Zeitschrift: Schweizerische Bauzeitung
Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 92 (1974)

Heft: 31

Artikel: Die plastische Biegung eines Balkens, dessen E-Modul sich tber die
Querschnittshbéhe &ndert

Autor: Fekete, K.A.

DOl: https://doi.org/10.5169/seals-72429

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-72429
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Die plastische Biegung eines Balkens, dessen £-Modul sich liber die Quer-

schnittshohe andert
Von K. A. Fekete, dipl. Ing., Stafa

Problemstellung

Beim Bestreben, die metallischen Werkstoffe (vor allem
Stahl) besser auszuniitzen, treten Berechnungsmethoden zur
Bestimmung der Spannungen in den Vordergrund, die nach
Uberschreiten der Elastizitdtsgrenze auftreten. Die hierfiir er-
forderlichen theoretischen Grundlagen sind ldngstens vor-
handen, und die Entwicklung der Grosscomputer hat deren
Anwendung weite Gebiete eroffnet. Da jedoch die Zahl der zur
Verfiigung stehenden Programme (mindestens gegenwértig
noch) recht bescheiden, und ihre Beniitzung ziemlich kost-
spielig ist, muss der berechnende und konstruierende Ingenieur
hiufig ohne sie auskommen. Das hat zu der Entwicklung der
nachfolgend beschriebenen Berechnungsmethode gefiihrt. Sie
bezieht sich auf die plastische Biegung von Balken und er-
weitert die aus den einschldgigen Fachbiichern wohlbekannte
Methode, indem sie auch dann angewendet werden kann, wenn
sich der E-Modul (Sekantenmodul) {iber die Balkenhohe, d.h.
ortlich und/oder auch zeitlich bereits im unbelasteten Zustand
indert. Dabei ist es moglich, die effektiven Spannungs-Deh-
nungskurven des Materials im plastischen Dehnungsgebiet und
sogar ihre Temperaturabhingigkeit voll zu beriicksichtigen.

Ein iiber die Querschnittshohe verinderlicher E-Modul ist
z.B. in den plastifizierten Querschnitteilen von Metallbalken
zu finden. Ortlich und zeitlich verinderlich ist der E-Modul
z.B. in einer sich von hoher Temperatur abkiihlenden Metall-
wand oder Kruste, Bild 1. Hier ruft das Temperaturgefélle die
E-Modulunterschiede hervor, wozu noch die durch die Plasti-
fizierung verursachten hinzukommen. Im Maschinenbau
werden oft wiarmebehandelte (nitrierte, einsatzgehirtete, auf-
gekohlte) Maschinenteile verwendet. Sie weisen eine mehr oder
weniger dicke Schicht auf, deren Festigkeitseigenschaften von
denjenigen des darunter liegenden Materials stark verschieden
sind. Fiir die Berechnung der plastischen Biegung von solchen
Teilen eignet sich die Berechnungsmethode auch, da sie im-
stande ist, iiber die Querschnittshohe verdnderliche Spannungs-
Dehnungskennlinien zu berticksichtigen.

In der vorliegenden Arbeit, die eine ingenieurméssige Be-
handlung des Problems darstellt, wird eine graphoanalytische
Methode skizziert. Sie gestattet die Berechnung der Biegespan-
nungen und Dehnungen in Balken auf einfache Art und mit
vertretbarem Arbeitsaufwand.

1. Annahmen

Als Ausgangspunkt unserer Betrachtung seien die An-
nahmen angegeben, die der Losung des Problems zugrunde-
liegen; sie lauten:

a) Der Balken ist vor der Belastung gerade

DK 539.377

b) Die #dussere Belastung greift in der Symmetrieebene des
Balkenquerschnitts an

¢) Die vor der Deformation zur Balkenachse senkrechten
Querschnittsebenen bleiben auch nach den Deformationen
eben, es findet also keine Verwdlbung statt (Bernoulli)

d) Der Balken wird nur durch dussere Krifte belastet

e) Die von den Querkriften hervorgerufenen Schubspan-
nungen werden vernachldssigt (einachsiger Spannungszu-
stand)

f) Die Querschnittsabmessungen sind klein gegeniiber der
Balkenldnge

Aus Annahme d) folgt, dass in die Betrachtungen thermische

Spannungen (wenn die Temperaturverteilung und die mecha-

nischen Randbedingungen so beschaffen sind, dass solche

Spannungen entstehen) nicht mit einbezogen werden.

