglastberechnung gegeben. Die senkrecht zur Plattenebene
wirkende Last % p (x,y) ist bis auf den Traglastfaktor X be-
kannt. Es wird derjenige Wert von A berechnet, fiir welchen
unbeschrianktes Fliessen auftritt. Im gleichen Rechengang
wird auch die Form des Bruchmechanismus bestimmt. Man
erhilt jedoch keine Informationen iiber den Gebrauchszu-
stand.

Der Traglastfaktor % kann sowohl aufgrund des statischen
(oder «unteren») wie auch aufgrund des kinematischen (oder
«oberen») Grenzwertsatzes der Plastizititstheorie ermittelt
werden. Fiir eine auf Biegung und Drillung beanspruchte
Platte lautet die mathematische Problemstellung wie folgt:

Nach dem statischen Grenzwertsatz:

Es ist ein moglichst grosser Wert des Traglastfaktors % zu
suchen. Die entsprechende Belastung A p (x,y) muss mit den
Momenten mz (x,y), my (x,») und mzy (x,y) im Gleichge-
wicht sein. Zudem diirfen diese Momente die Plastizitdtsbe-
dingung nirgends verletzen.
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Nach dem kinematischen Grenzwertsatz

Es ist ein moglichst kleiner Wert des Traglastfaktors A zu
suchen. Die dussere Leistung L der entsprechenden Belastung
p (x,y) ist gleich der inneren Dissipationsleistung D. Das
zur Bestimmung von L verwendete Verschiebungsgeschwindig-
keitsfeld und das zur Bestimmung von D verwendete Deh-
nungsgeschwindigkeitsfeld miissen miteinander kinematisch
vertriglich sein.

Die Verwendung von parametrischen Naherungsfunk-
tionen (Methode der finiten Elemente) fiihrt im allgemeinen
dazu, dass sowohl das Gleichgewicht wie die kinematische
Kompatibilitit lokal verletzt sind. Es kann daher in der Regel
nicht ein oberer bzw. unterer Grenzwert fiir A resultieren,
wohl aber ein guter und bei Verfeinerung der Einteilung in
Elemente zum richtigen Wert konvergierender Nédherungswert.

2. Einfaches Demonstrationsmodell

Die Methode, die fiir die Traglastberechnung von Stahl-
betonplatten verwendet wurde, soll zuerst an Hand des
bekannten einfachen, symmetrischen Fachwerkmodelles ([1],
S.1) erldutert werden.

Der statische Grenzwertsatz verlangt, dass die Normal-
krifte S, und S, nicht grosser sind als die Fliess-Normalkraft
Sy, und dass S, und S, im Gleichgewicht mit der Traglast AP
stehen. Die Gleichgewichtsbedingung kann mittels der virtuel-
len Verschiebung W* formuliert werden (siehe Bild 1). Man
erhilt damit das in Bild 2a angegebene lineare Programm.

Der kinematische Grenzwertsatz verlangt, dass die dussere
Leistung infolge der Verschiebungsgeschwindigkeit W gleich
ist wie die innere Dissipationsleistung. Diese berechnet sich
mit Hilfe der verallgememerten Dehnungsgeschwindigkeits-
parameter Bl und Bz, welche das Integral der Dehnungsge-
schwindigkeiten €, und ¢, iiber d1e entspxechenden Stabldngen
darstellen. Zudem muss W mit [31 und Bz kinematisch vertrig-
lich sein. Normalisiert man den Kollapsmechanismus so, dass

P W = 1ist, erhidlt man das in Bild 4a angegebene lineare Pro-
gramm. Die in den Bildern 2a und 4a dargesteliten linearen Pro-
gramme sind zueinander «dual» und somit vollig dquivalent.
Sie liefern fiir A den gleichen Optimalwert. Dasselbe gilt fiir die
allgemeinen, in Matrixschreibweise angegebenen linearen Pro-
gramme der Bilder 2b und 4b. Diese werden in Abschnitt 4
niher erortert.
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A —  Maximum
r*. 2 *
N # X'P'W=(S,+T'Sz)'w
/ ra w* St &S
W N/ S, 2 S,
VO PN 2

Bild 1. Bedingungen aus dem statischen Grenzwertsatz

1 X s, S, i X {m}
A= 1 > Max A= 1 > Max
0= -p |1 /2 {0} - -/} [e]
o</ sy -1
o5 5, » {o} <|{c} -[v]
a) ‘b)

Bild 2. Lineares Programm aus dem statischen Grenzwertsatz

3. Plastizititsbedingungen fiir Stahlbetonplatten

Die Fliessbedingung von Johansen hat sich in verschiede-
nen Versuchen bestétigt [5]. Sie verlangt, dass das Biegemo-
ment my fiir jede beliebige Richtung » der Plattenebene im
geschlossenen Intervall zwischen den zugehorigen Fliessmo-
menten der unteren und oberen Bewehrung (P, und N») liegt:

