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92. Jahrgang Heft 41

SCHWEIZERISCHE BAUZEITUNG

10. Oktober 1974

HERAUSGEGEBEN VON DER VERLAGS-AKTIENGESELLSCHAFT DER AKADEMISCHEN TECHNISCHEN VEREINE, 8021 ZURICH, POSTFACH 630

SIA-Heft 9, 1974

Die SIA-Fachgruppe fiir Briickenbau und Hochbau, FBH, fiihrt am 25. und 26. Oktober 1974
an der Eidgenossischen Technischen Hochschule in Lausanne eine Studientagung durch. Behandelt

werden die beiden aktuellen Themen:

Baulicher Brandschutz und Uberdeckung grosser Spannweiten

Die zwei Hauptaufsitze in diesem Heft der Schweizerische Bauzeitung gehéren in die erweiter-
ten Themenkreise der Tagung, wurden uns aber von den Verfassern unabhingig von der Veranstal-
tung zur Verdffentlichung anvertraut. Das Tagungsprogramm wurde in Heft 38 (SIA-Heft 8) vom
19. September, S. 878, bekanntgegeben. Anmeldungen werden bis zum 15. Oktober vom General-
sekretariat des SIA, Postfach, 8039 Ziirich, gerne egegengenommen.

Berechnung von Flachdecken als Riegel verschieblicher Rahmen

Von D. Serdaly, Genf

Die vorliegende Arbeit ist dem Problem des Zusammen-
wirkens zwischen Platte und Stiitzen bei Flachdecken, die als
verschiebliche Rahmen wirken, gewidmet. Es wird eine Methode
vorgeschlagen, die die Berechnung der unbekannten Verbindungs-
momente in vielen praktischen Fillen erlaubt. Im weiteren werden
elektronisch errechnete Plattenfestwerte angegeben und eine
Ubersicht der Abhingigkeiten der statischen Gréssen von Platten
konstanter Steifigkeit gezeigt. Ein Zahlenbeispiel erliutert das
Vorgehen und zeigt die Einsatzmdglichkeiten der elektronischen
Datenverarbeitung.

1. Einleitung

Die vorliegende Arbeit ist eine Fortsetzung von Unter-
suchungen iiber Spezialfdlle von Flachdecken (unterzugslose
Decken). Wahrend eine erste Veroffentlichung [1] den Einfluss
der Aussparungen behandelte, wurde die vorliegende Arbeit
dem Problem des Zusammenwirkens zwischen Platte und Stiitze
gewidmet.

2. Problemstellung

Die Berechnung von Flachdecken wird im allgemeinen
unter Annahme gelenkiger Lagerung, d.h. unter Vernach-
lassigung der biegesteifen Verbindung zwischen Platte und
Stiitzen, ausgefiihrt. Bei vertikalen, gleichméssig verteilten
Lasten ist diese Vereinfachung, soweit es sich um die Ermitt-
lung der Plattenmomente handelt, statthaft. Fiir die Ermittlung
der Stiitzenmomente behilft man sich, mangels besserer
Methoden, mit der Annahme einer «mittragenden Platten-
breite», die die Riegelsteifigkeit des «Ersatzrahmens» liefern
soll.

Dieses Naherungsverfahren ist unbefriedigend begriindet.
Bereits die «mittragende Plattenbreite» kann verschieden
definiert werden (Momentengleichheit, Verformungsgleich-

Schweizerische Bauzeitung - 92. Jahrgang Heft 41 + 10, Oktober 1974

DK 624.04

heit), ist verdnderlich und vom Lastfall abhingig (vgl. [2]).
Das Modell eines «Ersatzrahmensy» ist auch nicht sehr funk-
tionstiichtig, da die grundsétzlichen Ansétze der Stabstatik fiir
Fldachentragwerke nicht anwendbar sind. Die errechneten
Werte konnen insbesondere in Frage gestellt werden, wenn der
durch Platte und Stiitzen gebildete, verschiebliche Rahmen
horizontale Lasten (Windkrifte, Erdbebenkrifte) zu tragen hat.

3. Aufgabe
Die Aufgabe war, eine Berechnungsmethode zu finden,
die mit verniinftigem Aufwand an Rechenarbeit baustatisch
fundierte Ergebnisse beim Zusammenwirken von Platte und
Stiitzen liefert. Besondere Beachtung wurde dabei dem Lastfall
«horizontaler Kraftangriff» aus den oben erwdhnten Griinden
gewidmet. Es handelt sich hier um eine Kombination der
Platten- und Stabstatik und die Aufgabe enthélt zwei Stufen:
a) «statische Aufgabe»: Ermittlung der Ubergangsgrossen
zwischen Platte und Stdben (Verformungen, Krifte, Biege-
momente);
b) «Verteilungsaufgabe»: Ermittlung der Verteilung von Ver-
formungen und Schnittkriften in der Platte, verursacht
durch die eingeleiteten Ubergangsgrossen.

Das dritte Problem, namentlich das ortliche Verhalten der
Platte im Bereiche der Kréifteeinleitung, wird hier nicht be-
handelt (siehe [3]).