2. Theoretische Grundlagen

Unserer Berechnung legen wir das finite Spannungs-
Verzerrungsgesetz von Henckey zu Grunde, da sie be-
deutend einfacher zu handhaben sind, als die differentiellen
Gesetze von Prandtl/Reuss und mit diesen doch iiberein-
stimmen, solange das Verhédltnis der Hauptspannungen un-
verdndert bleibt, was in unserem Fall ja zutrifft. Das Hencky-
sche Gesetz in der 1. Hauptspannungsrichtung lautet:

1
(1) e =-cie+e1p :E{G1~V(Gz+03)] +

1 I
T (f) Oy — ’2' (62 + 63)

wo 1. bzw. ¢, den elastischen bzw. plastischen Dehnungsan-
teil, o1, 62, o3 die Hauptspannungen, v die Querkontraktions-
zahl, E den Elastizititsmodul und ® = tg ¢ den Plastizitéts-
modul bezeichnen. Fiir den einachsigen Vergleichszustand
nach Annahme e) (es wird nur dieser Fall untersucht) geht
GI. 1 iiber in

1 1

Gy Gy Gy

v gy E

Die Bedeutung der Winkel «, ¢ und ¢ geht aus Bild 2 her-
vor. Dabei bezeichnet tgy = Es den Gesamt- oder Sekanten-
modul. Es besteht somit ein einfacher Zusammenhang, der

jeweils durch die o, e-Kennlinie des betreffenden Materials
festgelegt ist. Allerdings muss beachtet werden, dass der

| 6 Bild 1 (links). Verteilung des E-Moduls 6
_ {iber die Balkenhohe, wie sie z. B. durch
¥ <l ein instationires Temperaturgefille her- /
vorgerufen wird Evp "
=/
Ee
v
%
Vi
< 4
/ Bild 2 (rechts). Graphische Deutung des 2 Y
2 \% Elastizititsmoduls E = tg a, des Plasti- & @\ OA
zitatsmoduls ¢ = tg ¢ und des Gesamt- & &
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moduls ¥ = tg ¢ im oy, e-Diagramm
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Bild 3. Element eines auf Biegung beanspruchten Balkens

mit den im Text verwendeten Bezeichnungen. x = Achse
durch den Schwerpunkt des Balkenquerschnittes. p =
Schwerpunktabstand vom Kriimmungsmittelpunkt. R = Ab-
stand der neutralen Faser vom Kriimmungsmittelpunkt.
R-p = Verschiebung der neutralen Faser infolge veriinder-
lichen E-Moduls

Sekantenmodul Es = tg¢ nicht nur von der Dehnung e,
sondern auch von der Temperatur 9 und der Deformations-
geschwindigkeit ¢ abhingig ist, entsprechend

Es =f(e, 9, €)

Nachfolgend wird nur die Bezeichnung Es verwendet,
ungeachtet ob die Dehnungen elastisch oder plastisch sind.

Nun gehen wir dazu tiber, die zur Durchfithrung der Be-
rechnung notwendigen Gleichungen abzuleiten. Die bekannte
Differentialgleichung der Biegung mit den in Bild 3 ver-
wendeten Bezeichnungen ist

de

d +
T dx dx

do c
3 —— 1 =——=c¢
3) E.

Diese Gleichung, mit dF = b dy multipliziert und iiber den
Querschnitt integriert, geht {iber in

de
dx

d
P A+yPB_4=0
X

(4) P

worin

() A:[Esbdy bzw. B = [Esbydy
7 7

Aus GI. (4) ergibt sich
do A 1

6 i i _ _
© dx p A+ B ¢ + B/A

Aus Gl. (6) folgt, dass der Abstand der neutralen Faser vom
Kriimmungsmittelpunkt nicht ¢ ist sondern

() R=p+ B/A
Setzen wir Gl. (6) in Gl. (4) ein, dann erhalten wir nach Um-

formung

8 o=E — (@ +»)—E;s

"o+ B4

Aus Gleichgewichtsgriinden muss fiir das Biegemoment M
gelten:

) M=fode
F

Gl. (8) in GI. (9) eingesetzt, gibt:

1 .

