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Die plastische Biegung eines Baikens, dessen £-Modul sich über die
Querschnittshöhe ändert
Von K. A. Fekete, dipl. Ing., Stäfa DK 539.377

Problemstellung
Beim Bestreben, die metallischen Werkstoffe (vor allem

Stahl) besser auszunützen, treten Berechnungsmethoden zml
Bestimmung dei Spannungen in den Vordergrund, die nach
Überschreiten der Elastizitätsgrenze auftret@üilaahierfür
erforderlichen theoretischen Grundlage^Kind längstens
vorhanden, und die Entwicklung der Grosscomputer hat deren

Anwendung weite Gebiete eröffnet. Da jedoch die Zahl der zur
Verfügung stehenden Programme (mindestens gegenwärtig
noch) recht bescheiden, EBlBiire Benützung ziemlich
kostspielig ist, muss der berechnende und konstruierende Ingenieur
häufig ohne sie auskommen. Das hat zu der Entsw^Sg der
nachfolgend beschriebenen Berechiarangsmethode geführt. Sie

bezieht sich auf die plastische Biegung von Balken und
erweitert die aus den igischlägigen Fachbüchern wohlbekannte
Methode, indem sie auch dann angewendet werden kann, wenn
sich der E-Modul (Sekantenmodul) über die Balkenhöhe, d. h.

örtlich und/oder auch zeitlich bereits im unbelasteten Zustand
ändert. Dabei ist es möglich, die effektiven Spannungs-Deh-
nungskurven des Materials im plastischen Dehnungsgebiet und
sogar ihre Temperaturabhängigkeit voll zu berücksichtigen.

Ein über die Quersctoittshöhe veränderlicher S-Modu^^g
z.B. in den plastifizierten Querschnitteilen von Metallbalken
zu finden. Örtlich und zeitlich veränderlich ist der .E-Modul
z. B. in einer sich von hoher Temperatur abkühlenden Metallwand

oder Kruste, Bild 1. Hier ruft das Temperaturgefälle die
is-Modulunterschiede hervor, wozu noch die durch die Plasti-
fizierung verursachten hinzukommen. Im Maschinenbau
werden oft wärmebehandelte (nitrierte, einsatzgehärtete,
aufgekohlte) Maschinenteile verwendet. Sie weisen eine mehr oder
weniger dicke Schicht auf, deren Festigkeitseigenschaften von
denjenigen des darunter liegenden Materials stark verschieden
sind. Für die Berechnung der plastischen Biegung von solchen
Teilen eignet sich die Berechnungsmethode aucfjlda sie
imstande ist, über die Querschnittshöhe veränderliche Spannungs-
Dehnungskennlinien zu berücksichtigen.

In der vorliegenden Arbeit, die eine ingenieurmässige
Behandlung des Problems darstellt, wird eine graphoanalytische
Methode skizziert. Sie gestattet die Berechnung der Biegespannungen

und Dehnungen in Balken auf einfache Art und mit
vertretbarem Arbeitsaufwand.

1. Annahmen

Als Ausgangspunkt unserer Betrachtung seien die
Annahmen angegeben, die der Lösung des Problems zugrundeliegen;

sie lauten:
a) Der Balken ist vor der Belastung gerade

b) Die äussere Belastung greift in der Symmetrieebene des

Balkenquerschnitts an
c) Die vor der Deformation zur Balkenachse senkrechten

QuerschnittsebeDen bleiben auch nach den Deformationen
eben, es findet also keine Verwölbung statt (Bernoulli)

d) Der Balken wird nur durch äussere Kräfte belastet
e) Die von den Querkräften hervorgerufener Schübspannungen

werden vernachlässigt (einachsiger Spannungszustand)

f) Die Querschnittsabmessungen sind klein gegenüber der

Balkenlänge

Aus Annahme d) folgt, dass in die Betrachtungen thermische
Spannungen (wenn die Temperaturverteilung und die
mechanischen Randbedingungen so beschaffen sind, dass solche

Spannungen entstehen) nicht mit einbezogen werden.