— Np < mnp < Py

Daraus ergeben sich nichtlineare Fliessbedingungen, die,
um die lineare Programmierung verwenden zu konnen, lineari-
siert werden miissen. Es werden die folgenden linearisierten
Fliessbedingungen verwendet ([2], S.67):

{Cq} — [Uq] {m (in Q)} =

Pz + Pzy 1 0 1f 0
By Pyy 1 01 0
Py + Pay 0 1 1 0
o o 1—1|]™ | _]o
NN =1 0~ 1] e
NNy —1 0 —1f'™M g
Ny Nees 0=t 1 0
Ny—Nay| |0 —1 —1 0

Der Kontrollpunktindex g bezeichnet einen Punkt der
Platte, fiir den die Plastizitdtsbedingungen kontrolliert werden.
[U,] wird als Ungleichungsmatrix, { C,} als Vektor der plasti-
schen Widerstinde im Kontrollpunkt g bezeichnet. P., Py,
Nz und Ny stellen die plastischen Widerstédnde (d.h. die Fliess-
momente) fiir positive und negative Momente in x- und y-
Richtung dar. Die Widerstinde Pz, und Nuy treten nur auf,
wenn x und y nicht die Richtungen einer orthogonalen Armie-
rung sind. Fiir eine nichtorthogonale Armierung kann eine
dquivalente orthogonale Armierung bestimmt werden ([2],
S.58). Ein Beispiel fiir die Fliessfigur, die sich aus den ange-
gebenen linearisierten Fliessbedingungen ergibt, ist in Bild 6
dargestellt.

Der zuldssige Bereich der linearisierten Fliessfigur wird
von der nichtlinearen Fliessfigur umschrieben und liegt folg-
lich «auf der sicheren Seite». Als Bemessungsregel formuliert
bedeutet es, dass z.B. die untere bzw. die obere Armierung in
x-Richtung auf den maximalen bzw. minimalen Wert von
mz + mazy (Armierungsmoment) bemessen werden soll.
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Bild 3. Bedingungen aus dem kinematischen Grenzwertsatz
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Bild 4. Lineares Programm aus dem kinematischen Grenzwertsatz

4. Herleitung des linearen Programmes

Um den Verschiebungs- und den Momentenverlauf als
Funktionen diskreter Parameter darstellen zu konnen, wird
die Platte in dreieckige finite Elemente unterteilt. Als Ver-
schiebungsparameter werden die Durchbiegungen Wy in jedem
Knoten k gewihlt. In den angrenzenden Elementen verlaufen
die Durchbiegungen w (x,y) linear (siehe Bild 5). Der Momen-
tenverlauf wird auf zwei Arten angenidhert. Beim Programm
IRIS-L (wobei L fiir «linear» steht) wird fiir die Momente
mz (x,y), my (x,y) und mzy (x,y) der gleiche lineare Verlauf
wie fiir die Durchbiegungen w (x,y) angenommen. Als Momen-
tenparameter treten somit drei diskrete Momentenwerte Mz,
Myrund Mzyxin jedem Knoten k auf, Beim Programm IRIS-C
(wobei C fiir «constant» steht) werden als Momentenpara-
meter die entlang jeder Seite / der Elementmasche konstant
verlaufenden Seitennormalmomente M,: gewidhlt. Die Mo-
mente mz (x,y), my (x,y) und mzy (x,y) sind innerhalb jedes
Elementes konstant und konnen mittels einfacher Gleichge-
wichtsbeziehungen aus den drei entsprechenden Seitennormal-
momenten bestimmt werden.

Der statische Grenzwertsatz der Plastizitdtstheorie ver-
langt, dass die inneren Plattenmomente mit den &dusseren
Lasten im Gleichgewicht stehen. Entsprechende lineare Glei-
chungen erhilt man durch die Anwendung des Prinzips der
virtuellen Verschiebungen:

ZGth—-XPk=0
i

(k iiber alle vertikal verschieblichen Knoten)]
In Matrixschreibweise: [G] (M} —2x {P} =0

Dabei stellt ein Koeffizient Gx: der Gleichgewichtsmatrix
[G] die Arbeit der Momente infolge des i-ten Momenten-
parameters M; = 1 fiir die inneren Kriimmungen infolge des
virtuellen Verschiebungsparameters Wy = 1 dar. Weil die
Elemente eben bleiben, wird nur entlang der Seiten der
Elementmasche (wo w-Knickwinkel entstehen) Arbeit ge-
leistet. Es gilt folglich fiir Gri:

Bei IRIS-L: Gri = Y, wj (inf. W§ = 1) mas (inf. Mi = 1) L;,
J

wobei der Seitenindex j alle Seiten der Elemente um den Kno-
ten k& umfasst, wo infolge Wi = 1 »-Winkel entstehen. Das
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Moment ma; stellt den Wert des linear verlaufenden Normal-
momentes in der Mitte der j-ten Seite dar. L; ist die Seitenlidnge.