= | 3 | .Es — (o 19— B 5

(100 M f) { o+ B/A (e +» Es| bdy,
k- i
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Bild 4. Verlauf des E,-Moduls nach Gl. (15a) fiir einen Rechteck-
querschnitt

was nach weiteren einfachen Umformungen und nach der Ein-
fiuhrung der Abkiirzung

(1) C=[Ey*bdy
;

Zu
g B 4 C
e + BlA

(12) M=

fihrt. Um einen Zusammenhang zwischen ¢ und M zu er-
halten, 16sen wir GI. (12) nach p auf:

il B? B
(13 o= (C— )—f—

A A
und setzen GI. (13) in GI. (10) ein. Das Resultat ist

— BJ/A
(14) o = ESML/i
C— B?*A
Die Dehnung tiber den Querschnitt wird

y— BJA
C — B?*A4

(15) == A

Nun verfiigen wir iiber die zur Durchfiihrung der Be-
rechnung notwendigen Gleichungen. Die Lage der neutralen
Faser kann aus GlI. (7), die Dehnungen konnen aus Gl. (15)
und die Spannungen aus GI. (14) berechnet werden. In diesen
Gleichungen stehen A4, B und C je fiir einen Integralausdruck.
Sie miissen in den meisten Féllen numerisch gelost werden, da
der Es-Modul, wenn liberhaupt, nur ausnahmsweise in analy-
tischer Form ausgedriickt vorliegen durfte. Fiir die numerische
Integration empfiehlt sich die Trapez- oder die Simpsonsche
Formel.

Bevor der Berechnungsgang erldutert wird, wollen wir uns
iiber den Einfluss der Verteilung des Es-Moduls auf die Lage
der neutralen Faser ein Bild verschaffen. Dazu wird ein Recht-
eck-Querschnitt und eine Verteilung des Es-Moduls gemiss

h\"
(15a) Es=a (y+ 5)

zugrunde gelegt; Bild 4 zeigt den Verlauf des Es-Moduls.
Gl. (7) wurde mit » =0, 1, 2 und 3 durchgerechnet. Die Er-
gebnisse sind in Tabelle 1 zusammengefasst. Daraus i‘st zZu
entnehmen, dass sich die Lage der neutralen Linie mit zu-
nehmender Potenzzahl » immer mehr gegen die Aussenfaser,
d.h. gegen die kiltere Seite hin verschiebt.
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Bild 5. Angenommene Verteilung der Temperatur und des Ego-Moduls
beim Zahlenbeispiel im Anhang

Rechts:

Bild 6. Spannungs-Dehnungslinien des fiir das Berechnungsbeispiel
gewihlten Materials bei verschiedenen Temperaturen. Der strichpunk-
tierte Linienzug zeigt, wie die Fliessspannung und die entsprechende
elastische Dehngrenze fiir eine gegebene Temperatur interpoliert wer-
den konnen

3. Der Berechnungsgang

Dem zur Erlduterung des Berechnungsganges dienenden
Beispiel wird die in Bild 5 dargestellte Temperaturverteilung
zu Grunde gelegt. Um ein einfaches Beispiel zu erhalten, wollen
wir von zeitlichen Aenderungen der Temperaturverteilung
absehen. Das Verhalten des Materials (wiederum nur fiir dieses
Beispiel) wird als ideal-elastoplastisch und von ¢ unabhingig
angenommen, Bild 6. Die horizontale Temperaturskala und
die gestrichelte Hilfskurve in Bild 6 dienen zur Interpolation
der Fliessspannung und der entsprechenden elastischen Dehn-
grenze zwischen den angegebenen Temperaturen.

Die Berechnung besteht aus einer sich nach den Genauig-
keitsanforderungen richtenden Anzahl von Iterationsschritten.
Die Dehnungen iiber den Querschnitt des mit dem gewiinschten
Biegemoment M belasteten Balkens werden aus GI. (15) be-
rechnet. Dabei wird angenommen, dass wihrend der Belastung
mit M die Es-Verteilung unverdndert bleibt. Das trifft natiirlich
nur bei denjenigen Fasern zu, welche noch nicht tiber die Fliess-
grenze hinaus beansprucht wurden. In den bereits fliessenden
oder soeben zum Fliessen gebrachten Querschnittsteilen werden
die so berechneten Spannungen iiber der Fliessspannung
liegen. Nach der Bestimmung der zu den Dehnungen ge-
horenden wirklichen Spannungen [aus den ¢ = f(e, 9)-Kurven]
und der neuen Es-Modul-Verteilung werden aus Gl. (15) wieder
die Dehnungen berechnet, welche eine bessere Anndherung
darstellen. Die Berechnung setzt sich. somit aus den folgenden
Schritten zusammen :

1. Bestimmung der Lage der neutralen Faser des unbelasteten
Balkens, wobei 4o und Bo auf y = 0 bezogen werden.

2. Bestimmung von A1, B: und Ci, auf die soeben berechnete
Lage der neutralen Faser bezogen. Die numerische Inte-
gration wird man in den meisten Fillen getrennt von der
Rand- bis zur neutralen Faser und von dieser bis zur
anderen Randfaser durchfiihren miissen.