4. Das statische Modell
4.1 Annahmen

Betrachtet sei ein endloser Plattenstreifen von konstanter
Steifigkeit, der in gleichen Abstdnden mit identischen Stiitzen-
reihen biegefest verbunden ist (Bild 1). Die Enden der Stiitzen
seien an je einem oberen und unteren starren Korper beliebig,
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aber bekannt gelagert. Die beiden starren Korper konnen sich
gegenseitig verschieben. Die Belastungen greifen an allen
Stiitzenreihen gleichzeitig so an, dass rechnerisch nur eine
Stiitzenreihe mit dem dazugehorigen Plattenteil behandelt
werden kann.

Hu

4.2 Grundsystem

Als Grundsystem wird das beschriebene System gewihlt,
wobei die biegefeste Verbindung zwischen Platte und Stiitzen
als gelost betrachtet wird. Das Gleichgewicht in den Knoten
wird durch die Einfiihrung unbekannter Krifte hergestellt.
Wenn alle Stibe an den starren Korper (Scheiben) gelenkig
gelagert sind, wird das System unstabil, es miissen noch un-
bekannte Festhaltekréfte eingefithrt werden. Die an einem
Knotenpunkt auftretenden Grossen samt Vorzeichenregel sind
im Bild 2 dargestellt.

4.3 Vorgehen

Die Losung der Aufgabe a) erfordert die Ermittlung der
Ubergangswerte zwischen Platte und Stiben, d.h. die Be-
stimmung der gewdhlten unbekannten Grossen. Dazu werden
benotigt:

— die Belastungsgrossen der Platte, d. h. die Verdrehungen der
Platte in den Knotenpunkten infolge Belastungen senkrecht
zur Plattenebene

— die Plattenfestwerte, d. h. die Verdrehungen der Platte in den
Knotenpunkten infolge der in den Knotenpunkten an-
greifenden Einheitsmomente

— die Stabfestwerte, d. h. die Verdrehungen der Stiitzen in den
Knotenpunkten infolge der dort wirkenden Einheits-
momente

Sind die Ubergangsmomente bekannt, so kénnen die in
einem beliebigen Punkt der Platte auftretenden Verformungen
und Schnittkréfte durch Superposition ermittelt werden, sofern
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Bild 2. Bezeichnung und Vorzeichendefination der Verformungen

und Krifte am i-ten Knotenpunkt

Bild 1. Problemstellung, statisches Modell

diese Werte infolge Plattenbelastung bzw. infolge Einheits-
momentenangriffe bekannt sind. Wéhrend die Stabfestwerte
durch die elementare Stabstatik geliefert werden, konnen die
Plattenverdrehungen durch die Plattentheorie ermittelt werden.
Fiir die Plattenberechnung stehen heute leistungsfahige EDV-
Programme zur Verfiigung. Fiir diese Arbeit wurde das an der
ETH entwickelte SAUD-Programm beniitzt [5]. Die Berech-
nungen wurden im Fides-Rechenzentrum Ziirich ausgefiihrt.
Die erhaltenen Momentenflichen wurden mittels computer-
gesteuertem Plotter der Techdata AG Bern aufgezeichnet.

5. Losung der statischen Aufgabe

Die Verformungsbedingung in einem Knotenpunkt 7 des
Grundsystems lautet:

1 e = o0 = Qu
(Platte) (obere (untere
Stiitze) Stiitze)

n
@ =09+ '21 X aig
95

dabei bedeuten:
@; Verdrehung der Platte im Knotenpunkt 7 infolge
Belastung senkrecht zur Plattenebene
X; das unbekannte, auf die Platte wirkende Moment
im Knotenpunkt j
a3 die Verdrehung der Platte im Knotenpunkt i
infolge X; =1
3)  9io = Bio Xio + Yio€o
4  Pru = PBiuXiu + Yiueu

dabei bedeuten:

Xiound Xi» Die an den Stabenden angreifenden un-
bekannten Momentgrossen
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Biound Bs» Verdrehung der Stabenden infolge Xio = 1

bzw. Xiu =1

Obere bzw. untere, unbekannte System-
verschiebung

eound ey

Verdrehung der am Knotenpunkt liegen-
den Stabenden des oberen bzw. unteren
Stabes infolge e, = 1 bzw. ex =1

Yio und Yiu

Die Gleichgewichtsbedingung der Momente am Knoten
lautet:

6  Xi= — Xio + Xiu)
Es kann geschrieben werden:
6) Xio=—EtX;

7N Xiu=-(1-9Xs

Es bedeutet £ eine unbekannte Verteilungszahl.

Gestiitzt auf die Verformungsbedingung (1) konnen in
jedem Knotenpunkt 7 zwei Bedingungsgleichungen geschrieben
werden :

(8a)  Xi[ous + E¢Bio] + Z Xj oy = YioCo — Pi

@8b)  Xil[ouwi + (1 — &) Beu] + Z Xjo; = Yiu€u — Pt
(G=1.,,m%1)

Durch Umformung erhilt man zwei Gleichungen:

9 X [Mu‘ (l 1 Z‘“’) b gio] + (1 + Sio ) Y Xjouy =

Bio = Bia
= Cu— Pt 1 +
Biu ¢ L ( Biu )

1 l'Y{a €o — Yiu€u )
=t [ TR, o
! Bio = Biu ( Xi [u‘

beziehungsweise :

= Yi0€o + Yiu
sowie

(10)

Yiéo €o — Yiu €u + Biu X;
1] 2, = — Yo% —Tuex + B Xt
( ) ' Bio + Blu

Gleichung (9) liefert das Gleichungssystem:
[8]-[X] =[C]

wobei [8] den Elastizitdtsmatrix mit den Diagonalgliedern

S = ot (1 + B‘o) + Bio

Biu
sowie den librigen Gliedern (k # i):
dix = (1 + S::) %z
darstellt.