Bei IRIS-C: Gk = w; (infolge Wi = 1) L;

Diese Formel ist besonders einfach, weil die entlang jeder Seite
i konstanten Normalmomente M; selber als Momentenpara-
meter auftreten.

Ein Koeffizient P des Lastvektors { P} stellt die Arbeit der
dusseren Lasten infolge der virtuellen Verschiebungen fiir
Wi =1 dar. In der bei den IRIS-Programmen getroffenen
Annahme, dass die Platte nur durch konzentrierte Knoten-
lasten A Qx und durch gleichmissig verteilte Elementlasten
A pe belastet ist, gilt fiir Py:

1
Pk=Qk+?ZpeFe
e

wobei der Elementindex e alle Elemente um den Knoten k& um-
fasst. Fe ist die Elementflidche.

Kinematische Auflagerbedingungen fiir die Durchbie-
gungen w sowie statische Randbedingungen fiir die Normal-
momente m. werden beriicksichtigt, indem die Gleichge-
wichtsgleichungen, welche unverschieblichen Knoten ent-
sprechen, bzw. die Momentenparameter, welche Normal-
momenten entlang frei drehbaren Ridndern entsprechen, weg-
gelassen werden.

Der statische Grenzwertsatz der Plastizititstheorie ver-
langt ausserdem, dass die Plastizitdtsbedingungen nirgends
verletzt werden. Diese sind beim IRIS-L-Modell in allen
Knoten, beim IRIS-C-Modell in allen Elementen zu kontrollie-
ren. Man erhélt somit folgendes allgemeine lineare Programm
fir die Unbekannten A und {M | (siehe Bild 2b):

A — Maximum
= — {P} 2 + [G] {M]
0 <{C} —[U]{M]}

Dabei setzt sich der Widerstandsvektor {C} aus den
{Cq}-Vektoren aller Kontrollpunkte zusammen (vgl. Ab-
schnitt 3). Der Kontrollpunktindex ¢ lduft beim IRIS-L-
Modell iiber alle Knoten und beim IRIS-C-Modell iiber alle
Elemente. Die Ungleichungsmatrix [U] ist beim IRIS-L-
Modell eine aus gleichen [U,] -Untermatrizen zusammenge-
setzte diagonale Hypermatrix. Eine etwas komplizierte Struktur
weist die [U] -Matrix beim IRIS-C-Modell auf, weil die zu
kontrollierenden Elementmomente m., my und m.y aus den
Seitennormalmomenten M hergeleitet werden miissen.

Aus einem gegebenen Momentenverlauf konnen «Gleich-
gewichtlasten», d.h. dussere Lasten, welche mit den inneren
Momenten exakt im Gleichgewicht sind, hergeleitet werden.
Diese sind beim IRIS-L-Modell konstante Linienlasten ent-
lang der Elementseiten sowie — aufgrund der klassischen

Kirchhoffschen Plattentheorie — konzentrierte Einzellasten in
den Randeckknoten. Beim IRIS-C-Modell sind die Gleich-
gewichtlasten konzentrierte Einzellasten in den Knoten. Ist
die Platte nur durch konzentrierte Knotenlasten belastet, wird
das Gleichgewicht exakt erfiillt. Weil damit alle Bedingungen
des «unteren» Grenzwertsatzes erfiillt sind, erhélt man fiir 2 aus
dem IRIS-C-Programm einen unteren Grenzwert der wirk-
lichen Traglast.

