
Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 92 (1974)

Heft: 41: SIA-Heft, Nr.9/1974: Baulicher Brandschutz; Überdeckung grosser
Spannweiten

Artikel: Berechnung von Flachdecken als Riegel verschieblicher Rahmen

Autor: Serdaly, D.

DOI: https://doi.org/10.5169/seals-72489

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-72489
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


92. Jahrgang Heft 41 SCHWEIZERISCHE BAUZEITUNG 10. Oktober 1974

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZÜRICH, POSTFACH 630

SIA-Heft 9, 1974

Die SIA-Fachgruppe für Brückenbau und Hochbau, FBH, führt am 25. und 26. Oktober 1974
an der Eidgenössischen Technischen Hochschule in Lausanne eine Studientagung durch. Behandelt
werden die beiden aktuellen Themen:

Baulicher Brandschutz und Überdeckung grosser Spannweiten
Die zwei Hauptaufsätze in diesem Heft der Schweizerische Bauzeitung gehören in am erweiterten

Themenkreise der Tagung, wurden uns aber von den Verfassern unabhängig von der Veranstaltung

zur Veröffentlichung anvertraut. Das Tagungsprogramm wurde in Heft 38 (SIA-Heft 8) vom
19. September, S. 878, bekanntgegeben. Anmeldungen werden bis zum 15. Oktober vom
Generalsekretariat des SIA, Postfach, 8039 Zürich, gerne egegengenommen.

Berechnung von Flachdecken als Riegel verschieblicher Rahmen
Von D. Serdaly, Genf DK 624.04

Die vorliegende Arbeit ist dem Problem des Zusammenwirkens

zwischen Platte und Stützen bei Flachdecken, die als
verschiebliche Rahmen wirken, gewidmet. Es wird eine wmthode
vorgeschlagen, die die Berechnung der unbekannten Verbindungsmomente

in vielenpraktischen Fällen erlaubt. Im weiteren werden
elektronisch errechnete Plattenfestwerte angegeben und eine
Übersicht der Abhängigkeiten der statischen Grössen von Platten
konstanter Steifigkeit gezeigt. Ein Zahlenbeispiel erläutert das
Vorgehen und zeigt die Einsatzmöglichkeiten der elektronischen
Datenverarbeitung.

1. Einleitung
Die vorliegende Arbeit ^ eine Fortsetzung von

Untersuchungen über Spezialfälle von Flachdecken (unterzugslose
Decken). Während eine erste Veröffentlichung [1 ] den Einfluss
der Aussparungen behandelte, wurde die vorliegende Arbeit
dem Problem des Zusammenwirkens zwischen Platte und Stütze
gewidmet.

2. Problemstellung
Die Berechnung von Flachdecken wird im allgemeinen

unter Annahme gelenkiger Lagerung, d. h. unter
Vernachlässigung der biegesteifen Verbindung zwischen Platte und
Stützen, ausgeführt. Bei vertikalen, gleichmässig verteilten
Lasten ist diese Vereinfachung, soweit es sich um die Ermittlung

der Plattenmomente handelt, statthaft. Für die Ermittlung
der S|ützenmomente behilft man sich, mangels besserer
Methoden, mit der Annahme einer «mittragenden Plattenbreite»,

die die Riegelsteifigkeit des «Ersatzrahmens» liefern
|§MJ

Dieses Näherungsverfahren ist unbefriedigend begründet.
Bereits die «mittragende Plattenbreite» kann verschieden
definiert werden (Momentengleichheit, Verformungsgleich¬

heit), ist veränderlich und vom Lastfall abhängig (vgl. [2]).
Das Modell eines «Ersatzrahmens» ist auch nicht sehßftunk-
tionstüchtig, da die grundsätzlichen Ansätze der Stabstatik für
Flächentragwerke nicht anwendbar sind. Die errechneten
Werte können insbesondere in Frage gestellt werden, wenn der
durch Platte und Stützen gebildete, verschiebliche Rahmen
horizontale Lasten (Windkräfte, Erdbebenkräfte) zu tragen hat.

3. Aufgabe
Die Aufgabe war, eine Berechnungsmethode zu finden,

die mit vernünftigem Aufwand an Rechenarbeit baustatisch
fundierte Ergebnisse beim Zusammenwirken von Platte und
Stützen liefert. Besondere Beachtung wurde dabei dem Lastfall
«horizontaler Kraftangriff» aus den oben erwähnten Gründen
gewidmet, Ils handelt sich hier um eine Kombination der
Platten- und Stabstatik und die Aufgabe enthält zwei Stufen:

a) «statische Aufgabe»: Ermittlung der Übergangsgrössen
zwischen Platte und Stäben (Verformungen, Kräfte,
Biegemomente) ;

b) «Verteilungsaufgabe»: Ermittlung der Verteilung von
Verformungen und Schnittkräften in der Platte, verursacht
durch die eingeleiteten Übergangsgrössen.

Das dritte Problem, namentlich das örtliche Verhalten der
Platte im Bereiche der Kräfteeinleitung, wird hier nicht
behandelt (siehe [3]).