[C] ist der Belastungsvektor mit

(12) Cy = Yio €o +Yz‘-u%€u _—q»;i (1 + Bia)
iu

Biu
Die allgemeine Losung des Gleichungssystems lautet
(X1 =D1-[C]
beziehungsweise

n
13) Xi= ) MxCr
k=1
wobei [A] den Kehrmatrix zu [8] bedeutet
+ 10. Oktober 1974
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und nach Gauss, durch Iteration, oder (bei wenig unbekann-
ten) durch die Determinantenformel

... D : ;
e = (— 1)iTk _D”i ermittelt wird.

Bei unverschieblichen Rahmen sind C; und somit X;
bekannt, bei verschieblichen Rahmen enthilt C; noch zwei
Unbekannte: e, und ew., welche aus der Gleichgewichts-
bedingung der horizontalen Krifte; bzw. aus der Bedingung,
dass die horizontalen Festhaltekrifte verschwinden, zu be-
stimmen sind.

Festhaltekraft oben:

(14) Fo=— (Ha +

- _iw Lv Xio (1 4 kio) + €0 Mo
" L hio

é’io_'f‘Mio)

io

Festhaltekraft unten:

(15) Fu = —(Hu, = Zij—-‘—) -
hiu
. (H Z Xiu (1 + kiu) + eu miu)
N - hiu

Festhaltekraft Plattenebene:

(16) sz:_(AH_ZXZO(I +IZG)+€amio I
i0

Z Xiu (1 + kzu) + eu miu)
+
hiu

was trivial ist, da H, + Hx + AH = 0 sein muss.
In den Gleichungen (14), (15), (16) wurden

Mo = Xio kio + €0 mio und

Miu = Xiukiu + ea miu gesetzt, wobei bedeuten:

kio und kix die Momentaniibertragungszahlen Mio/Xio
bzw. Miu/Xtu
und mio bzw. my, die Einspannmomente
mio = Mi, infolge e, =1;

Mmiuw = Miy infolge ey = 1.

Tabelle 1. Stabfestwerte fiir konstante Stabfestigkeit
I :L T Dimension
Stabende Stabende
gelenkig eingespannt
a7
h h 7
'B q\ﬂ JET q4E7 tm
)
7 g 1 -7
’ 4 3 T m
oy 7
7
AT ;|
OV &
7
m g o = ——Jfg #
N h
OV m

937



2
N

AR
te,
. 2o
A ww A& A
LASEY eSS
b)—=% R

Bild 3. Sonderfall 1, Beispiel 1: Statisches System (a) und reduziertes
System (b)
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Bild 4. Sonderfall 1, Beispiel 2: Statisches Sy-
stem (a) und reduziertes System (b)
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Bild 5. Sonderfall 1: Verformungen und Krifte am i-ten Knoten-
punkt
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Wihrend die Plattenfestwerte «¢; im Kapitel 7 behandelt
werden, zeigt Tabelle 1 eine Zusammenstellung von Stab-
festwerten fiir konstante Stabfestigkeit.

Wir suchen nun die Werte von e, und ey, fiir welche die
Festhaltekrifte verschwinden. Da sdmtliche unbekannten
Grossen lineare Funktionen der Verschiebungen e, und e
sind, lassen sich diese wie folgt ermitteln:

Der Verschiebungszustand O (unverschieblicher Rahmen)
0 =0, es =0, 9; #0 ergibt F°, F°u, Fu ;
der Verschiebungszustand 1
eo=1, ex =0, 9: =0 ergibt F'o, F'u, F'ou;
der Verschiebungszustand 2
eo =0, en =1, 9 =0 ergibt F, F's;, Flew .

Aus der Gleichgewichtsbedingung der horizontalen Kréfte
ergeben sich die Gleichungen

(17) Fo =F°% + F'oeo + F'oeu =0
u =Fou +F’u€o +F”u.eu =0
aus welchen e, und e ermittelt werden konnen.

Die gesuchten Xi;-Werte lassen sich durch Superposition
bilden

(I8) Xi=X’i+X'ieo +X"ieu
6. Sonderfille

In Sonderféllen kann sich die Berechnung der «statischen
Aufgabe» vereinfachen. Zwei praktisch wichtige Fille sollen
im fc'genden ndher untersucht werden.

6.1 rorderfall 1: einstockiger Rahmen
Anwendungsbeispiele

Die Notwendigkeit, einstockige, aus Flachdecke und
Stiitzen bestehende Systeme als verschiebliche Rahmen zu
berechnen, sei durch zwei Beispiele erldutert. Bild 3a zeigt
das schematische statische System einer unterkellerten
Industriehalle mit hohen Stiitzen und grossen Horizontal-
kriften im Obergeschoss. Mit guter Anndherung ldsst sich das
System auf das im Bild 3b dargestellte reduzieren.