Jedes lineare Programm hat sein duales Programm. Wie
in Abschnitt 2 fiir das einfache Fachwerkmodell, konnte das
duale Programm aufgrund des kinematischen Grenzwertsatzes
der Plastizitdtstheorie auch fiir Platten hergeleitet werden.
Hier soll nur das Endresultat angegeben werden (siehe Bild 4b):

% = {C}7 8} - Minimum
0=1—{P} (W)
0= [GIn{ )= [U1Z6]

Die zwei linearen Programme der Bilder 2b und 4b sind
vollig dquivalent und liefern fiir den Traglastfaktor A den
gleichen Optimalwert. Wird eines gelost, erhdlt man gleich-
zeitig die Losung des anderen Programmes. Es ergeben sich
somit nicht nur die Werte der Momentenparameter {M | (diese
beschreiben eine méogliche, sonst aber kaum sinnvolle Momen-
tenverteilung), sondern auch die Werte der Verschiebungsge-

schwindigkeitsparameter { ¥}, welche die Form des Kollaps-
mechanismus angeben, sowie die Werte von verallgemeinerten
Kriimmungsgeschwindigkeitsparametern {B}. Ist i, ungleich
null, weiss man, dass die i-te linearisierte Fliessbedingung am
Kontrollpunkt g fiir die Traglast massgebend ist.

5. Computerprogramme

Die Ausgangsdaten fiir die Computerberechnung sind:
die Geometrie der Platte mit der Einteilung in finite Elemente,
die Lastverteilung in Form von Einzellasten in den Knoten
und verteilten Lasten tiber die Elemente, die plastischen
Momente in den Kontrollpunkten, d.h. in den Knoten bei
IRIS-L bzw. in den Elementen bei IRIS-C, sowie statische und
kinematische Randbedingungen. Die Berechnung des benétig-
ten Speicherplatzes und die Schitzung der voraussichtlichen
Kosten sind in den Beniitzungsanleitungen zu den Programmen
angegeben. Die Einteilung in finite Elemente sollte im allge-
meinen nicht mehr als etwa 80 Knoten umfassen.

Aufgrund der Eingabedaten stellen die Computerpro-
gramme die oben dargestellten linearen Programme auf. Die
Berechnung des Optimums der linearen Programme erfolgt
mittels eines vom revidierten Simplex-Verfahren ausgehenden
Verfahrens, bei dem die Koeffizienten der Ungleichungsmatrix
nicht gespeichert werden miissen.

Als Ergebnisse der Computerberechnung erhilt man den
Traglastfaktor 2, einen zuldssigen Momentenzustand und den

#
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Knoten "k"

Bild 5. Durchbiegung infolge W,
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Bild 6. Fliessfigur aus linearisierten Fliessbedingungen

315




Mechanismus. Der resultierende Momentenzustand entspricht
nicht dem effektiven Momentenzustand beim Kollaps, sondern
unterscheidet sich davon durch Eigenspannungszustinde. Er
soll deshalb nicht fiir eine Bemessung verwendet werden. Der
Mechanismus zeigt ein anschauliches Bild der effektiv zu er-
wartenden Form der Verschiebungen.

Die numerischen Berechnungen haben gezeigt, dass das
IRIS-C-Modell (elementweise konstante Momente) auf wesent-
lich zu tiefe Werte fiir die Traglast fithren kann, wenn die
untere oder obere Armierung oder die Armierung in einer der
beiden Hauptrichtungen gering ist. Das IRIS-L-Modell diirfte
sich fiir praktische Berechnungen im allgemeinen besser eignen,
weil es mit dem gleichen Rechenaufwand bessere Werte fiir 2
liefert. Die Kosten fiir die Rechenzeit lagen z.B. bei einer
Masche mit 50 Knoten unter 100 Fr. je Lastfall.

6. Schlussbemerkungen

Die IRIS-Programme stellen eine wertvolle Ergdnzung zu
den heute zahlreich vorhandenen Computerprogrammen dar,
welche Platten aufgrund linear-elastischer Annahmen be-
rechnen, und die somit im allgemeinen keine Auskiinfte {iber
Bruchsicherheit liefern konnen. Sie diirften deswegen in erster
Linie bei solchen Plattentragwerken Anwendung finden, bei
denen die Bruchsicherheit gegen einmalige ausserordentliche
Lasten nachgewiesen werden muss (z.B. bei Schutzbauten) so-
wie auch dann, wenn bei elastisch vordimensionierten Trag-
werken eine zusitzliche, auf ganz verschiedenen Annahmen
basierende Kontrollrechnung gerechtfertigt erscheint. Dies
diirfte ofters der Fall sein, nicht zuletzt, weil die IRIS-Program-
me, solange Klarheit iiber die getroffenen Annahmen und iiber
die Bedeutung der am Finite-Element-Modell erhaltenen Er-
gebnisse herrscht, leicht zu verwenden sind und méssige
Rechenkosten verursachen.