4. Das statische Modell
4.1 Annahmen

Betrachtet sei ein endloser Plattenstreifen von konstanter
Steifigkeit, der in gleichen Abständen mit identischen Stützenreihen

biegefest verbunden ist (Bild 1). Die Enden der Stützen
seien an je einem oberen und unteren starren Körper beliebig,
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Bild 2. Bezeichnung und Vorzeichendefination der Verformungen
und Kräfte am z'-ten Knotenpunkt

Bild 1. Problemstellung, statisches Modell

aber bekannt gelagert. Die beiden starren Körper können sich
gegenseitig verschieben. Die Belastungen greifen an allen
Stützenreihen gleichzeitig so an, dass rechnerisch nur eine
Stützenreihe mit dem dazugehörigen Plattenteil behandelt
werden kann.

4.2 Grundsystem

Als Grundsystem wird das beschriebene System gewählt,
wobei die biegefeste Verbindung zwischen Platte und Stützen
als gelöst betrachtet wird. Das Gleichgewicht in den Knoten
wird durch die Einführung unbekannter Kräfte hergestellt.
Wenn alle Stäbe an den starren Körper (Scheiben) gelenkig
gelagert sind, wird das System unstabil, es müssen noch
unbekannte Festhaltekräfte eingeführt werden. Die an einem
Knotenpunkt auftretenden Grössen samt Vorzeichenregel sind
im Bild 2 dargestellt.

4.3 Vorgehen

Die Lösung der Aufgabe a) erfordert die Ermittlung der
Übergangswerte zwischen Platte und Stäben, d. h. die
Bestimmimg der gewählten unbekannten Grössen. Dazu werden
benötigt:

5s3ie Belastungsgrössen der Platte, d. h. die Verdrehungen der
Platte in den Knotenpunkten infolge Belastungen senkrecht
zur Plattenebene

- die Plattenfestwerte, d. h. die Verdrehungen der Platte in den

Knotenpunkten infolge der in den Knotenpunkten
angreifenden Einheitsmomente

- die Stabfestwerte, d. h. die Verdrehungen der Stützen in den

Knotenpunkten infolge der dort wirkenden
Einheitsmomente

Sind die Übergangsmomente bekannt, so können die in
einem beliebigen Punkt der Platte auftretenden Verformungen
und Schnittkräfte durch Superposition ermittelt werden, sofern

diese Werte infolge Plattenbelastung bzw. infolge Einheits-
momentenangriffe bekannt sind. Während die Stabfestwerte
durch die elementare Stabstatik geliefert werden, können die
Plattenverdrehungen durch die Plattentheorie ermittelt werden.
Für die Plattenberechnung stehen heute leistungsfähige EDV-
Programme zur Verfügung. Für diese Arbeit wurde das an der
ETH entwickelte SAUD-Programm benützt [5]. Die Berechnungen

wurden im Fides-Rechenzentrum Zürich ausgeführt.
Die erhaltenen Momentenflächen wurden mittels
computergesteuertem Plotter der Techdata AG Bern aufgezeichnet.

5. Lösung der statischen Aufgabe
Die Verformungsbedingung in einem Knotenpunkt i des

Grundsystems lautet:

(1) 9*
(Platte)

(2) <fi 9* + Yi %i aw
WS

dabei bedeuten:

9« Verdrehimg der Platte im Knotenpunkt i infolge
Belastung senkrecht zur Plattenebene

X) das unbekannte, auf die Platte wirkende Moment
im Knotenpunkt j

cti) die Verdrehung der Platte im Knotenpunkt i
infolge X) 1

(3) 9«o ßio Xio + y«o e0

(4) 9(u ßi« Xiu + Yiu eu

dabei bedeuten:

Ziound-X"«« Die an den Stabenden angreifenden un¬
bekannten Momentgrössen

9io 9*«
(obere
Stütze)

(untere
Stütze)
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ßio und ßiM Verdrehung der Stabenden infolge Xio 1

bzw. Xiu 1

e0 und ev. Obere bzw. untere, unbekannte System¬
verschiebung

Y«oundyi« Verdrehung der am KnajSffiikt liegen¬
den Stabenden des oberen bzw. unteren
Stabes infolge e0 1 bzw. eu g 1

Die Gleichgewichtsbedingung der Momente am Knoten
lautet:

(5) Xt - (Xu + Xiu)

Es kann geschrieben werden:

(6) Xu^-lXt
(7) Xin= -(1 -?)Xi
Es bedeutet Z, eine unbekannte Verteilungszahl.

Gestützt auf die Verformungsbedingung (1) können in
I||j|S|Knotenpunkt i zwei Bedingungsgleichungen geschrieben
werden:

(8a) Xi [au + £« ßio] + Y_Xi <*'! Y*° e0 — 9<

(8b) Jfficc« + (1 - ?0 ß*«] + £ ^ a« tiu ev. - 9;

0" I l...n^0
Durch Umformung erhält man zwei Gleichungen:

und nach Gauss, durch Iteration, oder (bei wenig unbekannten)

durch die Determinantenformel

Dia
Xi* — 11+k —-— ermittelt wird.