2. Theoretische Grundlagen

Unserer Berechnung legen wir das finite Spannungs-
Verzerrungsgesetz von Henckey zu Grunde, da sie

bedeutend einfacher zu handhaben sind, als die differentiellen
Gesetze von Prandtl/Reuss und nt diesen doch
übereinstimmen, solange das Verhältnis der Hauptspannungen
unverändert bleibt, was in unserem Fall ja zutrifft. Das Hencky-
sche Gesetz in der 1. Hauptspannungsrichtung lautet:
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a,, g2, a3 d^^Sptspannungen, v die Querkontraktions-
zahl, E den Elastizitätsmodul und <E> tg 9 den Plastizitätsmodul

bezeichnen. Für den einachsigen Vergleichszustand
nach Annahme e) (es wird nur dieser Fall untersucht) geht
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Die Bedeutung der Winkel a, cp und i> geht aus Bild 2 hervor.

Dabei bezeichnet tgcp Es den Gesamt- oder Sekantenmodul.

Es besteht somit ein einfacher Zusammenhang, der

jeweils durch die c, s-Kennlinie des betreffenden Materials

festgelegt ist. Allerdings muss beachtet werden, dass der

Bild 1 (links). Verteilung des E-Moduls
über die Balkenhöhe, wie sie z. B. durch
ein instationäres Temperaturgefälle
hervorgerufen wird

Bild 2 (rechts). Graphische Deutung des

Elastizitätsmoduls E tg a, des
Plastizitätsmoduls * tg cp und des Gesamtmoduls

* tgiA im cry-, fr-Diagramm
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Bild 3. Element eines auf Biegung beanspruchten Balkens
mit den im Text verwendeten Bezeichnungen, xW3Achse
durch den Schwerpunkt des Balkenquerschnittes, p
Schwerpunktabstand vom Krümmungsmittelpunkt. R
Abstand der neutralen Faser vom Krümmungsmittelpunkt.
R-p Verschiebung der neutralen Faser infolge veränderlichen

E-Moduls

n=3 210
E~~£

U

Bild 4. Verlauf des £>Moduls nach Gl. (15a) für einen
Rechteckquerschnitt

Sekantenmodul E, S tg iji nicht nur von der Dehnung 1
sondern auch von der Temperatur -9- und der
Deformationsgeschwindigkeit 1 abhängig ist, entsprechend

Es /(s, -9-, 1

Nachfolgend wird nur die Bezeichnung E, verwendet,
ungeachtet ob die Dehnungen elastisch oder plastisch sind.

Nun gehen wir dazu über, die zur Durchführung der
Berechnung notwendigen Gleichungen abzuleiten. Die bekannte
Differentialgleichung der Biegung mit den in Bild 3

verwendeten Bezeichnungen ist

(3)
da? dy
dx dx

G

Es

Diese Gleichung, mit dF b dy multipliziert und über den
Querschnitt integriert, geht über in

(4)
dx

dy
dx

A =0

(5) A=JEsbdy bzw. B J Es b y dy

Aus Gl. (4) ergibt sich

dy
_

A 1

dx I ?A + B ~
9 + B/A

(6)

Aus Gl. (6) folgt, dass der Abstand der neutralen Faser vom
Krümmungsmittelpunkt nicht I ist sondern

(7) R p + B/A

Setzen wir Gl. (6) in Gl. (4) ein, dann erhalten wir nach
Umformung

E Es—Mwj^+y>-E*
P + BfA

(8)

Aus GleichgewRtsgründen muss für das Biegemoment M
gelten:

(9) M=JGydF
F

Gl. (8) in Gl. (9) eingesetzt, gibt:

1

(10) M
P + B/A (p+y)- b dy,

was nach weiteren einfachen Umformungen und nach der
Einführung der Abkürzung

(11) C fEsy2bdy

(12) M ?B + C
B

führt. Um einen Zusammenhang zwischen g und M zu
erhalten, lösen wir Gl. (12) nach p auf:

(13) n C-
B2 B

A

und setzen Gl. (13) in Gl. (10) ein. Das Resultat ist

y-B/A(14) E.M-
C—B2/A

Die Dehnung über den Querschnitt wird

(15)
Es

M c-
-B/A
~iX/Ä

Nun verfügen wir über die zur Durchführung der
Berechnung notwendigen Gleichungen. Die Lage der neutralen
Faser kann aus Gl. (7), die Dehnungen können aus Gl. (15)
und die Spannungen aus Gl. (14) berechnet werden. In diesen

Gleichungen stehen A, B und C je für einen Integralausdruck.
Sie müssen in den meisten Fällen numerisch gelöst werden, da
der Es-Modul, wenn überhaupt, nur ausnahmsweise in
analytischer Form ausgedrückt vorliegen dürfte. Für die numerische
Integration empfiehlt sich die Trapez- oder die Simpsonsche
Formel.

Bevor der Berechnungsgang erläutert wird, wollen wir uns
über den Einfluss der Verteilung des Ä-Moduls auf die Lage
der neutralen Faser ein Bild verschaffen. Dazu wird ein
Rechteck-Querschnitt und eine Verteilung des £s-Moduls gemäss

(15a) Es
h

y+x
zugrunde gelegt; Bild 4 zeigt den Verlauf des ^-Moduls.
Gl. (7) wurde mit n 0, 1, 2 und 3 dÄhgerechnet. Die

Ergebnisse sind in TabelljBi zusammengefasst. Daraumst zu

entnehmen, dass siSdie Lage der neutralen Linie mit
zunehmender Potenzzahl j»|mer mehr gegen die Aussenfaser,

d.h. gegen die kältere Seite hin verschiebt.
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Bild 5. Angenommene Verteilung der Temperatur und des Bs-Moduls
beim Zahlenbeispiel im Anhang

Rechts:
Bild 6. Spannungs-Dehnungslinien des für das Berechnungsbeispiel
gewählten Materials bei verschiedenen Temperaturen. Der strichpunktierte

Linienzug zeigt, wie die Fliessspannung und die entsprechende
elastische Dehngrenze für eine gegebeneMTemperatur interpoliert werden

können

Kp/cm'

400

/
Vi

150

Elastischer
Dehnbereich Fliessbereich

i

800 "C

moo c

iioo °c

I^Hilfskurve zur Interpolation

1200 C

1300 "C

0,01 0,02 £

3. Der Berechnungsgang

Dem zur Erläuterung des Berechnungsganges dienenden
Beispiel wird die in Bild 5 dargestellte Temperaturverteilung
zu Grunde gelegt. Um ein einfaches Beispiel zu erhalten, wollen
wir von zeitlichen Aenderungen der Temperaturverteilung
absehen. Das Verhalten des Materials (wiederum nur für dieses
Beispiel) wird als ideal-elastoplastisch tBd von e unabhängig
angenommen, Bild 6. Die horizontale Temperaturskala und
die gestrichelte Hilfskurve in Bild 6 dienen zur Interpolation
der Fliessspannung und der entsprechenden elastischen
Dehngrenze zwischen den angegebenen Temperaturen.

Die Berechnung besteht aus einer sich nach den
Genauigkeitsanforderungen richtenden Anzahl von Iterationsschritten.
Die Dehnungen über den Querschnitt des mit dem gewünschten
Biegemoment M belasteten Balkens werden aus Gl. (15)
berechnet. Dabei wird angenommen, dass während der Belastung
mit M die Es-Verteilung unverändert bleibt. Das trifft natürlich
nur bei denjenigen Fasern zu, welche noch nicht über die
Fliessgrenze hinaus beansprucht wurden. In den bereits fliessenden
oder soeben zum Fliessen gebrachten Querschnittsteilen werden
die so berechneten Spannungen über der Fliessspannung
liegen. Nach der Bestimmung der zu den Dehnungen
gehörenden wirklichen Spannungen [aus den <j /(e, ^-Kurven]
und der neuen £s-Modul-Verteilung werden aus Gl. (15) wieder
die Dehnungen berechnet, welche eine bessere Annäherung
darstellen. Die Berechnung setzt sich somit aus den folgenden
Schritten zusammen:

1. Bestimmung der Lage der neutralen Faser des unbelasteten
Balkens, wobei Ao und Bo auf y 0 bezogen werden.

2. Bestimmung von Ai, Bi und Ci, auf die soeben berechnete
Lage der neutralen Faser bezogen. Die numerische
Integration wird man in den meisten Fällen getrennt von der
Rand- bis zur neutralen Faser und von dieser bis zur
anderen Randfaser durchführen müssen.