3. Belastung des Balkens mit dem gewliinschten Biege-
moment M.

4. Berechnung der Dehnungen i, ,!), die durch M hervor-
gerufen werden (GI. 15).

1) Der erste Index bezeichnet die Ordnungszahl des Iterations-
schrittes und der zweite den vertikalen Abstand der betrachteten Faser
von der neutralen Faser.

Schweizerische Bauzeitung - 92. Jahrgang Heft 31 + 1, August 1974
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5. Bestimmung der Spannungsverteilung s, , des 1. Iterations-
schrittes 6’1, = 1,4 * Eso,4. (Sie liefert in den fliessenden
Querschnittsteilen grossere Werte als die Fliessspannungen.)

6. Bestimmung der wirklichen Spannungen o1,y mit 1, , aus
den 6 = f (¢, %) -Kurven.

7. Berechnung der neuen Es-Verteilung nach Es,, =
G1,y/€1,y.

8. Berechnung von A2, B> und C:.

9. Erneute Berechnung der Dehnungen e2,, des mit M be-
lasteten Balkens mit A2, B> und Ca.

10. Bestimmung der Spannungsverteilung 6’2,y = Es1,4 * €2, 4.
11. Berechnung der neuen Es-Verteilung Esz, , = 62, y/2, y USW.

Die Iteration wird solange fortgesetzt, bis zwei nach-
einander berechnete Spannungsverteilungen o, , und o(+1), 4
bzw. die Spannungsverteilungen o’ 41y, y und 641y, 4 sich nur
noch im zulédssigen Ausmass unterscheiden.

Wihrend der Belastung auftretende Temperaturinde-
rungen konnen beriicksichtigt werden, indem die soeben be-
schriebene Berechnung mit mehreren, zweckméssig gewihlten
Biegemomenten durchgefiihrt und die Temperaturverteilung
von Biegemoment zu Biegemoment sprunghaft gedndert wird.

Sind die Spannungen von der Deformationsgeschwindig-
keit & nicht unabhingig, so muss ¢ vorerst angenommen
werden. Nach der Durchfithrung der Berechnung kann dann
die Richtigkeit der Annahme kontrolliert werden, indem man
die Dehnungsdifferenzen durch die sich aus dem zeitlichen
Ablauf der Belastung ergebenden Zeitdifferenzen dividiert.

EM (i+1),y — EMi,y

é1 =
TM(i+1) — TMi

Die im gewdhlten Beispiel (Bild 5) mit M = 1700, 2200,

2500 und 2800 cmkp Belastung berechneten Spannungs-

Tabelle 1. Verschiebung der Lage der neutralen Faser R—p, Bild 3,
wenn die E-Modul-Verteilung einem Polynom n-ten Grades
(Gl.[15a]) entspricht.

n 0 1 2 3

R—o 0 hl6 h/4 3 h/10
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M, =1700 kpcm My =2200 kpcm

Mz = 2500 kpcm My =2800 kpcm
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Bild 7. Die berechneten Spannungen in Abhingigkeit vom Biegemoment

verteilungen sind in Bild 7 dargestellt. Daraus geht hervor, dass
die Lage der neutralen Faser sich infolge der ungleichméssigen
Temperatur um 7,5 mm gegen die kéltere Fldche hin ver-
schiebt. Im Laufe der Berechnung dndert sich diese Verschie-
bung geringfiigig (maximal 0,6 mm).

Zur Tllustration der numerischen Berechnung sind im
Anhang einige Iterationsschritte des Belastungsfalles M =
2500 cmkp angegeben. Die Schichtdicke, in der die Fliess-
spannung erreicht wurde, betrdgt 5 mm auf der kélteren und
14 mm auf der widrmeren Seite, von der Randfaser aus ge-
messen.

Mit der skizzierten Methode kann natiirlich auch die
Plastifizierung von Balken berechnet werden, deren E-Modul
iiber den Querschnitt konstant bleibt. Um die Spannungs-
verteilung {iber die Balkenlinge zu bestimmen, muss die Be-
rechnung im Bereich von 0 bis Mwma«s mit mehreren Biege-
momenten durchgefiihrt werden, da M tiber die Balkenldnge
in der Regel nicht konstant ist.