Bei unverschieblichen Rahmen sind Ct und somit Xt
bekannt, bei verschieblichen Rahmen enthält Ct noch zwei
Unbekannte: e0 und eu, welche aus der Gleichgewichtsbedingung

der horizontalen Kräfte; bzw. aus der Bedingung,
dass die horizontalen FesthaMppjlfte verschwinden, zu
bestimmen sind.

Festhaltekraft oben:

(14) Fo H0 + V~l Xio + Mic
hio

\~^ Xio (1 + kio) + e0 mio
Ho + 7 1

Festhaltekraft unten:

(9) Xi a«(l +-—-)- -- *&fmm
ß*o - /, ß«°

tio e0 + Yiu —— e-a, — <?t 11 +
ßi«

sowie

(10) I 1 ~fio e0 — ytu eu

Xtßio + ßi«

beziehungsweise:

Hl „ Yit> eo — Yiu eu + ßiJBjg
(.11) Ai« —

pio + ßi»

Gleichung (9) liefert das Gleichungssystem:

[S] • [X] [C]
wobei [8] den Elastizitätsmatrix mit den Diagonalgliedern

8« a« I 1 +
ßio

+ 1

sowie den übrigen Gliedern (k =£ i):

oiic I 1 + —— I ai*
\ P««/

darstellt.

[C ] ist der Belastungsvektor mit

(12) Ci jio e0 + jiu —— eu — I 1 +
ßio

ßtu

Die allgemeine Lösung des Gleichungssystems lautet

[X] 1 [X] • [C]

beziehungsweise

(13) Xi 2j ^<* C1*

k l

wobei [X] den Kehrmatrix zu [8] bedeutet

(15) Fu - \HU
V~1 Xu + Mi«

/ i süss

¦•-L Xi« (1 -fflfiu) + ev. miu
hiu

Festhaltekraft Plattenebene:

Vi Xio (1 + kio) + e0 ntio
(16) Fzu, -Uh-

hto

+ \ i Xiu (1 + kiv) + eu /nt«

^j hiu

was trivial ist, da H0 + Hu + Äff 0 sein muss.

In den Gleichungen (14), (15), (16) wurden

Mio Xio kio + e0 mio und

Miu — Xiu ktu + ea mtu gesetzt, wobei bedeuten:

kto und ktu die Momentanübertragungszahlen Mto/Xio

bzw. Miu/Xiu

und mio bzw. miu die Einspannmomente

mto Mto infolge e0 1;

Tom H A/iK infolge eu 1.

Tabelle 1. Stabfestwerte für konstante Stabfestigkeit

| 1 T Dimension
Stabende Stabende
gelenkig eingespannt

ps
1 I1 h h 1

1 3E3 4E0 tm

/
j. /

1 1

h
3 1

2 h m/
r^v /

*
0»*

0
2

1

/w

/
1

/n

0 3EJ t1
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Während die Plattenfestwerte a.ti im Kapitel 7 behandelt
werden, zeigt Tabelle 1 reine Zusammenstellung von
Stabfestwerten für konstante Stabfestigkeit.

Wir sS||Ba|inun die Werte von e0 und e«, für welche die
Festhaltekräfte verschwinden. Da sämtliche unbekannten
Grössen lineare Funktionen der Verschiebungen e0 und e«
sind, lassen sich diese wie folgt ermitteltpH

Der Verschiebungszustand 0 (unverschieblicher Rahmen)

e0 =0, eu 0, II ^ 0 ergibt F°0, FX, F°zw ;

der Verschiebungszustand 1

e0 1, eu 0, 9i 0 ergibt F'0, FX, F''zw ;

der Verschiebungszustand 2

e0 0, e« 1, 9i 0 ergibt F"0, F"u, F"zw ¦

Mr

-k- Aus der Gleichgewichtsbedingung der horizontalen Kräfte

7* 3J-

nur in der Ebene der
Wandscheiben

Bild 3. Sonderfall 1, Beispiel 1: Statisches System (a) und reduziertes ergeben sich die Gleichungen
System (b)

(17) Fo FX -f F'o e0 + F"o eu 0

Fu F°u + FX e0 + F"u eu 0

aus welchen e0 und eu ermittelt werden können.

Die gesuchten Xi-Werte lassen sich durch Superposition
bilden

(18) Xt X\ + X't e0 + X"t eK

6. Sonderfälle

In Sonderfällen kann sich die Berechnung der «statischen

Aufgabe» vereinfachen. Zwei praktisch wichtige Fälle sollen
im fc '.genden näher untersucht werden.

6.1 Vorderfall J: einstöckiger Rahmen

Anwendungsbeispiele

Die Notwendigkeit, einstöckige, aus Flachdecke und
Stützen bestehende Systeme als verschiebliche Rahmen zu
berechnen, sei durch zwei Beispiele erläutert. Bild 3a zeigt
das schematische statShe System einer unterkellerten
Industriehalle mit hohen Stützen und grossen Horizontalkräften

im Obergeschoss. Mit guter Annäherung lässt sich das

System auf das im Bild 3b dargestellte reduzieren.
Bild 4a stellt einen schematischen Querschnitt des

Erdgeschosses und der darüberliegenden Stockwerke eines
Hochhauses dar. Die Stabilität dejSAufbaues wird durch
Wandscheiben gewährleistet (z B. zwei Stirnscheiben); diese hören
jedoch oberhalb des Erdgeschosses auf. Somit muss der
Erdgeschossrahmen den ganzen Horizontalschub aufnehmen.
Bild 4b zeigt das reduzierte statische System ausserhalb der
Ebenen der Wandscheiben.