Zur Zeit werden am Institut fiir Baustatik und Konstruk-
tion der ETHZ dhnliche Programme entwickelt, die, je nach den
zugrunde gelegten Plastizititsbedingungen, fiir eine Reihe zwei-

dimensionaler Probleme, von der Traglastberechnung von
Stahlbetonscheiben bis zur Bestimmung der Tragfdhigkeit von
Streifenfundamenten eingesetzt werden konnen. Eine lang-
jihrige, auf die Forderung plastischer Berechnungsmethoden
ausgerichtete Tradition wird damit fortgesetzt. Was die Zu-

kunft anbetrifft, konnte man sich fragen, ob Programme fiir -

die automatische optimale Bemessung der Armierung bei starr-
plastischen Stahlbetonplatten entwickelt werden sollen. Dies ist
mdglich, wenn auch recht aufwendig. Allerdings taucht hier
die Frage auf, ob fiir die Praxis vollkommen automatische
optimale Bemessungsmethoden geeigneter sind als nur «com-
puterunterstiitzte» Bemessungsmethoden. Bei den letzteren
bleibt fiir die Festlegung der Bemessungsparameter der In-
genieur verantwortlich, wobei ihm der Computer nur zeigt, in
welcher Richtung er sein Optimum zu suchen hat. Dafiir helfen
aber auch die aus den IRIS-Programmen erhaltenen Ergebnisse.
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Luftspeicher-Kraftwerke zur Spitzendeckung

Von B. Lendorff, dipl. Masch.-Ing., Kilchberg ZH")

Die Elektrizitdtswerke stehen vor der Aufgabe, nicht nur
eine bestimmte Energiemenge an die Verbraucher abzugeben,
sondern die Energieerzeugung auch den Bedarfsschwankungen
anzupassen. Der iibliche Verlauf der Netzbelastung wihrend
eines Tages kann Bedarfsschwankungen zwischen 40 9, Nacht-
last und 1009, Tagesspitze aufweisen. Geeignete Zusatzein-
richtungen zur Spitzendeckung werden um so notwendiger,
wenn zur Energieerzeugung Kernkraftwerke grosser Leistung
beitragen, die moglichst konstant belastet werden miissen, da
sie nicht geeignet sind, den tiglichen Anderungen der Netz-
belastung zu folgen.

Eine derartige Zusatzvorrichtung zur Deckung von Tages-
Belastungsspitzen besteht in der Speicherung von Druckluft
und deren Beniitzung in einer Gasturbine. Dieses Verfahren
ist im Prinzip seit langem bekannt. Es ist auch heiriiber viel-
fach berichtet worden [1]. Eine erste praktische Verwirk-
lichung ist aber erst vor kurzem mit einer Abgabeleistung von
rund 300 MW in Deutschland durch die Nordwestdeutschen
Kraftwerke AG, Hamburg, in Angriff genommen worden.

Bevor die Moglichkeiten der Pressluftspeicherung mit
Gasturbinen niher untersucht werden, seien die bisher allge-

1) Die Veroffentlichung basiert auf einer Studie, die der Verfasser
als Consulent der Elektro-Watt Ingenieur Unternehmung bearbeitet
hat.

316

DK 620.9:621.311.16

mein verwendeten Verfahren erwihnt, die zur Ergédnzung von
Grundlastkraftwerken zwecks Bewiltigung der téglichen Bela-
stungsschwankungen dienen.

1. Hydraulische Speicherung

Die alpinen Kraftwerke mit Saison-Speichern konnen
zwar den tdglichen Belastungsschwankungen folgen. Sie wer-
den aber vorteilhaft durch Speicherpumpen ergédnzt, welche
iiber Nacht oder Wochenende verfiighare Uberschussenergie
verwenden, um Wasser von einem Zwischenbecken in den
hoher gelegenen Stausee zuriickzupumpen. Dieses wird nachher
fiir die Deckung der téglichen Belastungsspitzen im Turbinen-
betrieb wieder ausgeniitzt. Damit ldsst sich der Speicherung
von Winterenergie ein Pendelbetrieb iiberlagern, der den
Nachtenergieanfall und den Spitzenbedarf ausgleicht. Solche
Kraftwerksausriistungen mit kombinierten Pumpen und Tur-
binen sind in der Schweiz in grosser Zahl ausgefiihrt worden,
weitere stehen im Bau [2].

Derartige Kombinationen von Saison-Speichern und tiber-
lagertem Pendelbetrieb sind nicht unbeschrankt verfiigbar.
Mit der Zunahme des Energiebedarfs und bei dem notwen-
digerweise sich vergrossernden Anteil der Kernkraftwerke an
der Energieerzeugung werden zusitzlich Vorrichtungen not-
wendig. Als hydraulische Losung sind in der Schweiz reine
Pumpspeicheranlagen geplant, wobei vorzugsweise aus beste-
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