3. Belastung des Balkens mit dem gewünschten
Biegemoment M.

4. Berechnung der Dehnungen zi.y1), die durch M
hervorgerufen werden (Gl. 15).

*) Der erste Index bezeichnet die Ordnungszahl des Iterationsschrittes

und der zweite den vertikalen Abstand der betrachteten Faser
von der netHBlen Faser.
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5. Bestimmung der Spannungsverteilung a'i, y des 1. Iterationsschrittes

ct'i.j/ ei,j/ • Eso,y. (Sie liefert in den fliessenden
Querschnittsteilen grössereWerte als die Fliessspannungen.)

6. Bestimmung der wirklichen Spannungen ai,„ mit e.i,y aus
den ct f(e, 9) -Kurven.

7. Berechnung der neuen Es-Verteilung nach Esi,y
<Ji,s//ei,y.

8. Berechnung von A2, Bi und C2.

9. Erneute Berechnung der Dehnungen M y des mit M
belasteten Balkens mit Az, Bz und Cz.

10. Bestimmung der Spannungsverteilung g'z,v Esi,y ¦ zz,y.

11. Berechnung der neuen Es-Verteilung Esz, y gz, yjsz, y usw.

Die Iteration wird solange fortgesetzt, bis zwei
nacheinander berechnete Spannungsverteilungen a«, y und crw+ij.j,
bzw. die Spannungsverteilungen G\i+i),y und o-(«+i),j, sich nur
noch im zulässigen Ausmass unterscheiden.

Während der Belastung auftretende Temperaturänderungen

können berücksichtigt werden, indem die soeben
beschriebene Berechnung mit mehreren, zweckmässig gewählten
Biegemomenten durchgeführt und die Temperaturverteilung
von Biegemoment zu Biegemoment sprunghaft geändert wiSM

Sind die Spannungen von der Deformationsgeschwindigkeit
s nicht unabhängig, so muss e vorerst angenommen

werden. Nach der Durchführung der Berechnung kann dann
die Richtigkeit der Annahme kontrolliert werden, indem man
die Dehnungsdifferenzen durch die sich aus dem zeitlichen
Ablauf der Belastung ergebenden Zeitdifferenzen dividiert.

EM(i+l),s/ — ZMi,y

Tj((iH| — TM{

Die im gewählten Beispiel (Bild 5) mit M 1700, 2200,
2500 und 2800 cmkp Belastung berechneten Spannungs-

Tabelle 1. Verschiebung der Lage der neutralen Faser R-q, Bild 3,
wenn die £-Modul-Verteilung einem Polynom /7-ten Grades
(Gl. [15a]) entspricht.

n 0 1 2 3

R-q 0 A/6 h/4 3A/10
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M, 1700 kpcm M2 S 2200 kp cm ¦ 2500 kp cm M_, =2800 kpcm

*cf400¦K/400 200 O -200 -KT 400 200 O -200 + cr 400

Bild 7. ..Die berechneten Spannungen in Abhängigkeit vom Biegemoment

200 o -200
kp/cm*

200 O -200
kp/cm*

Verteilungen sind in Bild 7 dargestellt. Daraus geht hervor, dlpSl
die Lage der neutralen Faser sich infolge der ungleichmässigen

Temperatur um 7,5 mm gegen die kältere Fläche hin
verschiebt. Im Laufe der Berechnung ändert sich diese Verschiebung

geringfügig (maximal 0,6 mm).
Zur Illustration der numerischen Berechnung sind im

Anhang einige Iterationsschritte des Belastungsfalles M
2500 cmkp angegeben. Die Schichtdicke, in der die

Fliessspannung erreicht wurde, beträgt 5 mm auf der kälteren und
14 mm auf der wärmeren Seite, von der Randfaser aus

gemessen.