Grundsystem und Lösung der «statischen Aufgabe»

Das Grundsystem Bvird wiederum durch lösen der
biegefesten Verbindung zwischen Platte und Stützen gebildet.
Bild 5 zeigt die an einem Knotenpunkt auftretenden Grössen.
Die Elastizitätsgleichung an einem Knotenpunkt, aus Gl. 8

abgeleitet, lautet:

(19) X («« + ß<) -t- H Xj am Y< e + Mt ßj - 9i

Q' i...« S
Die Elastizitätsmatrix enthält die Diagonalglieder

Sü I («« + ße)

und die übrigen Glieder (k ^ i)
Bild 5. Sonderfall 1: Verformungen und Kräfte am i-ten Knoten- I
punkt 8j* a**

hv\\\\w\m\\\\\\v\v\\v\\v\\NV\vvw-i

b)

Bild 4. Sonderfall 1, Beispiel 2: Statisches
System (a) und reduziertes System (b)

r\
r\r\

> a

r\
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Der Belastungsvektor wird durch die rechte Seite der
Gleichung gebildet:

Ct yt e — Mi ßi — 9i

Mit den Gliedern der inversen Matrix X{*E|rhalten wir
wiederum:

(20) X f Xi* C*
k l

(21) Xiu Mt - Xt

(22) Miu Xiu ki+emt (Mi - Xt) kt + emi

wobei ki (MMmtm die Momentenübertragungszahl der
Stützen und mt mL infolge e 1 bedeuten.

Der Verschiebungszustand 0 (unverschieblicher Rahmen):

e 0, Mi =£ 0, 9i ^ 0, H ^ 0

liefert uns die Festhaltekraft auf Plattenebene

Tabell 2. Beispiele zum Sonderfall 1

_£ I 3l~

(18) X =~^ea + p

X° 0 £ 0

X' —— m 0
a +ß

(25) e

(23) F° ff + — V (- X°i + Mi + M°iu)

Jff+~V[(-X°i+Mi)(l

Der Verschietehgszustand 1:

e 1, Mi 0, 9i 0, H 0

liefert:

(24) F'= - — V (-X'i +M'iu)

kt)}

imWm [-X'((l +kt)+emt]

Das horizontale Gleichgewicht der Kräfte liefert:

F F° + F' e 0

und

e - F°«H
bzw. mit (23) und (24):

Hh - £ (X°i -Mi- M°tu)
(25) e

£ (X'i - M'tu)

i?Ä + x;(Mi-xoi)(i +kt)
2 t^'id +A0-TO]

Damit erhalten wir

(26) Xi X°i + X'i e

In Tabelle 2 sind Beispiele von Lösungen der statischen
Aufgabe in einfachen Fällen aufgeführt.

6.2 Sonderfall 2: Näherungsberechnung von Stockwerkrahmen
Anwendung

Näherungsweise können Stockwerkrahmen mit schlanken
Stützen unter horizontaler Belastung berechnet werden, falls
keine grösseren Steifigkeitsunterschiede zwischen den Stützen
bestehen, indem die Momentennullpunkte auf halber
Stockwerkshöhe angenommen werden. Das entsprechende statische
Modell zeigt Bild 6. Durch H wird der gesamte Horizontalschub

auf der entsprechenden Stockwerkshöhe bezeichnet,
welcher sich auf die einzelnen Stützen verteilt. Wir nehmen
vereinfachend noch an, dass auf die Plattenebene keine
Horizontalkräfte wirken, d. h. die stockwerksweise Vergrösse-

H-h

U + ß)

Hh
<x +

X =Hh

£7

X

Tä.

v7X///

ye + Sp
a + ß

MßX° ** k =0a+ß

X' Y

a + ß

Äfll-

m 0

a+ß

a + ß

M—
T

Ma + Mß _X 1 - M
a + ß

^^^^S^^^S^^^^^^^S^S^S^ä

"j£T "3l

im

X Y

a + ß

X° 0

YX'
a + ß

Hh

a + ß

X

(1 +k)—m

Hh

1 + k — m
a + ß

r^\M
IS

X

x°

X'

:st

ye + Sp
a + ß

Mß
a + ß

Y

a + ß

M-
a + ß

(1 +k)
Y

a + ß

X =M-

(1 +k) — m

ß a

a+ß a+ß
1

(a + ß) m

(1 + *) Y

¦J, L^, J, J,

£$fc5^SS5$S^5^^

Bild 6. Sonderfall 2: Statisches Modell
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Bild 7. Sonderfall 2: Verformungen und Kräfte am /-ten Knotenpunkt

rung des Horizontal^^Ses auf halber Stockwerkshöhe
erfolgt. Diese Näherung ist zulässig, fflls H gegenüber AH gross
ist. Im weiteren wird stabweise konstante Stabsteifigkeit
angenommen.