Bild 4a stellt einen schematischen Querschnitt des Erd-
geschosses und der dariiterliegenden Stockwerke eines Hoch-
hauses dar. Die Stabilitit des Aufbaues wird durch Wand-
scheiben gewihrleistet (z. B. zwei Stirnscheiben); diese horen
jedoch oberhalb des Erdgeschosses auf. Somit muss der Erd-
geschossrahmen den ganzen Horizontalschub aufnehmen.
Bild 4b zeigt das reduzierte statische System ausserhalb der
Ebenen der Wandscheiben.

Grundsystem und Lésung der «statischen Aufgabe»

Das Grundsystem wird wiederum durch I6sen der
biegefesten Verbindung zwischen Platte und Stiitzen gebildet.
Bild 5 zeigt die an einem Knotenpunkt auftretenden Grdssen.
Die Elastizititsgleichung an einem Knotenpunkt, aus GI. 8
abgeleitet, lautet:

(19)  Xi(ows +B0) + ), Xjous = vie + MiBi — i
= Lowan 4E)
Die Elastizitditsmatrix enthilt die Diagonalglieder
Su = (aui + Be)
und die iibrigen Glieder (k # )

dix = dik

Schweizerische Bauzeitung + 92. Jahrgang Heft 41 - 1C. Oktober 1974



Der Belastungsvektor wird durch die rechte Seite der
Gleichung gebildet:

Ci=vie — MiBi — ¢:

Mit den Gliedern der inversen Matrix A erhalten wir
wiederum:

20 X:= Z ik Cr
k=1

(21) Xlu = Mi = Xz
(22) Miv = Xinki +~emi = (M — X)) ki + emy

wobei ki = (Miu/Xiu) die Momenteniibertragungszahl der
Stlitzen und m: = Mi« infolge e = 1 bedeuten.

Der Verschiebungszustand 0 (unverschieblicher Rahmen):
e=0, Mi+#0, 9:#0, H+#0

liefert uns die Festhaltekraft auf Plattenebene

1 b -
_(H+ZZ(~XOi +Mi+Moiu)) =

1 e 3l
—{H+ZZ [(— X° + M) +k1)]‘,

(23) F° =

Der Verschiebungszustand 1:
e=1, Mi=0, =0, H=0

liefert:

/_*i _ v/ e N

—%Z [— X' (1 + ki) + e mi]

Das horizontale Gleichgewicht der Krifte liefert:
F=F +Fe=0
und
e = — F°|F’
bzw. mit (23) und (24):

_ Hh — Z(on — M; — M%) _
5 e Z X's — M':) B
Hh + Y, (Mi — X°) (1 + ki)

Z [X: (A + ki) — mi]
Damit erhalten wir
(26) Xi =X°% + X'ie

In Tabelle 2 sind Beispiele von Losungen der statischen
Aufgabe in einfachen Fillen aufgefiihrt.

6.2 Sonderfall 2: Néiherungsberechnung von Stockwerkrahmen
Anwendung

Néherungsweise konnen Stockwerkrahmen mit schlanken
Stiitzen unter horizontaler Belastung berechnet werden, falls
keine grosseren Steifigkeitsunterschiede zwischen den Stiitzen
bestehen, indem die Momentennullpunkte auf halber Stock-
werkshohe angenommen werden. Das entsprechende statische
Modell zeigt Bild 6. Durch H wird der gesamte Horizontal-
schub auf der entsprechenden Stockwerkshohe bezeichnet,
welcher sich auf die einzelnen Stiitzen verteilt. Wir nehmen
vereinfachend noch an, dass auf die Plattenebene keine
Horizontalkrifte wirken, d. h. die stockwerksweise Vergrosse-
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Tabell 2. Beispiele zum Sonderfall 1
H H
e —_—>
h
Y Y
1) X = =
as) v—}-Be X d‘l‘ﬁe
X° =0 k=0 X°=0
X =—"_ m=o0 x=—7
o+ B o+
@5 e =B __ e — - S
¥
(=+s)
:Hha—i—ﬁ X — Hh -
e l—i—k—mw—v{a
X =Hh i
M ~M
Y _re+Mp L _te+Me
a4+ B o+ B
7 —
X9 = g k =0 Xo= Me
o+ B a+B
S P &
x4+ 8 o+ B
d M—— (U4 k)
M(l_a+@) & o ETP
PRSI, SOl =
Y L1+ k) —m
o+ B o+ B
o X =M-
=M—
i . 8 o
— a+(3 o« B
XﬁMa%—MB 7
«+p
7 (oc+B)m
A+ kv

._’H N

I Y
A TR B 8 S [ A

4(%7

H
TR “\\“\\Y\\Y\‘\\W\T\\\'\YO\\"\\\'\\\YX\\Q&\W\\‘\\\‘%' «—

*’%)7

.

L

Bild 6. Sonderfall 2: Statisches Modell
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Bild 7. Sonderfall 2: Verformungen und Krifte am i-ten Knoten-
punkt

rung des Horizontalschubes auf halber Stockwerkshohe er-
folgt. Diese Ndherung ist zuldssig, falls H gegeniiber AH gross
ist. Im weiteren wird stabweise konstante Stabsteifigkeit an-
genommen.