In der Praxis ist neben der Kenntnis der Spannungen
hiufig auch die der Durchbiegung erforderlich. Auf Grund
der bereits abgeleiteten Gleichungen kann auch diese Frage
beantwortet werden. Die Differentialgleichung der Durchbie-
gung lautet:

1 . _d0O)
8. S =

Auf der linken Seite der Gl. 16 steht nur der Biegeradius.
Da wir o(x) aus Gl. 13 berechnen konnen, ist eine numerische
oder planimetrische Integration der Gl. 16 ohne weiteres mog-
lich. Es ergeben sich die folgenden Schritte:

12 n2r 12
dx dx
——=y" und ——|dx =y,
f e(x) f f e(x)
0 0

0
wobei aus Griinden der Symmetrie nur bis zur Balkenhilfte

Tabelle 2. Vorbereitende Berechnung zur Bestimmung der Durch-
biegung

M 1/M C-B*/A C-ijﬂ B/A e 1/p
cmkp  1/cmkp kp/cm? cm cm cm l/cm
0

600 1,666 - 10—3 59,313 -10* 988,5 0,0147 988,5 1,012-1073
1200 0,833:10-3 59,313 -10* 494,3 0,0147 494,3 2,023-103
1700  0,588-10-% 59,313 -10* 3488 0,0147 348,8 2,867-1073
2200 0,455-10-3 50,015-10* 227,6 -0,0682 227,6 4,394-10-3
2500  0,400-10-3 40,499 -10% 162,0 -0,0398 162,0 6,173-1073
2800  0,357-103 31,405-10* 112,1 -0,0683 112,1 8,921- 10=2

754

integriert wurde. Es empfiehlt sich sowohl 1/o(x) wie y* gra-
phisch darzustellen, um die Durchfithrung der Integration zu
erleichtern.

Um das Gesagte zu illustrieren, wurde das im Anhang
angegebene Beispiel weitergefithrt und auch die Durchbie-
gung berechnet. Dabei wurde angenommen, dass der Balken
beidseitig eingespannt und gleichméssig mit p = 84 kp/cm
belastet ist, ferner dass die Balkenldnge 200 mm betrédgt. Der
Berechnungsgang ist in Tabelle 2, das Reziproke des Biege-
radius 1/o(x) in Bild 8 angegeben. Bild 9 zeigt die Funktionen
M (x) und g¢(x) und Bild 10 die durch die ein- bzw. zweifache
Integration entstandenen Kurven. Im gewéhlten Beispiel be-
tragt die maximale Durchbiegung 0,79 mm.

Anhang
Berechnung der Lage der neutralen Faser
y cm +3 42 41 o —1 —2 43
9 °C 800 866 933 1000 1066 1133 1200
10~* Es kp/cm?

6,25 522 4,15 3,10 242 1,90 1,50

Ao = 20,665 - 10* kp/cm;

Bl = 0,75
By — 15,495 - 10* kp; b =075 &

Berechnung von Ai, Bi, Ci, auf die neutrale Faser bezogen

y cm +2,25 +1,125 0 —1,25 —2,5 =3,75
& °C 800 875 950 1035 . 1117 1200
10~* Esokp/cm? 6,25 5,10 3,80 2,71 2,02 1,50

A; = 20,616 - 10* kp
B: = 0,302 - 10* kpem
C, = 59,32 - 10* kpcm?

Bi/A; = 0,0147 cm
B?/A; = 0,00443 - 10* kpcm?
C, — B%[/A; = 59,313 - 10* kpcm?

Die Balkenbelastung M = 2500 cmkp

Bild 8. Reziproke Werte der berechneten Biegeradien in Ab-
hiingigkeit vom Biegemoment