Grundsystem und Lösung der statischen Aufgabe
Das Grundsystem bilden die Platte sowie Gelenkstäbe,

gemäss Bild 7, wobei die biegefeste Verbindung zwischen Platte
und Stäben wiederum als gelöst gedacht wird.
Elastizitätsgleichung:

(27) Xs (au + ßi) + V Xj atj fte —yi

Dabei bedeuten:.

a«, an die Plattenfestwerte

ßi Stabdrehwinkel in Stabmitte infolge Xtst 1

also:

YIEJh

yt StabdxehwinkeMPn Stabmitte infolge e 1

also:

Yi 1/Ä

9~i Plattenverdrehung im Knotenpunkt / infolge
Belastung senkrecht zur Plattenebene

Verschiebungszustand 0:

e o, 9i # 0, H ^ 0 liefert die Festhaltekraft:

(28) F° ssls
Verschiebungszustand 1:

e 1, 9^ =0, H 0 liefert:

(29) F-j^^i I ¦Aus dem horizontalen Gleichgewicht erhalten wir:

F F°+F'e=0 und e - F°/F'

940

bzw. mit (28) und (29):

Hh-Y, X°i
Zx-,

(30) e |
und

(31) X X°t +X'te= X°i + X'i Hh~£X°i
2j x i

Wenn nur die horizontale Stockwerkskraft wirkt (X°t 0),
ergibt sich Xi =Hh X'i/S X'i.

Beispiel
Das nachfolgende einfache Beispiel

soll den Rechnungsgang erläutern:

a.) Xi(a„ +ß) + X2a12 ye

Xi a2i + X2 (a22 + ß) Y«

M-r fxVWxVyvxxx 1

l

an a22 ax ai2 a21 =gm

|Xi(ai +ß) +X2a2 =Ye
\Xia2 +X2(ai + ß) =Ye

X Xi X2
Y«(«i +ß) - Y«a2

(ai + ß)2 -a22

Y(ai+ß)- - Yaz

(ai + ß)2 - a ^ °
a2

(ai + ß) - a2X° =0
(ai + ß)2 -ttj2

#Ä (at + ß)2 - a22
e

2 y (ai + ß) — a2

X X° + X' e Hh/2, was erwartet wurde.

7. Plattenfestwerte und Belastungsgrössen

Zur Lösung der statischen Aufgabe, d. h. zur Ermittlung
der Werte der Übergangsmomente zwischen Platte und Stäben
werden einerseits die Werte von au (Verdrehungen im Knotenpunkt

i infolge im Knotenpunkt j angreifenden Einheits-
momentenSandererseits die 9VWerte (Verdrehimg der Platte
im Knotenpunkt »infolge zur Plattenebene senkrechten
Belastung) benötigt. Die Lösung der Verteilungsaufgabe
erfordert die Kenntnis der gesuchten Grössen (Durchbiegungen,
Momente) in bestimmten Punkten P(x,y) der Plattenebene
infolge in den Knotenpunkten angreifenden Momenten sowie
infolge der zur Plattenebene senkrechten Belastung. Wie in
Kapitel 4 erwähnt, wurde im Rahmen dieser Arbeit eine
Anzahl von Plattenfestwerten mittels elektronischer Rechnung
ermittelt. Zur Deutung der ermittelten Werte wollen wir im
folgenden die Abhängigkeiten dieser Werte von den
Randbedingungen untersuchen.

7.1 Abhängigkeiten

Mit den Bezeichnungen:

K Belastungsgrösse [t]
gleichmässig verteilte Last K- PFl
Linienlast K- Pllr
Einzellast K- P

gleichmässig verteilter
Momentenangriff K- m Il/L
Einzelmoment K M/L

L Bezugsspannweite [m]
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K,r)

konstante Plattensteifigkeit
[tm] S I Ed3112 (1 - v2)

Systemfaktor: abhängig von Plattenform,
Lagerungsart, Spannweitenverhältnissen
Lastfaktor: abhängig von Laststellung, Form und
bezogene Grösse der Belastungsfläche

Relative Koordinaten £, (x/L), t) (y/L) eines
Punktes der Plattenebene

können wiimllgemein setzen:

Durchbiegung

(32) H (KL*/S)-fu.(e,8, B
Neigung

(33) 95, „ (KL/S) •/„ | 8, \ B
Momente

(34) Si - Kfm B 8. 5, *))

Die Bedeutung dieser Abhängigkeiten für die
Plattenfestwerte kann wie folgt interpretiert werden:

Plattenfestwerte a (Verdrehung infolge Einzelmoment)

für K M/L ergibt aus Gl. (33)

(35) 9 I (M/S) -f(z, 8, l, 7]) und a (1/5) • || 8, l, tj)

Dies bedeutet, dass bei gleicher

- geometrischer Form der Platte, deren Lagerung und
Spannweitenverhältnisse (e)

- Stellung der angreifenden Momente (8)

- Aufpunkt der untersuchten Verdrehung (£, tj)
die oe-Werte allein von der Plattensteifigkeit abhängig, und
insbesondere von der Bezugsspannweite unabhängig sind. Die
einmal für ähnliche Plattenformen errechneten a-Werte lassen
sich für andere Plattensteifigkeiten einfach umrechnen

(36) a a0So/S

Belastungsgrössen 9 Verdrehung infolge zur Plattenebene
senkrechte Belastung)

Die AbhängigkeiterSsind verschieden, je nachdem es sich

um verteilte Lasten, Linienlasten oder Einzellasten handelt.
Für verteilte Belastung ist K p Fl in Gleichung (33) eifjgj
zusetzen:

(37) 9v=(pFLL/S)ftf
für Linienlasten gilt:

(38) ?L=(plLL/S)fv
und für Einzellasten:

(39) ^P=(PL/S)U
Bei geometrischer Ähnlichkeit der Form, Lagerung und

Belastung können auch diese Werte für andere Bezugsspannweiten,

Belastungsgrössen und Plattensteifigkeit mit Hilfe der
Gl. (37, 38, 39) umgerechnet werden.