Grundsystem und Losung der statischen Aufgabe

Das Grundsystem bilden die Platte sowie Gelenkstibe,
gemdss Bild 7, wobei die biegefeste Verbindung zwischen Platte
und Stdben wiederum als gelost gedacht wird.
Elastizitdtsgleichung:
Q7D Xi(owe +B:) + Y Xyouy =vie — s
Dabei bedeuten: .

die Plattenfestwerte

Oligy OLij
B Stabdrehwinkel in Stabmitte infolge Xist = 1
also:
h
=BT
Yi Stabdrehwinkel in Stabmitte infolge e = 1
also:
yi = 1/h
Pi Plattenverdrehung im Knotenpunkt i infolge

Belastung senkrecht zur Plattenebene

Verschiebungszustand 0:

e=0, 10, H#0

l 0
28) F° = —[H—;in]

Verschiebungszustand 1:

liefert die Festhaltekraft:

e=1, 9. =0, H=0 Iliefert:

1
29 F’=—§ X'
29) 7

Aus dem horizontalen Gleichgewicht erhalten wir:

F=F"+Fe=0 und ¢ = — F°/F’

940

bzw. mit (28) und (29):
Hh—Y X%

0 Y X

e =
und

Hh— Y X%
Bl) Xi=X°%+Xie=X%+X" __L
XX

Wenn nur die horizontale Stockwerkskraft wirkt (X°; = 0),
ergibt sich X; = Hh X's/2 X';.

Beispiel
Das nachfolgende einfache Beispiel

soll den Rechnungsgang erldutern: >

a.) (X1 (11 + B) + Xooz = ye

1X1 ta1 + Xz(azz 1= @) = Yee

A

b B

11 = Oz = 01 X1z = G21 = 02
[X1(°<1 +B) + Xooa = e
| X + Xa (o +8) = e

Ye( +B) — Yoz

¥=2-X- =
‘ 3 (1 +B)* —2?
_ Yl 4B —ya
(o2 +B)* —a?
PCRVIR W . v . Rl

4Y(0€1 + B)?2 — 22

Hh (061 —I— B)Z — (122
e Sl AT A
2y (o1 +B) —oaz

X =X° + X’ e = Hh[2, was erwartet wurde.

7. Plattenfestwerte und Belastungsgrossen

Zur Losung der statischen Aufgabe, d. h. zur Ermittlung
der Werte der Ubergangsmomente zwischen Platte und Stiben
werden einerseits die Werte von «;; (Verdrehungen im Knoten-
punkt i infolge im Knotenpunkt j angreifenden FEinheits-
momenten), andererseits die ¢;-Werte (Verdrehung der Platte
im Knotenpunkt 7/ infolge zur Plattenebene senkrechten
Belastung) bendtigt. Die Losung der Verteilungsaufgabe er-
fordert die Kenntnis der gesuchten Grossen (Durchbiegungen,
Momente) in bestimmten Punkten P(x,y) der Plattenebene in-
folge in den Knotenpunkten angreifenden Momenten sowie
infolge der zur Plattenebene senkrechten Belastung. Wie in
Kapitel 4 erwidhnt, wurde im Rahmen dieser Arbeit eine
Anzahl von Plattenfestwerten mittels elektronischer Rechnung
ermittelt. Zur Deutung der ermittelten Werte wollen wir im
folgenden die Abhidngigkeiten dieser Werte von den Rand-
bedingungen untersuchen. '

7.1 Abhingigkeiten
Mit den Bezeichnungen:

K Belastungsgrosse []

gleichmadssig verteilte Last K =p Fr
Linienlast K=pl
Einzellast K=P
gleichmdssig verteilter

Momentenangriff K=mlL/L
Einzelmoment K = MJ|L

i Bezugsspannweite [rm]
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S konstante Plattensteifigkeit

[tm] S = Ed312(1 — v?)

Systemfaktor: abhdngig von Plattenform,

Lagerungsart, Spannweitenverhéltnissen

) Lastfaktor: abhidngig von Laststellung, Form und
bezogene Grosse der Belastungsfldche

£,m Relative Koordinaten & = (x/L), n = (y/L) eines
Punktes der Plattenebene

(0]

konnen wir allgemein setzen:

Durchbiegung

(2)  we,q = (KL*S) " fu (s, 3,8, 1)
Neigung

(33) g0 = (KL/S) [ (s, 8,E,m)
Momente

(B4 mz,q = Kfn(e, 3,8 n)

Die Bedeutung dieser Abhingigkeiten fiir die Platten-
festwerte kann wie folgt interpretiert werden:

Plattenfestwerte o (Verdrehung infolge Einzelmoment)
fir K = M/L ergibt aus GlI. (33)

(35 o =M]S) f(38,En) und o« =(1/S) (3,

Dies bedeutet, dass bei gleicher

— geometrischer Form der Platte, deren Lagerung und Spann-
weitenverhéltnisse (g)

— Stellung der angreifenden Momente (3)

— Aufpunkt der untersuchten Verdrehung (€, n)

die «-Werte allein von der Plattensteifigkeit abhédngig, und
insbesondere von der Bezugsspannweite unabhéngig sind. Die
einmal fiir 4hnliche Plattenformen errechneten «-Werte lassen
sich fiir andere Plattensteifigkeiten einfach umrechnen