0,010

/

0,008
= /
1
§ go06
|\4
™~
0,004 /
0,002 —
O Pt ]
0 10 00 3000

00 201
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-Jooo Bild 9 (links). Biegemoment und Re- %972 !
ziprokwert des Biegeradius in Ab- 24 :
_2000\ hingigkeit von der halben Balken- (70 /)l’\\
\ linge / | \
~ |
*5—1000 N 0,008 {
R \\ / |
3 & 0,006 |
i / | \
+1000 \\ 0,004 :
S / |
*2000, 20 40 60 80 100 120 0,002 :
x [mm] {
0 [
o 20 40 60 80 100 120
x [mm
+0,008
2 |
+0006 Bild 10 (rechts). Durch ein- bzw. ~ 0.2 N |
: : : 2 f
zweifache Integration ermittelter Ver- £ \\ |
™~ Jauf der Neigung und der Form der E o4 \ |
| +0,004 neutralen Linie in Abhingigkeit von X 06 \\ T
E der halben Balkenlinge 08 e |
+0,002 Ymax = 0,79 mm
> i
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2 [2] A. Nadai: Theory of Flow and Fracture of Solids. New York
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- =5 — [3] Istvan Szabo: Hohere Technische Mechanik, 5. Auflage. Berlin,
2 P fgm 7 89" 160" {120 Gottingen, Heidelberg 1963, Springer-Verlag.
[4] A. Muttnyanszky: Szilardsagtan (Festigkeitslehre), Budapest
1956, Tankonyvkiado.
1. Iterationsschritt [5] K. A. Reckling: Plastizititstheorie und ihre Anwendung auf Festig-
0.0147 keitsprobleme. Heidelberg, Berlin, New York 1967, Springer-Verlag.
Y=
g1 = 2500 - 59313 - 10~* [GL. (15)] Adresse des Verfassers: K. Fekete, dipl. Ing., Etzelstrasse 26,
s 8712 Stifa.
¥y cm 2,25 1,125 0 -1,25 2,5 -3,75
104 - e 95,46 48,04 0,62 -52,07 -104,7 -157,4 U h
o't = &1 - Eyokpjem? 596,7 245,0 2,4 —-141,1 211,5 —236,1 HSeatl
Gl kp/cm? 420* 245,0 2,4 -141,1 -188,4 —-175,0* . , :
10~ E Ein Sechsschaufelpropeller, der 73t wiegt und einen
dEN =

cifer kp/em? 4,40 5,1 3,8 2,71 2,02 1,11

2. Iterationsschritt
A2 = 19,331 - 104 kp
B: = -1,125-10*kpcm  B2?/A> = 0,0655 - 10* kpcm?

C: = 50,621 - 10*kpecm?  C» — B%/A2 = 50,556 - 10* kpcm?
e2 = 2500 [(y + 0,0582) / 50,556] 10—+

B:/A2 = -0,0582 cm

y cm 2,25 1,125 0 -1,25 -2,5 -3,75

10# ez 114,1 58,5 2,88 -58,9 -120,7 -182,6
6’2 =2+ Es1 kp/em?  502,0 298,4 11,0 -159,6 -243,8 -202,7
G2 kp/cm? 420* 298,4 11,0 -159,6 -232* -175%*
1054 Essi—

c2fe2 kp/em? 3,68 5,1 3,8 2,71 1,92 0,9

5. Iterationsschritt

As = 18,013 - 10* kp Bs/As = -0,0497 cm

Bs = -0,896 - 10* kpem  BZ/As = 0,0446 - 10+ kpcm?

Cs = 41,828 - 10*kpcm*> Cs — BZ/As = 41,783 - 10* kpcm?*

¥ cm 2,25 151250, 0 =125 =2,5 ¢ #=3.75
10% - ¢es 137,6 70,28 2,97 -71,82 -146,6 -221,4
6’s = es - Esskp/cm? 436,2 358,4 11,3 -194,6 —243,3 -183,3
Gs kp/cm? 420% 358,4 11,3 —-194,6 -232% —175*
10-%+ Ess =

osfes kp/em? 3,05 5,10 3,8 271 1,58 0,79

* Fliessspannung

Schweizerische Bauzeitung - 92. Jahrgang Heft 31 + 1. August 1974

Durchmesser von 9,4 m hat, wurde von den Birkenhead
Docks in Nordwestengland nach Bremen versandt. Der Pro-
peller, der als der grosste gilt, der je hergestellt wurde, ist der
erste von 10 Propellern, die fiir die 380000-BR T-Tankschiffe
der Europaklasse, an denen gegenwirtig in Bremen gebaut
wird, bestimmt sind. Die Propeller werden von Stone Man-
ganese Marine konstruiert und gefertigt, und sie bestehen aus
Nikelium, einer von der Firma eigens entwickelten Legie-
rung. Sie werden als vollstindige Einheiten gefertigt, was
gleichzeitiges Giessen von 100 t geschmolzener Legierung mit
3 Pfannen bedingt. Die Herstellung des ersten Propellers
erforderte zwanzig Wochen; dieser Zeitraum soll auf zwolf
Wochen bei den noch zu liefernden Propellern verkiirzt
werden. DK 62-253.6:656.612
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