Durchbiegungen

Infolge senkrechter Belastimg: aus Gl. (32).

Infolge Momentenangriff:

(40) ws,„ =(ML/S)fw
(41) und infolge M 1 w>o<gjri) (L/S)fw

Momente

Infolge senkrechter Belastung liefert Gl. (34):

m^ 7] Kfm
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Infolge Momentenangriff:

(42) m^=(M/L)fm
Infolge M 1

(43) Hg =(1/L)fm

Dies bedeutet, dass bei geometrischer und statischer
Ähnlichkeit die für die Einheitsmomente Mt 1 berechneten
Plattenmomente nur noch von der Bezugsspannweite L
abhängig sind und für andere L umgerechnet werden können:

(44) S(5,7i> =m'o_i,-n)L'/L

WjxMErmittlung der Plattenfestwerte und Belastungsgrössen

Im Rahmen dieser Arbeit wurden Plattenfestwerte a«
sowie Belastungsgrössen 9i für gleichmässig verteilte Vollast
ermittelt. Diese Werte wurden füiE- und 3-feldrige Plattenstreifen

mit gleichen Spannwemn in dew-Richtung; und für
3 Spannweitenverhältnisse e Lx/Ly 1/1,5, e 1 und
e 1,5 erllhnet (güd g).

Die Berechnung wurde mit Hilfe des erwähnten SAUD-
Programmes ausgeführt. Da dieses Programm keine unendlichen

Plattenstreifen verarbeitet, wurde eine genügend grosse
Anzahl von Spannweiten in der x-Richtung gewählt, um die
Randstörungen der programmbedingten linienförmigen
Endfeldlagerung zu vermodern.

Als Bezugsspannweite wurde LiMk\wmma alle Berechnungen

gewählt. Die Einleitung der in der x-Richtung gleichzeitig

angreifenden Einheitsmomente erfolgte in Form von je
zweier schmaler Flächenlasten entgegengesetzter Vorzeichen
(Bild 9). Die Belastungsgrössen 9i wurden für Einheitslast pro
Flächeneinheit ermittelt (q =1). Als Plattensteifigkeit wurde
S 1 gewählt.

Voruntersuchungen

- Eine erste Voruntersuchung befasste sich mit der Anzahl der

zu verwendenden Fouriertermen. Es zeigte sich, dass bei
Erhöhung der Fourierterme von 40 auf 50 in unmittelbarer
Nähe der Lasteinleitung die errechneten Werte sich wie folgt
verändern:

Werte im
Stützenbereich

Durchbiegungen
und Neigungen
Momente
in >>-Richtung

Momente
in x-Richtung

Grössenordnung

2•IO-2

2

8 •10-1

Abweichung
/o

1

7

20

Die a- und 9-Werte wurden demnach mit 50 Fouriertermen
gerechnet.

Durch eine weitere Voruntersuchung sollte abgeklärt werden,
wie die Grösse der Auflagerfläche die Verdrehungswerte
beeinflusst. Es zeigt sich, dass infolge der getroffenen
Annahmen des SAUD-Programmes die Plattenverdrehungen
von der Auflagerfläche unabhängig sind.
Bei der letzten Voruntersuchung wurde die Einleitung der
Momente variiert. Der für sämtliche Berechnungen gewählte
Hebelarm der stellvertretenden Kräfte (0,07 Ly) wurde
ungefähr verdoppelt (0,15 Ly) und die erhaltenen Werte
gegenübergestellt (Bild 10). Die Abweichungen der
Verdrehungen im Stützenbereich betrugen rund 15%, während
die örtlichen Momentenspitzen wesentlichere Unterschiede
zeigten. Die errechneten Verdrehungen (PlattenfestwSgB
lassen sich somit bei geringerer Abweichung von der

angenommenen Krafteinleitung mit guter Näherung an-
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jf A

Mx =t
"=+ 1 if

B ü Ii
it.

r-x
m

Linienlagerung'gerut

&^

4* r simultan

&
A I A

Lastfall 1

Lastfall 2

x 4

m1 ^

H-
¦ 4-

we Stutzenbereiche

4

Bild 8. Die zur Ermittlung der Plattenfestwerte
angenommenen Plattenformen

iix & k \r,Tt~T—f
i

Linienlagerung

<£¦
4*1
-Q-

4

Lastfall 3.
Vollast p 1

"TS

4

wenden («statische Aufgabe»), während für die Berechnung
der Momentenspitzenwerte («Verteilungsaufgabe») (falls
überhaupt von Interesse, da im unmittelbaren Stützenbereich

die Bemessung von anderen Kriterien abhängt) die
Modellierung der Kräfteeinleitung von Fall zu Fall erfolgen
soll.