(36) o = OCoSa/ S
Belastungsgrdssen ¢ (Verdrehung infolge zur Plattenebene senk-

rechte Belastung)

Die Abhéngigkeiten sind verschieden, je nachdem es sich
um verteilte Lasten, Linienlasten oder Einzellasten handelt.
Fiir verteilte Belastung ist K = p Fr in Gleichung (33) ein-
zusetzen:

(37 e» =P FLLIS)],
fir Linienlasten gilt:
(38) o= ILLLIS)f,
und fiir Einzellasten:
(39 er=(PLIS)/f,

Bei geometrischer Ahnlichkeit der Form, Lagerung und
Belastung konnen auch diese Werte fiir andere Bezugsspann-
weiten, Belastungsgrossen und Plattensteifigkeit mit Hilfe der
Gl. (37, 38, 39) umgerechnet werden.

Durchbiegungen
Infolge senkrechter Belastung: aus GI. (32).
Infolge Momentenangriff:

(40) we,q = (ML/S) fu

(41) und infolge M =1 wo, - = (L/S) fuw

Momente
Infolge senkrechter Belastung liefert Gl. (34):
mg o, = K f m
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Infolge Momentenangriff:
(42) mg ., = (M[L) fn
Infolge M =1

(43)  mo, ) = (1/L) fm

Dies bedeutet, dass bei geometrischer und statischer Ahn-
lichkeit die fiir die Einheitsmomente M; = 1 berechneten
Plattenmomente nur noch von der Bezugsspannweite L ab-
hédngig sind und fiir andere L umgerechnet werden konnen:

(44) Moz, n) = M o, L'[L

7.2 Ermittlung der Plattenfestwerte und Belastungsgrissen

Im Rahmen dieser Arbeit wurden Plattenfestwerte oq;
sowie Belastungsgrossen ¢; fiir gleichmaissig verteilte Vollast
ermittelt. Diese Werte wurden fiir 2- und 3-feldrige Platten-
streifen mit gleichen Spannweiten in der y-Richtung; und fiir
3 Spannweitenverhéltnisse ¢ = Lz/Ly = 1/1,5, =1 und
e = 1,5 errechnet (Bild 8).

Die Berechnung wurde mit Hilfe des erwdhnten SAUD-
Programmes ausgefiihrt. Da dieses Programm keine unend-
lichen Plattenstreifen verarbeitet, wurde eine geniigend grosse
Anzahl von Spannweiten in der x-Richtung gewéhlt, um die
Randstorungen der programmbedingten linienférmigen End-
feldlagerung zu vermindern.

Als Bezugsspannweite wurde L, = 1 fiir alle Berech-
nungen gewdhlt. Die Einleitung der in der x-Richtung gleich-
zeitig angreifenden Einheitsmomente erfolgte in Form von je
zweier schmaler Fldchenlasten entgegengesetzter Vorzeichen
(Bild 9). Die Belastungsgrossen ¢; wurden fiir Einheitslast pro
Flacheneinheit ermittelt (q =1). Als Plattensteifigkeit wurde
S =1 gewihlt.

Voruntersuchungen

— Eine erste Voruntersuchung befasste sich mit der Anzahl der
zu verwendenden Fouriertermen. Es zeigte sich, dass bei
Erhohung der Fourierterme von 40 auf 50 in unmittelbarer
Nihe der Lasteinleitung die errechneten Werte sich wie folgt
verdndern:

Werte im Grossen- Abweichung
Stiitzenbereich ordnung %
Durchbiegungen

und Neigungen 21072 1
Momente

in y-Richtung 2 7
Momente

in x-Richtung 8101 20

Die «- und ¢-Werte wurden demnach mit 50 Fouriertermen
gerechnet.

— Durch eine weitere Voruntersuchung sollte abgeklart werden,
wie die Grosse der Auflagerfliche die Verdrehungswerte be-
einflusst. Es zeigt sich, dass infolge der getroffenen An-
nahmen des SAUD-Programmes die Plattenverdrehungen
von der Auflagerfliche unabhéngig sind.

— Bei der letzten Voruntersuchung wurde die Einleitung der

Momente variiert. Der fiir simtliche Berechnungen gewéhlte
Hebelarm der stellvertretenden Kréfte (0,07 L,) wurde
ungefihr verdoppelt (0,15 L,) und die erhaltenen Werte
gegeniibergestellt (Bild 10). Die Abweichungen der Ver-
drehungen im Stiitzenbereich betrugen rund 159, wéahrend
die ortlichen Momentenspitzen wesentlichere Unterschiede
zeigten. Die errechneten Verdrehungen (Plattenfestwerte)
lassen sich somit bei geringerer Abweichung von der an-
genommenen Krafteinleitung mit guter N&herung an-
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Bild 8. Die zur Ermittlung der Plattenfestwerte ange-
nommenen Plattenformen

e B

|

r %and

freiel

unfersuch!% Stu tzenbe

freler%;:invri
o+

* g
—&
\
:%\
—%\
%}_

_qu:

(. e s | |
]
[— | | | I
(| Linienlagerung p$ L Lln/en/ager ung | e 4
y J ‘ ’ i
4x1' simultan | 4"(1 :
Lastfall 1
= = = = = S Lastfall 3.
4% Vollast p = 1
Lastfall 2
a0 Va4 N P
1 2 3 Tt 2 3 4

wenden («statische Aufgabe»), wihrend fiir die Berechnung
der Momentenspitzenwerte («Verteilungsaufgabe») (falls
iiberhaupt von Interesse, da im unmittelbaren Stiitzen-
bereich die Bemessung von anderen Kriterien abhingt) die
Modellierung der Kréfteeinleitung von Fall zu Fall erfolgen
soll.