Mit der skizzierten Methode kann natürlich auch die

Plastifizierung von Balken berechnet werden, deren jB-Modul
über den Querschnitt konstant bleibt. Um die Spannungsverteilung

über die Balkenlänge zu bestimmen, mass die

Berechnung im Bereich von 0 bis Mmax mit mehreren
Biegemomenten durchgeführt werden, da MMber die Balkenlänge
in der Regel nicht konstant ist.

In der Praxis ist neben der Kenntnis der Spannungen

häufig auch die der Durchbiegung erforderlich. Auf Grund
der bereits abgeleiteten Gleichungen kann auch diese Frage
beantwortet werden. Die Differentialgleichung der Durchbiegung

lautet:

(16)
1

eW H mm
dx

Auf der linken Seite der Gl. 16 steht nur der Biegeradius.
Da wir q{x) aus Gl. 13 berechnen können, ist eine numerische

oder planimetrische Integration der Gl. 16 ohne weiteres möglich.

Es ergeben sich die folgenden Schritte:

1/2 7/2

dx
y und

m
dx

q(x)
dx y,

integriert Srde. Es empfiehlt sich sowohl \/q{x) wie y'
graphisch darzustellen, ran die Durchführung der Integration zu
erleichtern.

Um das Gesagte zu illustrieren, wurde das im Anhang
angegebene Beispiel weitergeführt und auch die Durchbiegung

berechnet. Dabei wurde angenommen, dass der Balken
beidseitig eingespannt und gleichmässig mit p 84 kp/cm
belastet ist, ferner dass die Balkenlänge 200 mm beträgt. Der
Bereclmungsgang ist in Tabelle 2, das Reziproke des Biegeradius

1/q(x) in Bild 8 angegeben. Bild 9 zeigt die Funktionen
M(x) und q(x) und Bild 10 die durch die ein- bzw. zweifache

Integration entstandenen Kurven. Im gewählten Beispiel
beträgt die maximale Durchbiegung 0,79 mm.

Anhang

Berechnung der Lage der neutralen Faser

y cm +3 +2 +1 0 —1 —2 —3
1 °C 800 866 933 1000 1066 1133 1200

10- 4 Eso kp/cm2
6,25 5,22 4,15 3,10 2,42 1,90 1,50

Ao 20,665-104 kp/cm;
Bo/Ao +0,75 cm

Bo 15,495 • 104kp

Berechnung von Ai, Bi, Ci, auf die neutrale Faser bezogen

y cm +2,25 +1,125 0 -1,25 -2,5 -3,75
•9- °C 800 875 950 1035 1117 1200

10-4 Eso kp/cm2 6,25 5,10 3,80 2,71 2,02 1,50

wobei aus Gründen der Symmetrie nur bis zur Balkenhälfte

Ai 20,616 • 104 kp Bi/Ai 0,0147 cm

Bi 0,302 ¦ IO4 kpcm -.B\/Ai 0,00443 • IO4 kpcm2

Ci 59,32 • 104 kpcm2 d - B\/Ai 59,313 • IO4 kpcm2

Die Balkenbelastung M 2500 cmkp

Tabelle 2. Vorbereitende Berechnung zur Bestimmung der
Durchbiegung

C-B2/Ä
M 1/M C-B2/A X B/A p 1/p

M
cmkp 1/cmkp kp/cm2 cm cm cm 1/cm

0

600

1200

1700

2200

2500

2800

1,666-IO-3 59,313-104 988,5

0,833-IO-3 59,313-104 494,3

0,588 ¦ IO"3 59,313 • IO4 348,8

0,455 • 10-3 50,015 • 104 227,6

0,400-10-3 40,499-IO4 162,0

0,357-10-3 31,405-IO4 112,1

0,0147 988,5 1,012-IO"3

0,0147 494,3 2,023 • IO"3

0,0147 348,8 2,867 • IO"3

-0,0682 227,6 4,394 • IO"3

-0,0398 162,0 6,173-IO-3

-0,0683 112,1 8,921 • IO"3

Bild 8. Reziproke Werte der berechneten Biegeradien in
Abhängigkeit vom Biegemoment

0,010

9.003

^
1 0.006
^

0,004

0,002

1000 2000
M [cmkp]