0.07

0:0

Steifigkeit I

p 2040t

<-y/20

0.05
Resultatpunkte

I 1

I

7+
0.01

0.07

1 0,05 1 OXS i 0~fi5 t 0^05 r
Bild 9. Einteilung der Einheitsmomente in die Platte

Die erhaltenen Plattenfestwerte
Die erhaltenen Werte sind, in Abhängigkeit des

Spannweitenverhältnisses, in den Bildern 11 und 12 aufgetragen. Es
zeigt sich, wie erwartet, ein rasches Abklingen der Einflüsse
von einer Stützenreihe zur anderen. Die Ergebnisse lassen sich
für andere, als die der Berechnung zugrundeliegenden
Annahmen gemäss Kap. 7.1 wie folgt umrechnen:

- Spannweitenverhältnisse zwischen den Gerechneten:
Ausmessen aus den Kurven

- Andere Bezugsspannweite Ly und Plattensteifigkeit Si
a-Werte: nach Gl. 36; 9-Werte für gleichmässig verteilte
Vollast q (nach Gl. 37):

qLy3 _
9 =90

dabei bedeutet 90 die errechneten Verdrehungen bei Ly 1,

5 1, q 1

Der Vergleich der a 22-Werte zwischen 2-Feld- und
3-Feldstreifen zeigt, dass die Platte wenig davon «Kenntnis
iumj»|| ob noch weitere Felder «angehängt» sind. Sinngemäss
könnte bei Berechnung von mehrfeldrigen Plattenstreifen
lediglich zwischen Rand- und Innenstützen unterschieden
werden. (Ein weiterer Vorschlag: bei der Berechnung nur
aij-Werte von j i — 1, i, i + 1 zu berücksichtigen, da der
Einfluss auf weitere Stützenverdrehungen geringer ist, als die

Genauigkeit der allgemein getroffenen Annahmen.)

8. Vorgehen bei der Berechnung

Das vorgeschlagene Vorgehen kann wie folgt zusammengefasst

werden:

- Systemwahl: Festlegung des statischen Modelies

- Ermittlung der Stabfestwerte

- Ermittlung der Plattenfestwerte, entweder aus den bereits
ermittelten Werten des Bildes 11 bei geometrischer und
statischer Ähnlichkeit durch Umrechnung (s. Kap. 7) oder
durch elektronische Plattenberechnung unter Ausnützung
bestehender Bibliothekprogramme.

HEösung der «statischen Aufgabe»: Ermittlung der an den
Knoten (Verbindungspunkte zwischen Platte und Stäbe)
auftretenden Momente (Kap. 5 und 6).
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(Xw\H
X

Sclrutt a

m <sV^s

/
£

0,05 0,10 0,15-L 0,05 0,10 ¦ Ly 0,15

HebelaWSfS 0,07 ¦ Ly
EJ||S|- Hebelarm tm>W> ¦ Ly

ild 10. Variation der Momenteinleitung (Voruntersuchung)

380

2.75

2.26

<P,=0

0.67

— 1

5 io-2

4

(S)
4,12

3 '3,10

©5»
©59

1 0,65

Ü Th72~ ~öjh

Ly

©©¦ 4 '

¦10

2 - Fetdst'reifen
- 1

5
5,25 Ö

4

mmSB >v 4,52

3

2

1 ÜI 1,15

s>- -0,52
0-dL^.'7

3 - Feldstreifen

a
V "J

Ly

109

0.B3
0 65

0.27 0 20
V-41) 0 0.13

w

2.32
2.05

1.15

C77B7

0,67

3 IO'1

2
&¦—

2,60

2,31

1

<3>
1,09

©
4«)_— 0,60

&27~~_ 0A4^
0,65

0,33
0,13

0,67 1,0
Lx

Ly

-7^
| J. f- U1 [ ^

Bild 12. Belastungsgrössen <t{ infolge gleichmässig verteilter Einheitslast

der 2-Feld- und 3-Feld-Plattens|leifen
Bild 11. Festwerte ",, der 2-Feld- und 3-Feld-Plattenstreifen

Lösung der «Verteilungsaufgabe»: Ermittlung des Ver- 9.3 Plattenfestwerte
laufes der statischen Grössen (Durchbiegungen, Querkräfte,
Momente) infolge a) der zur Platte senkrechten Belastung,
b) der B die Platte eingeleiteten Momente. Diese Aufgabe
kann heute mit Hilfe leistungsfähiger EDV-Programme
gelöst werden.
Darstellung der erhaltenen Grössen: auch dafür kann die

EDV eingesetzt werden; durch bestehende Hilfsprogramme
können die dreidimensionalen Flächen übersichtlich
dargestellt werden (siehe Beispiel).