0,07
001
4P
_/—Sfe/f/gke/t =1 m i
P — X e e 8
/ N o
N\ g >
]
-p
’ p = 20408

Resultatpunkte

T 005 T 0,05 10,05 170,05 T

Bild 9. Einteilung der Einheitsmomente in die Platte
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Die erhaltenen Plattenfestwerte

Die erhaltenen Werte sind, in Abhingigkeit des Spann-
weitenverhéltnisses, in den Bildern 11 und 12 aufgetragen. Es
zeigt sich, wie erwartet, ein rasches Abklingen der Einfliisse
von einer Stiitzenreihe zur anderen. Die Ergebnisse lassen sich
fiir andere, als die der Berechnung zugrundeliegenden An-
nahmen gemdiss Kap. 7.1 wie folgt umrechnen:

— Spannweitenverhiltnisse zwischen den Gerechneten: Aus-
messen aus den Kurven

— Andere Bezugsspannweite Ly und Plattensteifigkeit S:
o-Werte: nach Gl. 36; @-Werte fiir gleichmaissig verteilte
Vollast g (nach GI. 37):

- q Ly3 =
@ S Po
dabei bedeutet ¢, die errechneten Verdrehungen bei Ly = 1,
S=1,g=1

Der Vergleich der «2:-Werte zwischen 2-Feld- und
3-Feldstreifen zeigt, dass die Platte wenig davon «Kenntnis
nimmt», ob noch weitere Felder «angehdngt» sind. Sinngemaéss
konnte bei Berechnung von mehrfeldrigen Plattenstreifen
lediglich zwischen Rand- und Innenstiitzen unterschieden
werden. (Ein weiterer Vorschlag: bei der Berechnung nur
aij-Werte von j i — 1,14, 1 + 1 zu beriicksichtigen, da der
Einfluss auf weitere Stiitzenverdrehungen geringer ist, als die
Genauigkeit der allgemein getroffenen Annahmen.)

8. Vorgehen bei der Berechnung

Das vorgeschlagene Vorgehen kann wie folgt zusammen-
gefasst werden:

— Systemwahl: Festlegung des statischen Modelles

— Ermittlung der Stabfestwerte

— Ermittlung der Plattenfestwerte, entweder aus den bereits
ermittelten Werten des Bildes 11 bei geometrischer und
statischer Ahnlichkeit durch Umrechnung (s. Kap. 7) oder
durch elektronische Plattenberechnung unter Ausniitzung
bestehender Bibliothekprogramme.

— Losung der «statischen Aufgabe»: Ermittlung der an den
Knoten (Verbindungspunkte zwischen Platte und Stdbe)
auftretenden Momente (Kap. 5 und 6).
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Schnitt a

/ gf |

(aw) ()

7
—-\.
2, " _a
\\ 7 /// \\\\
~ 7 ™~
‘ v
//
005 0,10 015 - Ly 0,05 0,10 'L)/ 0,15
—— Hebelarm 0,07 * Ly
——— Hebelarm 015 Ly

Bild 10. Variation der Momenteinleitung (Voruntersuchung)

52102 5072 )
O,
; v 42
3,60
3 3 3,0
2,75 e
& | L7 k2
f-l- 12,26 4
2 ﬁ(P% ’ 2
1 7 085
j—~7,777" 0,78
Pr70N P 3
3
067 10 15 067 10 15 Lx
Ly Ly

Ly =1

Bild 12. Belastungsgrossen ¢; infolge gleichmissig verteilter Einheits-
last der 2-Feld- und 3-Feld-Plattenstreifen

— Losung der «Verteilungsaufgabe»: Ermittlung des Ver-
laufes der statischen Grossen (Durchbiegungen, Querkrifte,
Momente) infolge a) der zur Platte senkrechten Belastung,
b) der in die Platte eingeleiteten Momente. Diese Aufgabe
kann heute mit Hilfe leistungsfahiger EDV-Programme
gelost werden.

— Darstellung der erhaltenen Grossen: auch dafiir kann die
EDV eingesetzt werden; durch bestehende Hilfsprogramme
konnen die dreidimensionalen Flidchen {iibersichtlich dar-
gestellt werden (siehe Beispiel).

9. Zahlenbeispiel

9.1 Das statische System

Das statische System des gewahlten Beispiels mit den an-
greifenden Belastungen (Belastungsfall 1: Horizontallast;
Belastungsfall II: gleichmissig verteilte Vollast) sowie das
reduzierte System sind aus Bild 13 ersichtlich.

9.2 Stabfestwerte

i 1,4 223 Dimension
EJst 4,30 - 10* 1,56 - 10* tm?