3000
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-2000

1 -1000

-M

+ M

Bild 9 (links). Biegemoment und
Reziprokwert des Biegeradius in
Abhängigkeit von der halben Balkenlänge

20 40 60 80
x [mm]

0,012

y'
0,010

0,008

0,006

0,004

0,002

20 40

+0,008

+0,006

S
I +0,004
1I +0,002

-0,002

mm

60 80
x [mm]

100 120

Bild 10 (rechts). Durch eiaa bzw.
zweifache Integration ermittelter Verlauf

der Neigung und der Form der
neutralen Linie in Abhängigkeit von
der halben Balkenlänge

Literatur

^ 0.2

0,4

X 0,6

0,8
ymax =0,79 mm

60 80
x [mm]

1. Iterationsschritt

y - 0,0147
ei g 2500 IO"4 [Gl. (15)]

|
104

10-"

59,313

cm 2,25 1,125 0 -1,25

95,46 48,04 0,62 -52,07

E,o kp/cm2 596,7 245,0 2,4 -141,1

kp/cm2 420* 245,0 2,4 -141,1

2,5 -3,75
104,7 -157,4

211,5 -236,1

188,4 -175,0

Esi
ai/ei kp/cm2 4,40 5,1 3,8 2,71 2,02 1,11

2. Iterationsschritt
Az 19,331 -104kp
Bz =-1,125 10" kpcm
Cz 50,621 • 104 kpcm2

BzjAz -0,0582 cm

Bl/Az I 0,0655 • IO4 kpcm2
Cz - Bl/Az 50,556 ¦ 104 kpcm2

2500 [(y + 0,0582)/ 50,556] 10"

y cm 2,25 1,125 0 -1,25 -2,5 -3,75
104 ¦ £2 114,1 58,5 2,88 -58,9 -120,7 -182,6
a'2 sz ¦ Esi kp/cm2 502,0 298,4 11,0 -159,6 -243,8 -202,7

rj2 kp/cm2 420* 298,4 11,0 -159,6 -232* -175*
IO"4 • Esz

cj2/e2 kp/cm2 3,68 5,1 3,8 2,71 1,92 0,96

5. Iterationsschritt
As 18,013 -104kp
Bs =-0,896-10" kpcm
Cs I 41,828 ¦ IO4 kpcm2

Bs/As =-0,0497 cm

Bl/As 0,0446 • IO4 kpcm2
Cs - B2s/As 41,783 • IO4 kpcm2

y
104-E5

Cj'5 £5

C75

10-4-£s5

cm 2,25 1,125 0 .^-1,25 ~2>5 -3>75

137,6 70,28 2,97 -71,82 -146,6 -221,4

E^kp/cm2 436,2 358,4 11,3 -194,6 -243,3 -183,3

kp/cm2 420* 358,4 11,3 -194,6 -232* -175*

gs/es kp/cm2
Fliessspannung

3,05 5,10 3,8 2,71 1,58 0,79
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Umschau

Ein Sechsschaufelpropeller, der 731 wiegt und einen
Durchmesser von 9,4 m hat, wurde von den Birkenhead
Docks in Nordwestengland nach Bremen versandt. Der
Propeller, der als der grösste gilt, der je hergestellt wurde, ist der
erste von 10 Propellern, die für die 380000-BRT-Tankschiffe
der Europaklasse, an denen gegenwärtig inwBremen gebaut

wird, bestimmt sind. Die Propeller werden von Stone

Manganese Marine konstruiert und gefertigt, und sie bestehen aus

Nikelium, einer von der Firma eigens entwickelten Legierung.

Sie werden als vollständige Einheiten gefertigt, was

gleichzeitiges Giessen von 1001 geschmolzener Legierung mit
3 Pfannen bedingt. Die Herstellung des ersten Propellers
erforderte zwanzig Wochen; dieser Zeitraum soll auf zwölf
Wochen bei den noch zu liefernden Propellern verki^M
werden. dk 62-253.6:656Hll
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	Die plastische Biegung eines Balkens, dessen E-Modul sich über die Querschnittshöhe ändert