Ed3
S I 3,2 ¦ 10" tm

12(1 -v2)

Lx

Ly
0,875

a0-Werte (aus Diagramm des Bildes 11 ausgemessen):

i 12 3 4

1 2
9. Zahlenbeispiel

9.1 Das statische System

Das statische System des gewählten Beispiels mit den an- a

greifenden Belastungen (Belastungsfall I: Horizontallast;
Belastungsfall II: gleichmässig verteilte Vollast) sowie das a-Werte

reduzierte System sind aus Bild 13 ersichtlich. I

4,70
-0,90

-0,90
2,34

0,22
-0,50

-0,09
0,22

Umrechnungsfaktor (nach Gl. 36):

a a» So/S a0 ¦ 3,13 ¦ IO"5 (1/tm)

1

9.2 Stabfestwerte

i 1,4 2,3 Dimension

14,70
-2,82

0,69
2 -2,82 7,34 -1,56

Belastungsgrösse Vollast:

-2,82
7,34

-0,28
0,69

£7«,
ß

Y

k
m

4,30 ¦ IO4

3,1 • IO"5
0,25
0
0

1,56 • 10"
6,4 ¦ IO"5
0,375
0,5

-2,92 • IO3

tm2
1/tm
m-1
1

t

9o-Werte (aus Diagramm gemessen):

i 1 2

10-

10-6 (1/tm)

2,9 -0,75 10"
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9 a

15-75

B^äi-50 a.50

5 X-AXE

X-AXE 8

0.00 0-50 1-00 1.50 E.50 E-50 7.50 3-00 a«50 3-00 3-50 10-50 12.50 Y-AXE

X-AXE .X

17.50

3.00 B-50 3-00 3.50 10-50

Bild 14. Plotterzeichnungen zum Zahlenspiel in Kapitel 9, Lastfall I,
Horizontallast, a: Mx-Werte, b: A/,^-Werte. c: M^-Werte. d:
Durchbiegungen w
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Umrechnungsfaktor:

I 90 q Ly3/S 90 ¦ 4,8 • 10"

9-Werte:

i 1 2

13,9 -3,6 IO-4 (m2/t)

9.4 Lösung der «statischen Aufgabe»

Lastfall I (Horizontallast)
Bedingungsgleichungen nach Gl. (19), (Antimetrie, unter

Ausnü&ng X4 — Xi und X3 X2)

Xi (an + ßi) + X2 ¦ a12 + X2 ¦ ai3 + W ¦ <M | Ci

Xi a21 + X2 (a22 + ß2) + X2 ¦ a23 + Xi ¦ a24 C2

Mit eingesetzten Werten:

Xi (45,4 • IO-6) + p (- 2,13 • IO-6) Ci

Xx (- 2,13 • IO6) + X2 (69,8 • IO-6) C2

Als Kehrmatrix gelöst:

Xi 22,06 • IO3 G + 0,673 • IO3 C2 ;

X2 0,673 ¦ IO3 Ci + 14,35 • IO3 C2

Belastungsglieder Ci und C2:

Ci =11,25 e + 1,24-IO"3 ; Cz 0,375 e

Verschiebungszustand 0 (e 0)

Xx° 27,35 ; X2° 0,831

Verschiebungszustand 1 (e 1 allein)

Xi 5,766 • ffi3 ; X2 5,549 ¦ IO3

Verschiebung e (nach Gl. 25):

10-4+2 [(40 - 27,35) - 0,83 • 1,5]

2 [5,766 • IO3 + 5,549 • IO3 • 1,5 + 2,92 • IO3]

1,846-10-3m

X-Werte nach Gl. 26:

Xi 27,35 + 5,766 • IO3 • 1,846 • IO"3 38,0 mt

X2 0,831 + 5,549 • IO3 • 1,846 • 10"

Auf Stützen wirkende Kräfte:

40,0mt
~*38,0mt

11,1 mt

'tf.tmt

0,5t

lOzen 1 und 4

10,9 mt

5,5 t
Stützen 2 und 3

Gleichgewichtskontrolle:

Y qk 10 + 2 ¦ 0,5 - 2 • 5,5 0

Lastfall II Vertikallast)
Bedingungsgleichungen, unter Ausnützung der Symmetrie

(J14 ~ — Xi
_

X3 — — X2)'.

Xi (au — ai4 + ßi) + X2 (a12 — a]3) Ci

Xi (a2i — a24) + X2 (a22 — a2i + ß2) E C2

BelastungsSeder:

Ci « e - 1,39 • IO-3; C2 0,375 e + 3,6 • IO"4

Die weitere Berechnung erfolgt analog Lastfall 1.

9.5 Die Lösung der « Verteilungsaufgabe»

Diese erfolgte unter Benützung des bereits erwähnten
SAUD-Programmes (60 Fourierterme).

9.6 Die Ergebnisse

Die Ergebnisse wurden als computergesteuerte Plotter-
zeichnungen dargestellt. Im Bild 14, sind die Werte Mx, My,
Mxy so wie die Durchbiegungen für Lastfall I des untersuchten
Plattenausschnittes wiedergegeben.

10 t

14-11 q=3t/m2
0,7

050

0.5/0.7 0.5/0.5

Ly - 6,0

H=

M= AOmt q =3 t/m2

^ v W ^ ^
M= 40 mt

Bild 13. Zahlenbeispiel: Statisches System und reduziertes
System
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