€] 31 <1075 6,4 -10-3 1/tm

Y 0,25 0,375 m~*!

k 0 0,5 1

m 0 2,92 - 102 t
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2 - Feldstreifen 3 - Feldstreifen

6-10"" - 619
» ¢
525 | N1 522 !
5 5
m—-——\ A \
" 4,52 (\9”}, N PP
4 wb' ‘ \4,05
3 3
2 2
= —
U,0
S 0,68 083
(a. 052 | o @ ~—_ 0,65
\CaL -——«\%7 3= _loo7
Lx ' T lx
067 5 Lx
) 10 15 7 067 10 5o
370~ 307!
2,73 2,60
a,, -t L
22 2,32 22 231
5 Z ~~26 , \ 1,96
@iz
! A 115 ; L] 109
= 0,57
(a3, ) @ o T2 |oss
T Tl 044
027 Tgo— 033
2 e Tom
—
067 10 15 Lx 067 10 15 Lx
Ly s Ly
A ’
7 2 -8 1 2 3 4
A_% r&"ﬁ
Ly =111 Ly=1" 1 T

Bild 11. Festwerte e;; der 2-Feld- und 3-Feld-Plattenstreifen

9.3 Plattenfestwerte

3
_ BB 55 10ttm
12(1 —v?)

v

= 0,875

(0]

wo-Werte (aus Diagramm des Bildes 11 ausgemessen):

i 1 2 3 4
7 =1 4,70 -0,90 0,22 -0,09 - 10-1
j=2 =090 2,34 -0,50 0,22
Umrechnungsfaktor (nach Gl. 36):

o = 0o So/S = oo+ 3,13 1075 (1/tm)
a-Werte:
i 1 2 3 4
Ji=1 14,70  -2,82 0,69 -0,28 A
i—2 2 134 -lss o 10 dmm
Belastungsgrosse Vollast:
v,-Werte (aus Diagramm gemessen):
i 1 2

2,9 -0,75 1072
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0, 0. 1.50 2.50 4.50 5-50 750 B:00 B-50 9.00 8.50 10-50 12.50 Y-AXE

7
7:350 B-00 E-SM 9.50

Bild 14. Plotterzeichnungen zum Zahlenspiel in Kapitel 9, Lastfall I,
Horizontallast. a: M,-Werte. b: M,-Werte. c: M,,-Werte. d: Durch-
biegungen w
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Umrechnungsfaktor:
¢ =¢oq Ly3S =90°4,8-102

o-Werte:
v 1 2

13,9 -3,6 - 10-4 (m?/t)

9.4 Losung der «statischen Aufgabe»

Lastfall I ( Horizontallast)

Bedingungsgleichungen nach GI. (19), (Antimetrie, unter
Ausniitzung X4 = X7 und X3 = X3)

X: (o1 + Br) + Xocouz + Xo - aus + Xa
X101 + Xp (022 + B2) + Xp 003 + Xy 0s = G,

cog = Ch

Mit eingesetzten Werten:

X1(45,4-107%) + X2(—2,13:10-%) = C,

X1(—2,13-10-9 + X2 (69,8109 = C,
Als Kehrmatrix gelost:

X1 =122,06-102C; +0,673-103C;

X2 =0,673-103C, + 14,35-10* C,
Belastungsglieder C; und C:

Ci =025e+ 1,24-1073; C2=0375e
Verschiebungszustand 0 (e = 0)

X1° =2735; X2° = 0,831
Verschiebungszustand 1 (e = 1 allein)

X" = 5,766 -10% ; X2’ = 5,549 - 103
Verschiebung e (nach GI. 25):

104 + 2 [(40 — 27,35) — 0,83 - 1,5] B
205,766 - 103 + 5,549 - 10%- 1,5 +2,92-103]

= 1,846 - 103 m

X-Werte nach GI. 26:
X1 = 27,35 + 5,766 - 10° - 1,846 - 10—3 = 38,0 mt
X, = 0,831 + 5,549 -10%-1,846-10-3 = 11,1 mt

Auf Stiitzen wirkende Krifte:

~ =400mt
380mt 17,7 mf
70,9 mt
—_— -
05t 551

Stiitzen 1 und 4 Stiitzen 2 und 3

Gleichgewichtskontrolle:
Y Ou=10+2-05—-2:55=0
Lastfall II (Vertikallast)
Bedingungsgleichungen, unter Ausniitzung der Symmetrie
Xe=—X1; Xa=—Xo)
X1 (011 — s + B1) + Xz (o2 — ouz) = Ca
Xi (021 — 024) + Xa (022 — 023 + B2) = G2
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Belastungsglieder :

C:=025¢—-139-103; C;=0,375¢ 4 3,6-10~*

Die weitere Berechnung erfolgt analog Lastfall 1.

9.5 Die L(’)’sung der «Verteilungsaufgabe»

Diese erfolgte unter Beniitzung des bereits erwdhnten
SAUD-Programmes (60 Fourierterme).

9.6 Die Ergebnisse

Die Ergebnisse wurden als computergesteuerte Plotter-
zeichnungen dargestellt. Im Bild 14, sind die Werte Mz, My,
My so wie die Durchbiegungen fiir Lastfall I des untersuchten
Plattenausschnittes wiedergegeben.

10t
—

8,0

40

=70

Lx

Bild 13. Zahlenbeispiel: Statisches System und reduziertes
System
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